Sorting networks, staircase Young tableaux and last passage percolation

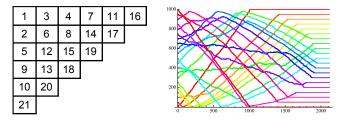
Fabio Deelan Cunden (SISSA)

based on joint works arXiv:2003.03331, 2005.02043 with

Elia Bisi Shane Gibbons Dan Romik (Technische Universität Wien) (University College Dublin) (University of California, Davis)

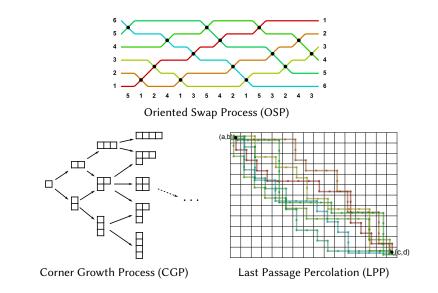
> Integrable systems around the world 14-16 September 2020

I will discuss a few fun random processes related to **random Young tableaux** and **random sorting networks**.



- The main new phenomenon is a set of distributional identities between the **finishing times** of the different processes.
- The study of these identities leads to interesting algebraic combinatorics and involves the **RSK**, **Burge**, and **Edelman-Greene** correspondences.
- Emergent random matrix distributions.

Three continuous time random processes

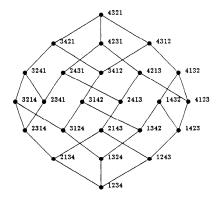


Background: sorting networks

The symmetric group S_n with Coxeter generators $\tau_i = (i \ i + 1), \quad i = 1, ..., n - 1.$

(Every permutation σ can be written as a product of **adjacent swaps** $\sigma = \tau_{i_1} \tau_{i_2} \cdots \tau_{i_k}$.)

Consider the Cayley graph (permutahedron):



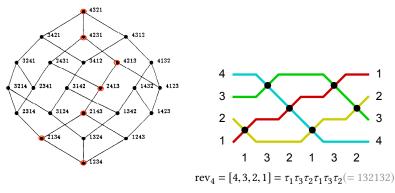
Background: sorting networks

The symmetric group S_n with Coxeter generators $\tau_i = (i \ i+1), \quad i = 1, \dots, n-1.$

A sorting network of order *n* is a path of minimal length in the permutahedron from $id_n = [1, 2, ..., n]$ to $rev_n = [n, ..., 2, 1]$.

Can be encoded as reduced decompositions of rev_n .

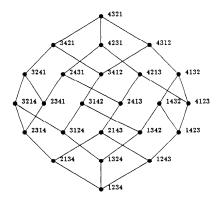
 $\underline{\mathsf{Ex.}} \ [1,2,3,4] \xrightarrow{\tau_1} [2,1,3,4] \xrightarrow{\tau_3} [2,1,4,3] \xrightarrow{\tau_2} [2,4,1,3] \xrightarrow{\tau_1} [4,2,1,3] \xrightarrow{\tau_3} [4,2,3,1] \xrightarrow{\tau_2} [4,3,2,1].$



Background: sorting networks

The symmetric group S_n with Coxeter generators $\tau_i = (i \ i+1), \quad i = 1, ..., n-1.$

Ex.



 $\begin{aligned} \mathrm{SN}_4 = \{ 123121, 121321, 212321, 231231, 213231, 123212, 312312, 132312, \\ & 312132, 132132, 321232, 231213, 213213, 232123, 323123, 321323 \} \end{aligned}$

Identify integer partitions $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$ with Young diagrams. Denote by SYT(λ) the set of standard[†] Young tableaux of shape λ . <u>Ex.</u> $\lambda = (4,3,1) \vdash 8$.

1	2	4	8
3	6	7	
5			

[†]labelling of a diagrams, strictly increasing along rows and columns.

Identify integer partitions $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$ with Young diagrams. Denote by SYT(λ) the set of standard[†] Young tableaux of shape λ . <u>Ex.</u> $\lambda = (4,3,1) \vdash 8$.

1	2	4	8
3	6	7	
5			

Standard Young tableaux encode growths of Young diagrams. In the example:

[†]labelling of a diagrams, strictly increasing along rows and columns.

