Sorting networks, staircase Young tableaux and last passage percolation

Fabio Deelan Cunden (SISSA)

based on joint works arXiv:2003.03331, 2005.02043 with

Elia Bisi	Shane Gibbons	Dan Romik
(Technische Universität Wien)	(University College Dublin)	(University of California, Davis)

Integrable systems around the world
14-16 September 2020

Outline

I will discuss a few fun random processes related to random Young tableaux and random sorting networks.

1	3	4	7	11	16
2	6	8	14	17	
5	12	15	19		
9	13	18			
10	20				
21					

- The main new phenomenon is a set of distributional identities between the finishing times of the different processes.
- The study of these identities leads to interesting algebraic combinatorics and involves the RSK, Burge, and Edelman-Greene correspondences.
- Emergent random matrix distributions.

Three continuous time random processes

Background: sorting networks

The symmetric group S_{n} with Coxeter generators $\tau_{i}=(i i+1), \quad i=1, \ldots, n-1$.
(Every permutation σ can be written as a product of adjacent swaps $\sigma=\tau_{i_{1}} \tau_{i_{2}} \cdots \tau_{i_{k}}$.)

Consider the Cayley graph (permutahedron):

Background: sorting networks

The symmetric group S_{n} with Coxeter generators $\tau_{i}=(i i+1), \quad i=1, \ldots, n-1$.
A sorting network of order n is a path of minimal length in the permutahedron from $\operatorname{id}_{n}=[1,2, \ldots, n]$ to $\operatorname{rev}_{n}=[n, \ldots, 2,1]$.

Can be encoded as reduced decompositions of rev_{n}.
Ex. $[1,2,3,4] \xrightarrow{\tau_{1}}[2,1,3,4] \xrightarrow{\tau_{3}}[2,1,4,3] \xrightarrow{\tau_{2}}[2,4,1,3] \xrightarrow{\tau_{1}}[4,2,1,3] \xrightarrow{\tau_{3}}[4,2,3,1] \xrightarrow{\tau_{2}}[4,3,2,1]$.

$\operatorname{rev}_{4}=[4,3,2,1]=\tau_{1} \tau_{3} \tau_{2} \tau_{1} \tau_{3} \tau_{2}(=132132)$

Background: sorting networks

The symmetric group S_{n} with Coxeter generators $\tau_{i}=(i i+1), \quad i=1, \ldots, n-1$. Ex.

$\mathrm{SN}_{4}=\{123121,121321,212321,231231,213231,123212,312312,132312$, 312132, 132132, 321232, 231213, 213213, 232123, 323123, 321323\}

Background: staircase shape Young tableaux

Identify integer partitions $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$ with Young diagrams. Denote by $\operatorname{SYT}(\lambda)$ the set of standard ${ }^{\dagger}$ Young tableaux of shape λ.

Ex. $\lambda=(4,3,1) \vdash 8$.

1	2	4	8
3	6	7	
5			

[^0]
Background: staircase shape Young tableaux

Identify integer partitions $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$ with Young diagrams. Denote by $\operatorname{SYT}(\lambda)$ the set of standard ${ }^{\dagger}$ Young tableaux of shape λ.

Ex. $\lambda=(4,3,1) \vdash 8$.

1	2	4	8
3	6	7	
5			

Standard Young tableaux encode growths of Young diagrams. In the example:

[^1]
Background: staircase shape Young tableaux

Identify integer partitions $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$ with Young diagrams.
Denote by $\operatorname{SYT}(\lambda)$ the set of standard ${ }^{\dagger}$ Young tableaux of shape λ.
Ex. $\lambda=(4,3,1) \vdash 8$.

1	2	4	8
3	6	7	
5			

Standard Young tableaux encode growths of Young diagrams. In the example:

Theorem (Hook-length formula) [Frame-Robinson-Thrall, 1953]

$$
|\operatorname{SYT}(\lambda)|=\frac{|\lambda|!}{\prod_{(i, j) \in \lambda} h_{i j}}
$$

[^2]Background: staircase shape Young tableaux

In this talk, $\operatorname{SYT}\left(\delta_{n}\right)$ denote the set of standard Young tableaux of shape $\delta_{n}=(n-1, n-2, \ldots, 2,1)$, aka staircase shape Young tableaux of order n.

1	3	4	7	11	16
2	6	8	14	17	
5	12	15	19		
9	13	18			
10	20				
21					

Sorting networks and staircase shape Young tableaux

Theorem [Stanley, 1984]

$$
\left|\mathrm{SN}_{n}\right|=\left|\operatorname{SYT}\left(\delta_{n}\right)\right| .
$$

Sorting networks and staircase shape Young tableaux

Theorem [Stanley, 1984]

$$
\left|\mathrm{SN}_{n}\right|=\left|\operatorname{SYT}\left(\delta_{n}\right)\right| .
$$

Theorem [Edelman-Greene, 1987]

Combinatorial bijection

$$
\mathrm{SN}_{n} \stackrel{1: 1}{\longleftrightarrow} \operatorname{SYT}\left(\delta_{n}\right) .
$$

Based on a generalised RSK algorithm (Coxeter-Knuth insertion).

