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Introduction and background

Outline

I will discuss a few fun random processes related to random Young tableaux and
random sorting networks.
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+ The main new phenomenon is a set of distributional identities between the
finishing times of the different processes.

« The study of these identities leads to interesting algebraic combinatorics and
involves the RSK, Burge, and Edelman-Greene correspondences.

- Emergent random matrix distributions.
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Three continuous time random processes
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Introduction and background

Background: sorting networks

The symmetric group S,, with Coxeter generators 7; = (i i+1), i=1,...,n—1.

(Every permutation o can be written as a product of adjacent swaps o =7; 7
1

Consider the Cayley graph (permutahedron):
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Introduction and background
Background: sorting networks

The symmetric group S,, with Coxeter generators 7; = (i i+1), i=1,...,n—1.

A sorting network of order n is a path of minimal length in the permutahedron
fromid, =[1,2,...,n] torev, =[n,...,2,1].

Can be encoded as reduced decompositions of rev,,.

T T3 T2 31 T3 T
Ex. [1,2,3,4] = [2,1,3,4] = [2,1,4,3] = [2,4,1,3] — [4,2,1,3] — [4,2,3,1] = [4,3,2,1].

N W s
A W N

1 3 2 1 3 2

revy =[4,3,2,1] = 1137, 1 13 7o (= 132132)



Introduction and background

Background: sorting networks

The symmetric group S,, with Coxeter generators 7; = (i i+1), i=1,...,n—1.

Ex.

SN, = {123121,121321,212321,231231, 213231,123212,312312, 132312,
312132,132132,321232,231213, 213213, 232123,323123,321323}



Introduction and background
Background: staircase shape Young tableaux

Identify integer partitions A = (A4, 4,,...,A;) with Young diagrams.
Denote by SYT(A) the set of standard’ Young tableaux of shape A.

Ex. A= (4,3,1)F 8.

2[4[8]

‘U!QO»—!
[«
\]

T[abelling of a diagrams, strictly increasing along rows and columns.
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Background: staircase shape Young tableaux

Identify integer partitions A = (A4, 4,,...,A;) with Young diagrams.
Denote by SYT(A) the set of standard’ Young tableaux of shape A.

Ex. A= (4,3,1)F 8.

2[4[8]
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\]

Standard Young tableaux encode growths of Young diagrams. In the example:

g—0 — EDAEP%EFD*— ! l»__l l% I

T[abelling of a diagrams, strictly increasing along rows and columns.




Introduction and background
Background: staircase shape Young tableaux

Identify integer partitions A = (A4, 4,,...,A;) with Young diagrams.
Denote by SYT(A) the set of standard’ Young tableaux of shape A.

Ex. A= (4,3,1)F 8.

2[4[8]

‘U!QO»—!
[«
\]

Standard Young tableaux encode growths of Young diagrams. In the example:

g—0 — EDAEP%EFD*— ! l»__l l% I

Theorem (Hook-length formula) [Frame-Robinson-Thrall, 1953]
|A]!

ISYT(V)| = =————
[ jyenhij

T[abelling of a diagrams, strictly increasing along rows and columns.



Introduction and background

Background: staircase shape Young tableaux

In this talk, SYT(5,,) denote the set of standard Young tableaux of shape
8, =(n-1,n-2,...,2,1), aka staircase shape Young tableaux of order n.
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Introduction and background

Sorting networks and staircase shape Young tableaux

Theorem [Stanley, 1984]

ISN, | = [SYT(5,)I-



Introduction and background

Sorting networks and staircase shape Young tableaux

Theorem [Stanley, 1984]
ISN, | = [SYT(5,)I-
Theorem [Edelman-Greene, 1987]

Combinatorial bijection
SN,, 5 SYT(S,,).

Based on a generalised RSK algorithm (Coxeter-Knuth insertion).
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The oriented swap process and random standard Young tableaux

Random sorting networks

The oriented swap process (Angel-Holroyd-Romik, 2009):

At t = 0 start from particles labelled id,, = (1,2,...,n);
Independent Poisson clocks between adjacent positions;

When a clock rings, the adjacent particles attempt to swap position. If they
are in increasing order, they swap, otherwise, they do not;

The absorbing state is rev,, = (n,n—1,...,2,1);

Continuous time random walk on the permutahedron.