Identify integer partitions $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$ with Young diagrams. Denote by SYT(λ) the set of standard[†] Young tableaux of shape λ . <u>Ex.</u> $\lambda = (4,3,1) \vdash 8$.

1	2	4	8
3	6	7	
5			

Standard Young tableaux encode growths of Young diagrams. In the example:

Theorem (Hook-length formula) [Frame-Robinson-Thrall, 1953]

$$|\mathrm{SYT}(\lambda)| = \frac{|\lambda|!}{\prod_{(i,j)\in\lambda}h_{ij}}$$

[†]labelling of a diagrams, strictly increasing along rows and columns.

In this talk, SYT(δ_n) denote the set of standard Young tableaux of shape $\delta_n = (n-1, n-2, \dots, 2, 1)$, aka **staircase shape Young tableaux** of order *n*.

1	3	4	7	11	16
2	6	8	14	17	
5	12	15	19		
9	13	18			
10	20				
21					

Sorting networks and staircase shape Young tableaux

Theorem [Stanley, 1984]

 $|SN_n| = |SYT(\delta_n)|.$

Sorting networks and staircase shape Young tableaux

Theorem [Stanley, 1984]

$$|SN_n| = |SYT(\delta_n)|.$$

Theorem [Edelman-Greene, 1987]

Combinatorial bijection

 $\operatorname{SN}_n \xleftarrow{1:1} \operatorname{SYT}(\delta_n).$

Based on a generalised RSK algorithm (Coxeter-Knuth insertion).

Random sorting networks

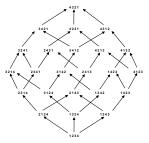
The oriented swap process (Angel-Holroyd-Romik, 2009):

- At t = 0 start from particles labelled $id_n = (1, 2, ..., n)$;
- · Independent Poisson clocks between adjacent positions;
- When a clock rings, the adjacent particles attempt to swap position. If they are in increasing order, they swap, otherwise, they do not;
- The absorbing state is $rev_n = (n, n-1, ..., 2, 1)$;
- · Continuous time random walk on the permutahedron.

Random sorting networks

The oriented swap process (Angel-Holroyd-Romik, 2009):

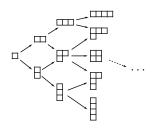
- At t = 0 start from particles labelled $id_n = (1, 2, ..., n)$;
- · Independent Poisson clocks between adjacent positions;
- When a clock rings, the adjacent particles attempt to swap position. If they are in increasing order, they swap, otherwise, they do not;
- The absorbing state is $rev_n = (n, n-1, \dots, 2, 1)$;
- · Continuous time random walk on the permutahedron.



To each transition edge in the graph is associated an Exp(1)-distributed waiting time, all such times being independent.

Randomly growing Young staircase shape

Our model for randomly growing Young diagrams is the CGP (Rost 1980, ...), in a continuous time version where each new box that can be added to the existing Young diagram gets added at a random time following a Poisson clock (independently of all other clocks).

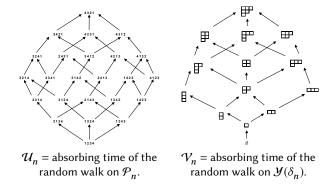


- continuous time random walk on \mathcal{Y} (to each edge is associated an Exp(1) random variable).

We stop the process when the staircase shape $\delta_n = (n - 1, n - 2, \dots, 2, 1)$ is reached.

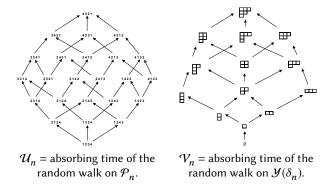
A mysterious equidistribution phenomenon

Consider the continuous-time simple random walks on these graphs:



A mysterious equidistribution phenomenon

Consider the continuous-time simple random walks on these graphs:



Conjecture [Bisi-Cunden-Gibbons-Romik]

The equality in distribution $\mathcal{U}_n \stackrel{d}{=} \mathcal{V}_n$ holds for all $n \ge 2$.