1	3	4	7	11
2	6	8	14	
5	12	15		
9	13			
10				

Random sorting networks

The oriented swap process (Angel-Holroyd-Romik, 2009):

- At $t=0$ start from particles labelled $\operatorname{id}_{n}=(1,2, \ldots, n)$;
- Independent Poisson clocks between adjacent positions;
- When a clock rings, the adjacent particles attempt to swap position. If they are in increasing order, they swap, otherwise, they do not;
- The absorbing state is $\operatorname{rev}_{n}=(n, n-1, \ldots, 2,1)$;
- Continuous time random walk on the permutahedron.

Random sorting networks

The oriented swap process (Angel-Holroyd-Romik, 2009):

- At $t=0$ start from particles labelled $\mathrm{id}_{n}=(1,2, \ldots, n)$;
- Independent Poisson clocks between adjacent positions;
- When a clock rings, the adjacent particles attempt to swap position. If they are in increasing order, they swap, otherwise, they do not;
- The absorbing state is $\operatorname{rev}_{n}=(n, n-1, \ldots, 2,1)$;
- Continuous time random walk on the permutahedron.

To each transition edge in the graph is associated an $\operatorname{Exp}(1)$-distributed waiting time, all such times being independent.

Randomly growing Young staircase shape

Our model for randomly growing Young diagrams is the CGP (Rost 1980, ...), in a continuous time version where each new box that can be added to the existing Young diagram gets added at a random time following a Poisson clock (independently of all other clocks).

- continuous time random walk on \boldsymbol{Y} (to each edge is associated an $\operatorname{Exp}(1)$ random variable).

We stop the process when the staircase shape $\delta_{n}=(n-1, n-2, \ldots, 2,1)$ is reached.

A mysterious equidistribution phenomenon

Consider the continuous-time simple random walks on these graphs:

$\mathcal{U}_{n}=$ absorbing time of the random walk on \mathcal{P}_{n}.

$\mathcal{V}_{n}=$ absorbing time of the random walk on $\mathcal{Y}\left(\delta_{n}\right)$.

A mysterious equidistribution phenomenon

Consider the continuous-time simple random walks on these graphs:

$\mathcal{U}_{n}=$ absorbing time of the random walk on \mathcal{P}_{n}.

$\mathcal{V}_{n}=$ absorbing time of the random walk on $\mathcal{Y}\left(\delta_{n}\right)$.

Conjecture [Bisi-Cunden-Gibbons-Romik]

The equality in distribution $\mathcal{U}_{n} \stackrel{\mathrm{~d}}{=} \mathcal{V}_{n}$ holds for all $n \geq 2$.
(Later in this talk: connections to RMT and recent progresses)

Finishing times

The conjecture $\mathcal{U}_{n} \stackrel{\text { d }}{=} \mathcal{V}_{n}$ follows from a more detailed equidistribution phenomenon involving the random finishing times

$$
\boldsymbol{U}_{n}=\left(U_{n}(1), \ldots, U_{n}(n-1)\right) \quad \text { and } \quad V_{n}=\left(V_{n}(1), \ldots, V_{n}(n-1)\right) .
$$

Finishing times

The conjecture $\mathcal{U}_{n} \stackrel{\text { d }}{=} \mathcal{V}_{n}$ follows from a more detailed equidistribution phenomenon involving the random finishing times

$$
\boldsymbol{U}_{n}=\left(U_{n}(1), \ldots, U_{n}(n-1)\right) \quad \text { and } \quad V_{n}=\left(V_{n}(1), \ldots, V_{n}(n-1)\right) .
$$

- $U_{n}(k)=$ time of last swap between positions k and $k+1$ in OSP;

Finishing times

The conjecture $\mathcal{U}_{n} \stackrel{\text { d }}{=} \mathcal{V}_{n}$ follows from a more detailed equidistribution phenomenon involving the random finishing times

$$
\boldsymbol{U}_{n}=\left(U_{n}(1), \ldots, U_{n}(n-1)\right) \quad \text { and } \quad V_{n}=\left(V_{n}(1), \ldots, V_{n}(n-1)\right) .
$$

- $U_{n}(k)=$ time of last swap between positions k and $k+1$ in OSP;
- $V_{n}(k)=$ time when box at $(n-k, k)$ was filled in CGP.

Finishing times

The conjecture $\mathcal{U}_{n} \stackrel{\text { d }}{=} \mathcal{V}_{n}$ follows from a more detailed equidistribution phenomenon involving the random finishing times

$$
\boldsymbol{U}_{n}=\left(U_{n}(1), \ldots, U_{n}(n-1)\right) \quad \text { and } \quad V_{n}=\left(V_{n}(1), \ldots, V_{n}(n-1)\right) .
$$

- $U_{n}(k)=$ time of last swap between positions k and $k+1$ in OSP;
- $V_{n}(k)=$ time when box at $(n-k, k)$ was filled in CGP.

Ex. In a simpler discrete setting:

1	3	4	7	11
2	6	8	14	
5	12	15		
9	13			
10				

$\boldsymbol{U}_{n}=(10,13,15,14,11)$ and $V_{n}=(10,13,15,14,11)$
(in this case the two vectors are equal by Edelman-Greene).

Finishing times

$$
U_{n}=\left(U_{n}(1), \ldots, U_{n}(n-1)\right) \quad \text { and } \quad V_{n}=\left(V_{n}(1), \ldots, V_{n}(n-1)\right) .
$$

- $U_{n}(k)=$ time of last swap between positions k and $k+1$ in OSP;
- $V_{n}(k)=$ time when box at $(n-k, k)$ was filled in CGP.

Conjecture [BCGR]

The equidistribution $U_{n} \stackrel{\text { d }}{=} V_{n}$ holds for all $n \geq 2$.

Finishing times

$$
U_{n}=\left(U_{n}(1), \ldots, U_{n}(n-1)\right) \quad \text { and } \quad V_{n}=\left(V_{n}(1), \ldots, V_{n}(n-1)\right) .
$$

- $U_{n}(k)=$ time of last swap between positions k and $k+1$ in OSP;
- $V_{n}(k)=$ time when box at $(n-k, k)$ was filled in CGP.

Conjecture [BCGR]

The equidistribution $U_{n} \stackrel{\text { d }}{=} V_{n}$ holds for all $n \geq 2$.

Note: $\mathcal{U}_{n}=\max _{1 \leq k \leq n-1} U_{n}(k)$, and $\mathcal{V}_{n}=\max _{1 \leq k \leq n-1} V_{n}(k)$ are the absorbing times.
Sanity check:

Theorem [Angel-Holroyd-Romik, 2009]

$U_{n}(k) \stackrel{\text { d }}{=} V_{n}(k)$, for all n, k.
Proof based on a coupling of the oriented swap process to a family of TASEPs. (This is a much weaker statement.)

Combinatorial identity

By taking a Fourier transform (basically), the conjecture can be recast as a purely combinatorial identity - a kind of weighted, vector-valued version of Stanley's equi-enumeration result.

Theorem [BCGR]

The equidistribution conjecture $U_{n} \stackrel{\text { d }}{=} V_{n}$ is equivalent to the identity of $\mathbb{C}\left[x_{1}, \ldots, x_{n-1}\right] S_{n-1}$-valued generating functions

$$
\begin{gathered}
\qquad F_{n}\left(x_{1}, \ldots, x_{n-1}\right)=G_{n}\left(x_{1}, \ldots, x_{n-1}\right) \\
F_{n}=\sum_{t \in \operatorname{SYT}\left(\delta_{n}\right)} f_{t}\left(x_{1}, \ldots, x_{n-1}\right) \sigma_{t} \\
G_{n}=\sum_{s \in \mathrm{SN}_{n}} g_{s}\left(x_{1}, \ldots, x_{n-1}\right) \pi_{s} \\
f_{t}\left(x_{1}, \ldots, x_{n-1}\right)=\text { the generating factor of } t \\
\sigma_{t}=\text { the finishing permutation of } t
\end{gathered} \begin{aligned}
& g_{s}\left(x_{1}, \ldots, x_{n-1}\right)=\text { the generating factor of } s \\
& \pi_{s}=\text { the finishing permutation of } s
\end{aligned}
$$

(See the paper for precise definitions.)

Example

For the tableau t and the sorting network $s=\mathrm{EG}(t)$ in the running example,

1	3	4	7	11
2	6	8	14	
5	12	15		
9	13			
10				

$\sigma_{t}=(1,3,5,4,2) \quad$ the order of the 'finishing times' of t

$$
f_{t}=\frac{1}{\left(x_{1}+1\right)\left(x_{1}+2\right)^{2}\left(x_{1}+3\right)^{3}\left(x_{1}+4\right)^{4}} \cdot \frac{1}{x_{2}+3} \cdot \frac{1}{\left(x_{3}+2\right)\left(x_{3}+3\right)} \cdot \frac{1}{x_{4}+2} \cdot \frac{1}{x_{5}+1} .
$$

$\pi_{s}=(1,3,5,4,2) \quad$ the order of the 'finishing times' of s
$g_{s}=\frac{1}{\left(x_{1}+5\right)\left(x_{1}+4\right)\left(x_{1}+3\right)^{5}\left(x_{1}+2\right)^{3}} \cdot \frac{1}{x_{2}+2} \cdot \frac{1}{\left(x_{3}+1\right)\left(x_{3}+2\right)} \cdot \frac{1}{x_{4}+1} \cdot \frac{1}{x_{5}+1}$.

Note that $\sigma_{t}=\pi_{s}$ (by Edelman-Green) but $f_{t} \neq g_{s}$.

Combinatorial version of the conjecture

Using the combinatorial reformulation we were able to compute the generating functions and verify the identity for small values of n (computer-assisted proof).

Theorem [BCGR]

The generating function equality

$$
F_{n}\left(x_{1}, \ldots, x_{n-1}\right)=G_{n}\left(x_{1}, \ldots, x_{n-1}\right)
$$

and hence the equidistribution relation

$$
U_{n} \stackrel{\mathrm{~d}}{=} V_{n}
$$

hold for $n \leq 6$.