(Later in this talk: connections to RMT and recent progresses)

The conjecture $\mathcal{U}_n \stackrel{d}{=} \mathcal{V}_n$ follows from a more detailed equidistribution phenomenon involving the random finishing times

$$U_n = (U_n(1), \dots, U_n(n-1))$$
 and $V_n = (V_n(1), \dots, V_n(n-1)).$

The conjecture $\mathcal{U}_n \stackrel{d}{=} \mathcal{V}_n$ follows from a more detailed equidistribution phenomenon involving the random finishing times

$$U_n = (U_n(1), \dots, U_n(n-1))$$
 and $V_n = (V_n(1), \dots, V_n(n-1)).$

• $U_n(k)$ = time of last swap between positions k and k + 1 in OSP;

The conjecture $\mathcal{U}_n \stackrel{d}{=} \mathcal{V}_n$ follows from a more detailed equidistribution phenomenon involving the random finishing times

$$U_n = (U_n(1), \dots, U_n(n-1))$$
 and $V_n = (V_n(1), \dots, V_n(n-1)).$

- $U_n(k)$ = time of last swap between positions k and k + 1 in OSP;
- $V_n(k)$ = time when box at (n-k,k) was filled in CGP.

The conjecture $\mathcal{U}_n \stackrel{d}{=} \mathcal{V}_n$ follows from a more detailed equidistribution phenomenon involving the random finishing times

$$U_n = (U_n(1), \dots, U_n(n-1))$$
 and $V_n = (V_n(1), \dots, V_n(n-1)).$

- $U_n(k)$ = time of last swap between positions k and k + 1 in OSP;
- $V_n(k)$ = time when box at (n-k,k) was filled in CGP.

Ex. In a simpler discrete setting:

 $U_n = (10, 13, 15, 14, 11)$ and $V_n = (10, 13, 15, 14, 11)$ (in this case the two vectors are equal by Edelman-Greene).

$$\boldsymbol{U}_n = (\boldsymbol{U}_n(1), \dots, \boldsymbol{U}_n(n-1)) \quad \text{and} \quad \boldsymbol{V}_n = (\boldsymbol{V}_n(1), \dots, \boldsymbol{V}_n(n-1)).$$

- $U_n(k)$ = time of last swap between positions k and k + 1 in OSP;
- $V_n(k)$ = time when box at (n-k,k) was filled in CGP.

Conjecture [BCGR]

The equidistribution $U_n \stackrel{d}{=} V_n$ holds for all $n \ge 2$.

$$\boldsymbol{U}_n = (\boldsymbol{U}_n(1), \dots, \boldsymbol{U}_n(n-1)) \quad \text{and} \quad \boldsymbol{V}_n = (\boldsymbol{V}_n(1), \dots, \boldsymbol{V}_n(n-1)).$$

- $U_n(k)$ = time of last swap between positions k and k + 1 in OSP;
- $V_n(k)$ = time when box at (n k, k) was filled in CGP.

Conjecture [BCGR]

The equidistribution $U_n \stackrel{d}{=} V_n$ holds for all $n \ge 2$.

Note: $\mathcal{U}_n = \max_{1 \le k \le n-1} U_n(k)$, and $\mathcal{V}_n = \max_{1 \le k \le n-1} V_n(k)$ are the absorbing times.

Sanity check:

Theorem [Angel-Holroyd-Romik, 2009]

$$U_n(k) \stackrel{\mathrm{d}}{=} V_n(k)$$
, for all n, k .

Proof based on a coupling of the oriented swap process to a family of TASEPs. (This is a much weaker statement.)

Combinatorial identity

By taking a Fourier transform (basically), the conjecture can be recast as a purely combinatorial identity - a kind of weighted, vector-valued version of Stanley's equi-enumeration result.

Theorem [BCGR]

The equidistribution conjecture $U_n \stackrel{d}{=} V_n$ is equivalent to the identity of $\mathbb{C}[x_1, \dots, x_{n-1}]S_{n-1}$ -valued generating functions

$$F_n(x_1,...,x_{n-1}) = G_n(x_1,...,x_{n-1})$$

$$F_n = \sum_{t \in \text{SYT}(\delta_n)} f_t(x_1, \dots, x_{n-1}) \sigma_t$$

 $f_t(x_1, \ldots, x_{n-1})$ = the generating factor of t σ_t = the finishing permutation of t

$$G_n = \sum_{s \in SN_n} g_s(x_1, \dots, x_{n-1}) \pi_s$$

 $g_s(x_1, \ldots, x_{n-1})$ = the generating factor of $s = \pi_s$ = the finishing permutation of s

(See the paper for precise definitions.)