The absorbing time of the OSP

Angel-Holroyd-Romik (2009) posed the question:
An interesting open problem would be to find sequences of scaling constants $\left(a_{n}\right),\left(b_{n}\right)$ and a distribution function F such that [...]

$$
a_{n}\left(\mathcal{U}_{n}-b_{n}\right) \xrightarrow[n \rightarrow \infty]{d} F .
$$

The absorbing time of the OSP

- $\mathcal{U}_{n}=$ absorbing time of the OSP, $\mathcal{V}_{n}=$ point-to-line LPP time.

Corollary [BCGR]

Assuming the conjecture,
(i) $P\left(\mathcal{U}_{n} \leq t\right)=\frac{1}{C_{n}} \int_{0}^{t} \cdots \int_{0}^{t} \prod_{1 \leq i<j \leq n-1}\left|y_{i}-y_{j}\right| \prod_{i=1}^{n-1} \mathrm{e}^{-y_{i}} \mathrm{~d} y_{i}$,
(ii) $P\left(\frac{\mathcal{U}_{n}-2 n}{(2 n)^{1 / 3}} \leq t\right) \xrightarrow[n \rightarrow \infty]{\longrightarrow} F_{1}(t)$

- \mathcal{U}_{n} is distributed as the max eigenvalue of LOE;
- F_{1} : Tracy-Widom $\beta=1$ distribution.

The absorbing time of the OSP

- $\mathcal{U}_{n}=$ absorbing time of the OSP, $\mathcal{V}_{n}=$ point-to-line LPP time.

Corollary [BCGR]

Assuming the conjecture,
(i) $P\left(\mathcal{U}_{n} \leq t\right)=\frac{1}{C_{n}} \int_{0}^{t} \cdots \int_{0}^{t} \prod_{1 \leq i<j \leq n-1}\left|y_{i}-y_{j}\right| \prod_{i=1}^{n-1} \mathrm{e}^{-y_{i}} \mathrm{~d} y_{i}$,
(ii) $P\left(\frac{\mathcal{U}_{n}-2 n}{(2 n)^{1 / 3}} \leq t\right) \xrightarrow[n \rightarrow \infty]{\longrightarrow} F_{1}(t)$

- \mathcal{U}_{n} is distributed as the max eigenvalue of LOE;
- F_{1} : Tracy-Widom $\beta=1$ distribution.

Theorem [Bufetov-Gorin-Romik, 2020]

$\mathcal{U}_{n} \stackrel{\mathrm{~d}}{=} \mathcal{V}_{n}$ (hence (i) and (ii) are true unconditionally).
(Proof based on results by Borodin-Gorin-Wheeler (2019) for multicoloured TASEPs.)

Last passage percolation

The empirical discovery that $U_{n} \stackrel{\text { d }}{=} V_{n}$ led us to to discover yet another vector W_{n} with the same distribution. This vector can be thought of as a kind of dual to V_{n}.

To define W_{n}, we first need to reinterpret the model of randomly growing Young diagrams as a last passage percolation model.

Last passage percolation

The empirical discovery that $U_{n} \stackrel{\text { d }}{=} V_{n}$ led us to to discover yet another vector W_{n} with the same distribution. This vector can be thought of as a kind of dual to V_{n}.

To define W_{n}, we first need to reinterpret the model of randomly growing Young diagrams as a last passage percolation model.

Last passage percolation (LPP) from (a, b) to (c, d) :

$$
L(a, b ; c, d)=\max _{\pi:(a, b) \rightarrow(c, d)} \sum_{(i, j) \in \pi} X_{i, j}
$$

- the max is over directed paths π from (a, b) to (c, d);
- $\left(X_{i, j}\right)_{i, j}$ is a random environment of i.i.d. $\operatorname{Exp}(1)$ waiting times.

Last passage percolation

From the standard theory we can redefine V_{n} in terms of point-to-line LPP times by

$$
V_{n}=(L(1,1 ; n-1,1), L(1,1 ; n-2,2), \ldots, L(1,1 ; 1, n-1))=
$$

Last passage percolation

From the standard theory we can redefine V_{n} in terms of point-to-line LPP times by

$$
V_{n}=(L(1,1 ; n-1,1), L(1,1 ; n-2,2), \ldots, L(1,1 ; 1, n-1))=
$$

and, by analogy, we define W_{n} as line-to-line LPP times

LPP and LPP*

- $\boldsymbol{V}_{n}=(L(1,1 ; n-k, k))_{k=1}^{n-1}$

Point-to-line LPP

- $\left.\boldsymbol{W}_{n}=(L(k, 1 ; 1, n-k))\right)_{k=1}^{n-1}$

Line-to-line LPP

It is clear that $V_{n}(k) \stackrel{\mathrm{d}}{=} W_{n}(k)$ (by definition + symmetry).
A much stronger and non-trivial result holds...

Theorem [BCGR]

The equality in distribution $V_{n} \stackrel{\text { d }}{=} W_{n}$ holds for all n.

LPP and LPP*

- $\boldsymbol{V}_{n}=(L(1,1 ; n-k, k))_{k=1}^{n-1}$

Point-to-line LPP

- $\left.\boldsymbol{W}_{n}=(L(k, 1 ; 1, n-k))\right)_{k=1}^{n-1}$

Line-to-line LPP

Theorem [BCGR]

The equality in distribution $V_{n} \stackrel{\text { d }}{=} W_{n}$ holds for all n.
Proof based on RSK and Burge correspondences (Krattenthaler (2006), Bisi-O'Connell-Zygouras (2020)). In a discrete setting of i.i.d. geometric weights, V_{n} and W_{n} arise as border entries of the RSK and Burge output tableaux. A short calculation shows that these two tableaux have the same distribution. Take the limit to get the result for exponential weights.

LPP and LPP*

- $\boldsymbol{V}_{n}=(L(1,1 ; n-k, k))_{k=1}^{n-1}$

Point-to-line LPP

- $\left.\boldsymbol{W}_{n}=(L(k, 1 ; 1, n-k))\right)_{k=1}^{n-1}$

Line-to-line LPP

Theorem [BCGR]

The equality in distribution $V_{n} \stackrel{\text { d }}{=} W_{n}$ holds for all n.
This is a special case of 'hidden' distributional symmetries for LPP conjectured by Borodin-Gorin-Wheeler. Recent proof of general conjecture by Dauvergne (2020).

Take-home messages

We discovered new connections between the models described above. Specifically, an interesting pair of distributional identities

$$
U_{n} \stackrel{\mathrm{~d}}{\stackrel{\mathrm{~d}}{ }} V_{n} \stackrel{\mathrm{~d}}{=} W_{n}
$$

of random $(n-1)$-vectors of times for these random processes:

U_{n}	V_{n}	W_{n}
OSP	CGP/LPP	LPP *

Take-home messages

We discovered new connections between the models described above. Specifically, an interesting pair of distributional identities

$$
U_{n} \stackrel{\mathrm{~d}}{=} V_{n} \stackrel{\mathrm{~d}}{=} W_{n}
$$

of random $(n-1)$-vectors of times for these random processes:

U_{n}	V_{n}	W_{n}
OSP	CGP/LPP	LPP *

Results:

- We proved that $V_{n} \stackrel{\mathrm{~d}}{=} W_{n}$;
- Proof based on the duality between the RSK and Burge correspondences;
- Cf. 'hidden distributional symmetries' for LPP, polymers and related models.
- We conjectured that $U_{n} \stackrel{\mathrm{~d}}{=} V_{n}$;
- It implies that the absorbing time of the OSP has a random matrix distribution;
- It can be expressed as a purely combinatorial identity of generating functions (related to Edelman-Greene correspondence);
- Strong evidence supporting the conjecture: true for the marginals [AHR09]; true for $n \leq 6$ [BCGR19]; true for the maxima [BGR20].

References

- P. Edelman and C. Greene, Balanced tableaux, Advances in Mathematics 63(1), 42-99 (1987).
- O. Angel, A. Holroyd, and D. Romik, The oriented swap process, Annals of Probability 37(5), 1970-1998 (2009).
- E. Bisi, F. D. Cunden, S. Gibbons, and D. Romik, Sorting networks, staircase Young tableaux and last passage percolation, Séminaire Lotharingien de Combinatoire 84B, \#3 (2020).
Proceedings of "Formal Power Series and Algebraic Combinatorics 2020".
- A. Bufetov, V. Gorin, and D. Romik, Absorbing time asymptotics in the oriented swap process, arXiv:2003.06479.
- E. Bisi, F. D. Cunden, S. Gibbons, and D. Romik, The oriented swap process and last passage percolation, arXiv:2005.02043

Appendix

Coupling between the oriented swap process and TASEPs

$$
n=3:
$$

(1, 2, 3)	$(2,1,3)$	$(2,3,1)$	$(3,2,1)$
- ○	$\bigcirc \bigcirc$	$\bigcirc \bigcirc$	$\bigcirc \bigcirc$
- \bigcirc	- -	- \bigcirc	\bigcirc
- -	- -	-	-
(1, 2, 3)	(1, 3, 2)	(3, 1, 2)	($3,2,1$)
- \bigcirc	\bigcirc	$\bigcirc \bigcirc$	$\bigcirc \bigcirc$
- $-\bigcirc$	\bigcirc	$\bigcirc-$	\bigcirc
- -	-	-	- -