Example

For the tableau *t* and the sorting network s = EG(t) in the running example,

$$\sigma_t = (1, 3, 5, 4, 2) \quad \text{the order of the 'finishing times' of } t$$

$$f_t = \frac{1}{(x_1 + 1)(x_1 + 2)^2(x_1 + 3)^3(x_1 + 4)^4} \cdot \frac{1}{x_2 + 3} \cdot \frac{1}{(x_3 + 2)(x_3 + 3)} \cdot \frac{1}{x_4 + 2} \cdot \frac{1}{x_5 + 1} \cdot \frac{1}{x_5 + 1} \cdot \frac{1}{x_5 + 1} \cdot \frac{1}{(x_1 + 5)(x_1 + 4)(x_1 + 3)^5(x_1 + 2)^3} \cdot \frac{1}{x_2 + 2} \cdot \frac{1}{(x_3 + 1)(x_3 + 2)} \cdot \frac{1}{x_4 + 1} \cdot \frac{1}{x_5 + 1} \cdot \frac{1}{x$$

Note that $\sigma_t = \pi_s$ (by Edelman-Green) but $f_t \neq g_s$.

Combinatorial version of the conjecture

Using the combinatorial reformulation we were able to compute the generating functions and verify the identity for small values of *n* (computer-assisted proof).

Theorem [BCGR]

The generating function equality

$$F_n(x_1,...,x_{n-1}) = G_n(x_1,...,x_{n-1})$$

and hence the equidistribution relation

$$U_n \stackrel{\mathrm{d}}{=} V_n$$

hold for $n \leq 6$.

The absorbing time of the OSP

Angel-Holroyd-Romik (2009) posed the question:

An interesting open problem would be to find sequences of scaling constants (a_n) , (b_n) and a distribution function F such that [...]

$$a_n(\mathcal{U}_n-b_n)\xrightarrow[n\to\infty]{d} F.$$

The absorbing time of the OSP

• \mathcal{U}_n = absorbing time of the OSP, \mathcal{V}_n = point-to-line LPP time.

Corollary [BCGR]

Assuming the conjecture,

(i)
$$P\left(\mathcal{U}_n \le t\right) = \frac{1}{C_n} \int_0^t \cdots \int_0^t \prod_{1 \le i < j \le n-1} \left| y_i - y_j \right| \prod_{i=1}^{n-1} e^{-y_i} dy_i,$$

(ii) $P\left(\frac{\mathcal{U}_n - 2n}{(2n)^{1/3}} \le t\right) \xrightarrow[n \to \infty]{} F_1(t)$

- \mathcal{U}_n is distributed as the max eigenvalue of LOE;
- F_1 : Tracy-Widom $\beta = 1$ distribution.

The absorbing time of the OSP

• \mathcal{U}_n = absorbing time of the OSP, \mathcal{V}_n = point-to-line LPP time.

Corollary [BCGR]

Assuming the conjecture,

(i)
$$P\left(\mathcal{U}_n \le t\right) = \frac{1}{C_n} \int_0^t \cdots \int_0^t \prod_{1 \le i < j \le n-1} \left| y_i - y_j \right| \prod_{i=1}^{n-1} e^{-y_i} dy_i,$$

(ii) $P\left(\frac{\mathcal{U}_n - 2n}{(2n)^{1/3}} \le t\right) \xrightarrow[n \to \infty]{} F_1(t)$

- \mathcal{U}_n is distributed as the max eigenvalue of LOE;
- F_1 : Tracy-Widom $\beta = 1$ distribution.

Theorem [Bufetov-Gorin-Romik, 2020]

 $\mathcal{U}_n \stackrel{d}{=} \mathcal{V}_n$ (hence (i) and (ii) are true unconditionally). (Proof based on results by Borodin-Gorin-Wheeler (2019) for multicoloured TASEPs.)