Coupling between the oriented swap process and TASEPs $n=4:$

$\begin{array}{ccc} (1,2, & 3 \\ \bullet & 0 & 0 \\ \bullet & 0 & 0 \\ \bullet & \bullet & 0 \\ \bullet & \bullet & \end{array}$	$\begin{array}{cccc} (2, & 1, & 3, & 4 \\ 0 & \bullet & 0 & 0 \\ \bullet & \bullet & 0 & 0 \\ \bullet & \bullet & \bullet & 0 \\ \bullet & \bullet & \bullet & \bullet \end{array}$	$\begin{array}{cccc} (2, & 3, & 1, & 4 \\ 0 & 0 & \bullet & 0 \\ \bullet & 0 & \bullet & 0 \\ \bullet & \bullet & \bullet & 0 \\ \bullet & \bullet & \bullet & \bullet \end{array}$	$\begin{array}{cccc} (2,3, & 4, & 1) \\ 0 & 0 & \circ & \bullet \\ \bullet & \circ & \circ & \bullet \\ \bullet & \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{array}$	$\begin{array}{cccc} (3, & 2, & 4, & 1) \\ 0 & 0 & 0 & \bullet \\ 0 & \bullet & 0 & \bullet \\ \bullet & 0 & \bullet \end{array}$	$\begin{array}{cccc} \langle 3, & 4, & 2, & 1 \\ 0 & 0 & 0 & \bullet \\ 0 & 0 & \bullet & \bullet \\ \bullet & 0 & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet \end{array}$	$\begin{array}{cccc} \langle 4, & 3, & 2, & 1 \\ 0 & 0 & 0 & \bullet \\ 0 & 0 & \bullet & \bullet \\ 0 & \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet \end{array}$
$\begin{array}{cccc} (1,2, & 3 \\ \bullet & 0 & 0 & 0 \\ \bullet & 0 & 0 \\ \bullet & \bullet & 0 \\ \bullet & \bullet & \bullet \end{array}$	$\begin{array}{cccc} (2, & 1, & 3, & 4 \\ 0 & \bullet & 0 & 0 \\ \bullet & \bullet & 0 & 0 \\ \bullet & \bullet & \bullet & 0 \\ \bullet & \bullet & \bullet & \bullet \end{array}$	$\left.\begin{array}{ccc} (2, & 3, & 1, \end{array}\right)$	$\begin{array}{cccc} (3, & 2, & 1, & 4 \\ \circ & 0 & \bullet & 0 \\ 0 & \bullet & \bullet & 0 \\ \bullet & \bullet & \bullet & 0 \\ \bullet & \bullet & \bullet & \bullet \end{array}$	$\begin{array}{cccc} (3, & 2, & 4, & 1 \\ 0 & 0 & 0 & \bullet \\ 0 & \bullet & 0 & \bullet \\ \bullet & \bullet & 0 & \bullet \\ \bullet & \bullet & \bullet & \bullet \end{array}$	$\begin{array}{cccc} (3, & 4, & 2, & 1 \\ 0 & 0 & 0 & \bullet \\ 0 & 0 & \bullet & \bullet \\ \bullet & 0 & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet \end{array}$	$\begin{array}{cccc} (4, & 3, & 2, & 1 \\ 0 & 0 & 0 & \bullet \\ 0 & \circ & \bullet & \bullet \\ 0 & \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet \end{array}$
$\left.\begin{array}{c} (1,2,3, \\ \bullet \end{array}\right)$	$\begin{array}{cccc} \langle 1, & 3, & 2, & 4 \\ \bullet & 0 & 0 & 0 \\ \bullet & 0 & \bullet & 0 \\ \bullet & \bullet & \bullet & 0 \\ \bullet & \bullet & \bullet & \bullet \end{array}$	$\begin{array}{cccc} (3, & 1, & 2, & 4 \\ 0 & \bullet & 0 & 0 \\ 0 & \bullet & \bullet & 0 \\ \bullet & \bullet & \bullet & 0 \\ \bullet & \bullet & \bullet & \bullet \end{array}$	$\begin{array}{cccc} (3, & 2, & 1, & 4) \\ 0 & 0 & \bullet & 0 \\ 0 & \bullet & \bullet & 0 \\ \bullet & \bullet & \bullet & 0 \\ \bullet & \bullet & \bullet & \bullet \end{array}$	$\begin{array}{cccc} (3, & 2, & 4, & 1) \\ 0 & 0 & 0 & \bullet \\ 0 & \bullet & 0 & \bullet \\ \bullet & \bullet & 0 & \bullet \\ \bullet & \bullet & \bullet & \bullet \end{array}$	$\begin{array}{cccc} (3, & 4, & 2, & 1 \\ 0 & 0 & 0 & \bullet \\ 0 & 0 & \bullet & \bullet \\ \bullet & 0 & \bullet & \bullet \\ 0 & \bullet & \bullet & \bullet \end{array}$	$\begin{array}{cccc} \langle 4, & 3, & 2, & 1 \\ 0 & 0 & 0 & \bullet \\ 0 & 0 & \bullet & \bullet \\ 0 & \bullet & \bullet & \bullet \\ 0 & \bullet & \bullet & \bullet \end{array}$
$\begin{gathered} (1,2,3, \\ \bullet \\ \bullet \end{gathered} 0$	$\begin{array}{cccc} (1,3, & 2, & 4 \\ \bullet & 0 & 0 & 0 \\ \bullet & 0 & \bullet & 0 \\ \bullet & \bullet & \bullet & 0 \\ \bullet & \bullet & \bullet & \bullet \end{array}$	$\begin{array}{cccc} (1,3, & 4, & 2 \\ \bullet & 0 & 0 & 0 \\ \bullet & 0 & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{array}$	$\begin{array}{cccc} (3, & 1, & 4, & 2 \\ \circ & \bullet & 0 & 0 \\ \circ & \bullet & 0 & \bullet \\ \bullet & \bullet & 0 & \bullet \\ \bullet & \bullet & \bullet & \bullet \end{array}$	$\begin{array}{cccc} \langle 3, & 4, & 1, & 2 \\ 0 & 0 & \bullet & 0 \\ 0 & 0 & \bullet & \bullet \\ \bullet & 0 & \bullet & \bullet \\ 0 & \bullet & \bullet & \bullet \end{array}$	$\begin{array}{cccc} \langle 3, & 4, & 2, & 1 \\ 0 & 0 & 0 & \bullet \\ 0 & 0 & \bullet & \bullet \\ \bullet & 0 & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet \end{array}$	$\begin{array}{cccc} (4, & 3, & 2, & 1) \\ 0 & 0 & 0 & \bullet \\ 0 & 0 & \bullet & \bullet \\ 0 & \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet \end{array}$