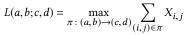
The empirical discovery that $U_n \stackrel{d}{=} V_n$ led us to to discover yet another vector W_n with the same distribution. This vector can be thought of as a kind of dual to V_n .

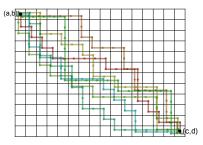
To define W_n , we first need to reinterpret the model of randomly growing Young diagrams as a last passage percolation model.

The empirical discovery that $U_n \stackrel{d}{=} V_n$ led us to to discover yet another vector W_n with the same distribution. This vector can be thought of as a kind of dual to V_n .

To define W_n , we first need to reinterpret the model of randomly growing Young diagrams as a last passage percolation model.

Last passage percolation (LPP) from (a, b) to (c, d):

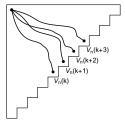




- the max is over directed paths π from (a, b) to (c, d);
- $(X_{i,j})_{i,j}$ is a random environment of i.i.d. Exp(1) waiting times.

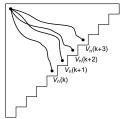
From the standard theory we can redefine V_n in terms of point-to-line LPP times by

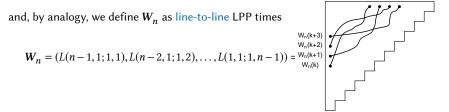
$$V_n = (L(1,1;n-1,1), L(1,1;n-2,2), \dots, L(1,1;1,n-1)) =$$



From the standard theory we can redefine V_n in terms of point-to-line LPP times by

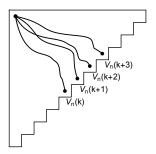
$$V_n = (L(1,1;n-1,1), L(1,1;n-2,2), \dots, L(1,1;1,n-1)) =$$



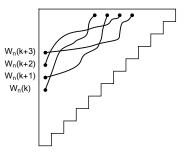


LPP and LPP*

•
$$V_n = (L(1,1;n-k,k))_{k=1}^{n-1}$$



$$W_n = (L(k, 1; 1, n-k)))_{k=1}^{n-1}$$



Point-to-line LPP

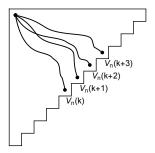
It is clear that $V_n(k) \stackrel{d}{=} W_n(k)$ (by definition + symmetry). A much stronger and non-trivial result holds...

Theorem [BCGR]

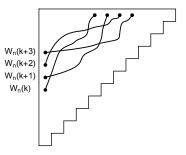
The equality in distribution $V_n \stackrel{d}{=} W_n$ holds for all *n*.

LPP and LPP*

•
$$V_n = (L(1, 1; n-k, k))_{k=1}^{n-1}$$



$$W_n = (L(k, 1; 1, n-k)))_{k=1}^{n-1}$$



Point-to-line LPP

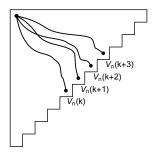
Theorem [BCGR]

The equality in distribution
$$V_n \stackrel{d}{=} W_n$$
 holds for all *n*.

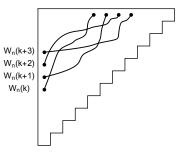
Proof based on RSK and Burge correspondences (Krattenthaler (2006), Bisi-O'Connell-Zygouras (2020)). In a discrete setting of i.i.d. geometric weights, V_n and W_n arise as border entries of the RSK and Burge output tableaux. A short calculation shows that these two tableaux have the same distribution. Take the limit to get the result for exponential weights.

LPP and LPP*

•
$$V_n = (L(1, 1; n-k, k))_{k=1}^{n-1}$$



$$W_n = (L(k, 1; 1, n-k)))_{k=1}^{n-1}$$



Point-to-line LPP

Theorem [BCGR]

The equality in distribution $V_n \stackrel{d}{=} W_n$ holds for all n.

This is a special case of 'hidden' distributional symmetries for LPP conjectured by Borodin-Gorin-Wheeler. Recent proof of general conjecture by Dauvergne (2020).