$\begin{array}{cccc} (1,2, & 3, & 4 \\ \bullet & 0 & 0 \\ \bullet & 0 & 0 \\ \bullet & \bullet & 0 \end{array}$	$\begin{array}{cccc} (1,3, & 2, & 4) \\ \bullet & 0 & 0 & 0 \\ \bullet & 0 & \bullet & 0 \\ \bullet & \bullet & \bullet & 0 \\ \bullet & \bullet & \bullet & \bullet \end{array}$	$\begin{array}{cccc} (3, & 1, & 2, & 4 \\ \circ & \bullet & 0 & 0 \\ 0 & \bullet & \bullet & 0 \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet \end{array}$	$\begin{array}{ccc} (3, & 1, & 4, \\ \circ & \bullet & 0 \\ 0 & 0 \\ \bullet & \circ & \bullet \\ \bullet & \bullet & \bullet \end{array}$	$\begin{array}{ccc} (3, & 4, & 1, \\ 0 & 2) \\ 0 & 0 & \bullet \\ 0 & 0 \\ \bullet & 0 & \bullet \\ 0 & \bullet & \bullet \end{array}$	$\begin{array}{cccc} \langle 3, & 4, & 2, & 1 \\ 0 & 0 & 0 & \bullet \\ 0 & 0 & \bullet & \bullet \\ \bullet & 0 & \bullet & \bullet \\ 0 & \bullet & \bullet & \bullet \end{array}$	$\begin{array}{cccc} \left(\begin{array}{ccc} 4, & 3 & 2, \\ 0 & 1 \end{array}\right) \\ 0 & 0 & \bullet & \bullet \\ 0 & \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet \end{array}$
$\left.\left.\begin{array}{c} (1,2, \\ \bullet \end{array}\right), 4\right)$	$\begin{array}{cccc} (2, & 1, & 3, & 4 \\ 0 & \bullet & 0 & 0 \\ \bullet & \bullet & 0 & 0 \\ \bullet & \bullet & \bullet & 0 \\ \bullet & \bullet & \bullet & \bullet \end{array}$	$\begin{array}{cccc} (2, & 3, & 1, & 4 \\ 0 & 0 & \bullet & 0 \\ \bullet & 0 & \bullet & 0 \\ \bullet & \bullet & \bullet & 0 \\ \bullet & \bullet & \bullet & \bullet \end{array}$	$\begin{array}{cccc} (2,3, & 4, & 1) \\ 0 & 0 & \circ & \bullet \\ \bullet & \circ & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{array}$	$\begin{array}{cccc} (2, & 4, & 3, & 1) \\ 0 & 0 & 0 & \bullet \\ \bullet & 0 & 0 & \bullet \\ \bullet & 0 & \bullet & \bullet \\ 0 & \bullet & \bullet & \bullet \end{array}$	$\begin{array}{cccc} (4, & 2, & 3, & 1) \\ 0 & 0 & 0 & \bullet \\ 0 & \bullet & 0 & \bullet \\ 0 & \bullet & \bullet & 0 \\ 0 & \bullet & \bullet & \bullet \end{array}$	$\begin{array}{cccc} \langle 4, & 3, & 2, & 1 \\ 0 & 0 & 0 & \bullet \\ 0 & 0 & \bullet & \bullet \\ 0 & \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet \end{array}$
$\left.\begin{array}{c} (1,2,3, \\ \bullet \end{array}\right)$	$\begin{array}{cccc} (1, & 2, & 4, & 3 \\ \bullet & 0 & 0 & 0 \\ \bullet & \bullet & 0 & 0 \\ \bullet & \bullet & 0 & \bullet \\ \bullet & \bullet & \bullet & \bullet \end{array}$	$\begin{array}{cccc} (2, & 1, & 4, & 3 \\ 0 & \bullet & 0 & 0 \\ \bullet & \bullet & 0 & 0 \\ \bullet & \bullet & 0 \\ \bullet & \bullet & \bullet \end{array}$	$\begin{array}{cccc} (2, & 4, & 1, & 3 \\ 0 & 0 & \bullet & 0 \\ \bullet & 0 & \bullet & 0 \\ \bullet & 0 & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet \end{array}$	$\begin{array}{cccc} (2, & 4, & 3, & 1) \\ 0 & 0 & 0 & \bullet \\ \bullet & 0 & 0 & \bullet \\ \bullet & 0 & \bullet \\ \bullet & \bullet & \bullet \end{array}$	$\begin{array}{cccc} \langle 4, & 2, & 3, & 1 \\ 0 & 0 & 0 & \bullet \\ 0 & \bullet & 0 & \bullet \\ 0 & \bullet & \bullet & \bullet \\ 0 & \bullet & \bullet & \bullet \end{array}$	$\begin{array}{cccc} \langle 4, & 3, & 2, & 1 \\ 0 & 0 & 0 & \bullet \\ 0 & 0 & \bullet & \bullet \\ 0 & \bullet & \bullet & \bullet \\ 0 & \bullet & \bullet & \bullet \end{array}$
$\begin{gathered} (1,2,3, \\ \bullet \\ \bullet \end{gathered} 0$	$\begin{array}{cccc} (2, & 1, & 3, & 4 \\ 0 & \bullet & 0 & 0 \\ \bullet & \bullet & 0 & 0 \\ \bullet & \bullet & \bullet & 0 \\ \bullet & \bullet & \bullet & \bullet \end{array}$	$\begin{array}{cccc} (2, & 1, & 4, & 3 \\ 0 & \bullet & 0 & 0 \\ \bullet & 0 & 0 \\ \bullet & 0 & \bullet \\ \bullet & \bullet & \bullet \end{array}$	$\begin{array}{cccc} (2, & 4, & 1, & 3 \\ 0 & 0 & \bullet & 0 \\ \bullet & 0 & \bullet & 0 \\ \bullet & 0 & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet \end{array}$	$\begin{array}{cccc} \langle 2, & 4, & 3, & 1 \\ 0 & 0 & 0 & \bullet \\ \bullet & 0 & 0 & \bullet \\ \bullet & 0 & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{array}$	$\begin{array}{cccc} \langle 4, & 2, & 3, & 1 \\ 0 & 0 & 0 & \bullet \\ 0 & \bullet & 0 & \bullet \\ 0 & \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet \end{array}$	$\begin{array}{cccc} (4, & 3, & 2, & 1) \\ 0 & 0 & 0 & \bullet \\ 0 & 0 & \bullet & \bullet \\ 0 & \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet \end{array}$

Robinson-Schensted-Knuth and Burge correspondences

RSK and Bur can be seen as bijections on (real) tableaux of shape λ :

$$
\begin{aligned}
& x=\left\{x_{i, j}:(i, j) \in \lambda\right\} \stackrel{\mathrm{RSK}}{\longmapsto} r=\left\{r_{i, j}:(i, j) \in \lambda\right\} \\
& x=\left\{x_{i, j}:(i, j) \in \lambda\right\} \stackrel{\text { Bur }}{\longmapsto} b=\left\{b_{i, j}:(i, j) \in \lambda\right\}
\end{aligned}
$$

If (m, n) is on the border strip:

$$
\begin{aligned}
& r_{m, n}=\max _{\pi:(1,1) \rightarrow(m, n)} \sum_{(i, j) \in \pi} x_{i, j} \\
& b_{m, n}=\max _{\pi:(m, 1) \rightarrow(1, n)} \sum_{(i, j) \in \pi} x_{i, j}
\end{aligned}
$$

\rightarrow "deterministic" LPP times!

Robinson-Schensted-Knuth and Burge correspondences

Ex.

0	1	5	3
0	0	2	
1	1	2	
3	0	1	
4			

$\xrightarrow{\text { RSK }}$	0	0	6	9
	1	2	8	
	2	4	10	
	4	4	11	
	8			
$\xrightarrow{\text { Bur }}$	0	1	6	9
	0	1	7	
	0	2	11	
	4	6	14	
	8			

Point-to-line and line-to-line LPP vectors

Lemma [BCGR]

If X is a random tableau of shape λ with i.i.d. geometric or exponential entries, then $\operatorname{RSK}(X) \stackrel{\mathrm{d}}{=} \operatorname{Bur}(X)$.

Taking $\lambda=\delta_{n}=(n-1, n-2, \ldots, 1)$ and $X_{i, j} \sim \operatorname{Exp}(1)$:

$$
\begin{aligned}
\left(\operatorname{RSK}(X)_{n-k, k}\right)_{k} & \stackrel{\mathrm{~d}}{=}\left(\operatorname{Bur}(X)_{n-k, k}\right)_{k} \\
(L(1,1 ; n-k, k))_{k} & \stackrel{\mathrm{~d}}{=}(L(n-k, 1 ; 1, k))_{k} \\
V_{n} & \stackrel{\mathrm{~d}}{=} \boldsymbol{W}_{n}
\end{aligned}
$$

[^0]: ${ }^{\dagger}$ labelling of a diagrams, strictly increasing along rows and columns.

[^1]: ${ }^{\dagger}$ labelling of a diagrams, strictly increasing along rows and columns.

[^2]: ${ }^{\dagger}$ labelling of a diagrams, strictly increasing along rows and columns.