Take-home messages

We discovered new connections between the models described above. Specifically, an interesting pair of distributional identities

$$U_n \stackrel{\mathrm{d}}{=} V_n \stackrel{\mathrm{d}}{=} W_n$$

of random (n-1)-vectors of times for these random processes:

1

$$\begin{array}{c|c} U_n & V_n & W_n \\ \hline \text{OSP} & \text{CGP/LPP} & \text{LPP}^* \end{array}$$

Take-home messages

We discovered new connections between the models described above. Specifically, an interesting pair of distributional identities

$$U_n \stackrel{\mathrm{d}}{=} V_n \stackrel{\mathrm{d}}{=} W_n$$

of random (n-1)-vectors of times for these random processes:

$$\begin{array}{c|c} U_n & V_n & W_n \\ \hline \text{OSP} & \text{CGP/LPP} & \text{LPP}^* \end{array}$$

Results:

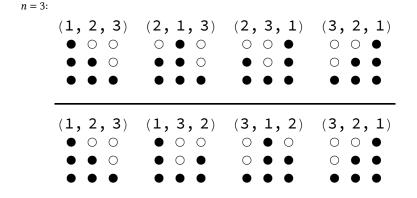
- We proved that $V_n \stackrel{d}{=} W_n$;
 - · Proof based on the duality between the RSK and Burge correspondences;
 - · Cf. 'hidden distributional symmetries' for LPP, polymers and related models.
- We conjectured that $U_n \stackrel{d}{=} V_n$;
 - It implies that the absorbing time of the OSP has a random matrix distribution;
 - It can be expressed as a purely combinatorial identity of generating functions (related to Edelman-Greene correspondence);
 - Strong evidence supporting the conjecture: true for the marginals [AHR09]; true for $n \le 6$ [BCGR19]; true for the maxima [BGR20].

References

- P. Edelman and C. Greene, Balanced tableaux, Advances in Mathematics 63(1), 42–99 (1987).
- O. Angel, A. Holroyd, and D. Romik, *The oriented swap process*, Annals of Probability **37(5)**,1970–1998 (2009).
- E. Bisi, F. D. Cunden, S. Gibbons, and D. Romik, Sorting networks, staircase Young tableaux and last passage percolation, Séminaire Lotharingien de Combinatoire 84B, #3 (2020).
 Proceedings of "Formal Power Series and Algebraic Combinatorics 2020".
- A. Bufetov, V. Gorin, and D. Romik, *Absorbing time asymptotics in the oriented swap process*, arXiv:2003.06479.
- E. Bisi, F. D. Cunden, S. Gibbons, and D. Romik, *The oriented swap process and last passage percolation*, arXiv:2005.02043

Appendix

Coupling between the oriented swap process and TASEPs



Coupling between the oriented swap process and TASEPs

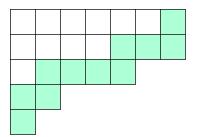
n = 4:

(1, 2, 3, 4) • $\circ \circ \circ$ • • $\circ \circ$ • • • \circ • • • •	(2, 1, 3, 4) $0 \bullet 0 0$ $\bullet \bullet 0 0$ $\bullet \bullet \bullet 0$ $\bullet \bullet \bullet 0$	(2, 3, 1, 4) $0 0 \bullet 0$ $\bullet 0 \bullet 0$ $\bullet \bullet 0$ $\bullet \bullet \bullet 0$	(2, 3, 4, 1) 0	(3, 2, 4, 1) $\circ \circ \circ \bullet$ $\circ \bullet \circ \bullet$ $\bullet \bullet \circ \bullet$ $\bullet \bullet \bullet \bullet$	$\begin{array}{c} (3,4,2,1) \\ \circ \ \circ \ \circ \ \bullet \\ \bullet \ \circ \ \bullet \ \bullet \\ \bullet \ \bullet \ \bullet \ \bullet \end{array}$	$\begin{array}{c} (4, 3, 2, 1) \\ \circ & \circ & \circ \\ \circ & \circ & \bullet \\ \circ & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{array}$
$(1, 2, 3, 4) \\ \bullet \circ \circ \circ \\ \bullet \bullet \circ \circ \\ \bullet \bullet \bullet \circ \\ \bullet \bullet \bullet \bullet$	(2, 1, 3, 4) ○ ● ○ ○ ● ● ○ ○ ● ● ● ○ ● ● ● ●	(2, 3, 1, 4) $\circ \circ \bullet \circ$ $\bullet \circ \bullet \circ$ $\bullet \bullet \bullet \circ$ $\bullet \bullet \bullet \circ$	(3, 2, 1, 4) $\circ \circ \bullet \circ$ $\circ \bullet \bullet \circ$ $\bullet \bullet \bullet \circ$ $\bullet \bullet \bullet \bullet$	(3, 2, 4, 1) $\circ \circ \circ \circ$ $\circ \bullet \circ \circ$ $\bullet \bullet \circ \bullet$ $\bullet \bullet \circ \bullet$	$\begin{array}{c} (3,4,2,1) \\ \circ & \circ & \circ \\ \circ & \circ & \bullet \\ \bullet & \circ & \bullet \\ \bullet & \bullet & \bullet \end{array}$	$\begin{smallmatrix} (4, 3, 2, 1) \\ \circ & \circ & \circ \\ \circ & \circ & \bullet \\ \circ & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet &$
$(1, 2, 3, 4)$ $\bullet \circ \circ \circ$ $\bullet \bullet \circ \circ$ $\bullet \bullet \circ$	(1, 3, 2, 4) ● ○ ○ ○ ● ○ ● ○ ● ● ● ○	(3, 1, 2, 4) ○ ● ○ ○ ○ ● ● ○ ● ● ● ○ ● ● ● ●	(3, 2, 1, 4) $\circ \circ \bullet \circ$ $\circ \bullet \bullet \circ$ $\bullet \bullet \bullet \circ$ $\bullet \bullet \bullet \bullet$	(3, 2, 4, 1) $\circ \circ \circ \bullet$ $\circ \bullet \circ \bullet$ $\bullet \bullet \circ \bullet$ $\bullet \bullet \bullet \bullet$	(3, 4, 2, 1) 0	$\begin{array}{c} (4, 3, 2, 1) \\ \odot & \odot & \bullet \\ \odot & \bullet & \bullet \\ \circ & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{array}$
$(1, 2, 3, 4)$ $\bullet \circ \circ \circ$ $\bullet \bullet \circ \circ$ $\bullet \bullet \circ$	(1, 3, 2, 4) ● ○ ○ ○ ● ○ ● ○ ● ● ● ○	(1, 3, 4, 2) ● ○ ○ ○ ● ○ ○ ● ● ● ○ ●	(3, 1, 4, 2) ○ ● ○ ○ ○ ● ○ ● ● ● ○ ●	(3, 4, 1, 2) $\circ \circ \bullet \circ$ $\circ \circ \bullet \bullet$ $\bullet \circ \bullet \bullet$	(3, 4, 2, 1) 0	(4, 3, 2, 1) 0 0 0 • 0 • • • • • • •
(1, 2, 3, 4) ● ○ ○ ○ ● ● ○ ○ ● ● ● ○ ● ● ● ○	(1, 3, 2, 4) ● ○ ○ ○ ● ○ ● ○ ● ● ● ○ ● ● ● ●	(3, 1, 2, 4) ○ ● ○ ○ ○ ● ● ○ ● ● ● ○ ● ● ● ●	(3, 1, 4, 2) ○ ● ○ ○ ○ ● ○ ● ● ● ○ ● ● ● ● ●	(3, 4, 1, 2) ○ ○ ● ○ ○ ○ ● ● ● ○ ● ●	$\begin{array}{c} (3, 4, 2, 1) \\ \circ & \circ & \circ \\ \circ & \circ & \bullet \\ \bullet & \circ & \bullet \\ \bullet & \bullet & \bullet \end{array}$	$\begin{array}{c} (4, 3, 2, 1) \\ \circ & \circ & \circ \\ \circ & \circ & \bullet \\ \circ & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{array}$
(1, 2, 3, 4) $\bullet \circ \circ \circ$ $\bullet \bullet \circ \circ$ $\bullet \bullet \bullet \circ$ $\bullet \bullet \bullet \circ$	(2, 1, 3, 4) $0 \bullet 0 0$ $\bullet \bullet 0 0$ $\bullet \bullet \bullet 0$ $\bullet \bullet \bullet 0$	(2, 3, 1, 4) $\circ \circ \bullet \circ$ $\bullet \circ \bullet \circ$ $\bullet \bullet \bullet \circ$ $\bullet \bullet \bullet \circ$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(2, 4, 3, 1) $\circ \circ \circ \bullet$ $\circ \circ \bullet$ $\circ \circ \bullet$ $\bullet \circ \bullet \bullet$	$\begin{smallmatrix} (4,2,3,1) \\ \circ & \circ & \circ \\ \circ & \bullet & \circ \\ \circ & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \end{smallmatrix}$	$\begin{array}{c} (4, 3, 2, 1) \\ \odot & \odot & \bullet \\ \odot & \bullet & \bullet \\ \circ & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{array}$
$(1, 2, 3, 4) \\ \bullet \circ \circ \circ \\ \bullet \bullet \circ \circ \\ \bullet \bullet \bullet \circ \\ \bullet \bullet \bullet \bullet$	(1, 2, 4, 3) ● ○ ○ ○ ● ● ○ ○ ● ● ○ ●	(2, 1, 4, 3) ○ ● ○ ○ ● ● ○ ○ ● ● ○ ● ● ● ●	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(2, 4, 3, 1) ○ ○ ○ ● ● ○ ○ ● ● ○ ● ●	(4, 2, 3, 1) ○ ○ ○ ● ○ ● ○ ● ○ ● ● ●	(4, 3, 2, 1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(1, 2, 3, 4) ● ○ ○ ○ ● ● ○ ○ ● ● ● ●	(2, 1, 3, 4) $0 \bullet 0 \circ$ $\bullet \bullet 0 \circ$ $\bullet \bullet \bullet \circ$	(2, 1, 4, 3) ○ ● ○ ○ ● ● ○ ○ ● ● ● ●	(2, 4, 1, 3) $\circ \circ \bullet \circ$ $\bullet \circ \bullet \circ$ $\bullet \circ \bullet \bullet$	(2, 4, 3, 1) $\circ \circ \circ \bullet$ $\bullet \circ \circ \bullet$ $\bullet \circ \bullet \bullet$ $\bullet \bullet \bullet \bullet$	(4, 2, 3, 1) 0	(4, 3, 2, 1) 0

Robinson-Schensted-Knuth and Burge correspondences

RSK and **Bur** can be seen as bijections on (real) tableaux of shape λ :

$$\begin{aligned} x &= \{x_{i,j} \colon (i,j) \in \lambda\} \xrightarrow{\mathsf{RSK}} r = \{r_{i,j} \colon (i,j) \in \lambda\} \\ x &= \{x_{i,j} \colon (i,j) \in \lambda\} \xrightarrow{\mathsf{Bur}} b = \{b_{i,j} \colon (i,j) \in \lambda\} \end{aligned}$$



If (*m*, *n*) is on the border strip:

$$r_{m,n} = \max_{\pi: (1,1) \to (m,n)} \sum_{(i,j) \in \pi} x_{i,j}$$
$$b_{m,n} = \max_{\pi: (m,1) \to (1,n)} \sum_{(i,j) \in \pi} x_{i,j}$$

 \rightarrow "deterministic" LPP times!

Robinson-Schensted-Knuth and Burge correspondences

<u>Ex.</u>

0	1	5	3
0	0	2	
1	1	2	
3	0	1	
4			

RSK	
	1
	~

0	0	6	9
1	2	8	
2	4	10	
4	4	11	
8			

Bur

0	1	6	9
0	1	7	
0	2	11	
4	6	14	
8			

Point-to-line and line-to-line LPP vectors

Lemma [BCGR]

If X is a random tableau of shape λ with i.i.d. geometric or exponential entries, then $RSK(X) \stackrel{d}{=} Bur(X)$.

Taking
$$\lambda = \delta_n = (n-1, n-2, \dots, 1)$$
 and $X_{i,j} \sim \text{Exp}(1)$:

$$(\text{RSK}(X)_{n-k,k})_k \stackrel{\text{d}}{=} (\text{Bur}(X)_{n-k,k})_k$$

$$(L(1,1;n-k,k))_k \stackrel{\text{d}}{=} (L(n-k,1;1,k))_k$$

$$V_n \stackrel{\text{d}}{=} W_n$$