The oriented swap process and random standard Young tableaux

Random sorting networks

The oriented swap process (Angel-Holroyd-Romik, 2009):

At t = 0 start from particles labelled id,, = (1,2,...,n);
Independent Poisson clocks between adjacent positions;

When a clock rings, the adjacent particles attempt to swap position. If they
are in increasing order, they swap, otherwise, they do not;

The absorbing state is rev,, = (n,n—1,...,2,1);

Continuous time random walk on the permutahedron.

4321

1234

To each transition edge in the graph is associated an Exp(1)-distributed
waiting time, all such times being independent.
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The oriented swap process and random standard Young tableaux

Randomly growing Young staircase shape

Our model for randomly growing Young diagrams is the CGP (Rost 1980, ...), in a
continuous time version where each new box that can be added to the existing

Young diagram gets added at a random time following a Poisson clock
(independently of all other clocks).

__ oo
o -
N /
N /E:|<EE| " - continuous time random walk on Y (to each edge is
E\ associated an Exp(1) random variable).
_—

We stop the process when the staircase shape §,, = (n—1,n—2,...,2,1) is reached.

9



The oriented swap process and random standard Young tableaux

A mysterious equidistribution phenomenon

Consider the continuous-time simple random walks on these graphs:

U, = absorbing time of the
random walk on P,,.

V, = absorbing time of the
random walk on Y(8,,).



The oriented swap process and random standard Young tableaux

A mysterious equidistribution phenomenon

Consider the continuous-time simple random walks on these graphs:
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U, = absorbing time of the V, = absorbing time of the
random walk on P,,. random walk on Y(5,,).

Conjecture [Bisi-Cunden-Gibbons-Romik]

The equality in distribution U, 4 V, holds for all n > 2.

(Later in this talk: connections to RMT and recent progresses)



The oriented swap process and random standard Young tableaux

Finishing times

. d . T
The conjecture U,, =V, follows from a more detailed equidistribution
phenomenon involving the random finishing times

U, = (U,(1).....U,(n=1)) and V, =(V,(1),....V,(n—1)).



The oriented swap process and random standard Young tableaux
Finishing times
. d . T
The conjecture U,, =V, follows from a more detailed equidistribution

phenomenon involving the random finishing times

U, = (U,(1).....U,(n=1)) and V, =(V,(1),....V,(n—1)).

+ U, (k) = time of last swap between positions k and k+1 in OSP;
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. d . T
The conjecture U,, =V, follows from a more detailed equidistribution
phenomenon involving the random finishing times

U, = (U,(1).....U,(n=1)) and V, =(V,(1),....V,(n—1)).

+ U, (k) = time of last swap between positions k and k+1 in OSP;
+ V,(k) = time when box at (n—k, k) was filled in CGP.



The oriented swap process and random standard Young tableaux
Finishing times
. d . S
The conjecture U,, =V, follows from a more detailed equidistribution

phenomenon involving the random finishing times

U, =(U,(1).....U,(n-1)) and V, =(V,(1).....V,(n—1)).

+ U, (k) = time of last swap between positions k and k+1 in OSP;
+ V,(k) = time when box at (n—k, k) was filled in CGP.

Ex. In a simpler discrete setting:

1347 |n I
2|6 |8 |14

EG
51215 —
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U, = (10,13,15,14,11) and V,, = (10,13,15,14,11)
(in this case the two vectors are equal by Edelman-Greene).
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The oriented swap process and random standard Young tableaux

Finishing times

U, = (U,(1).....U,(n=1)) and V, =(V,(1),....V,(n—1)).

+ U, (k) = time of last swap between positions k and k +1 in OSP;
+ V,(k) = time when box at (n—k, k) was filled in CGP.

Conjecture [BCGR]

The equidistribution U, 4 V,, holds for all n > 2.



The oriented swap process and random standard Young tableaux

Finishing times

U, =U,Q1),...,.U,(n-1)) and V, =(V,(1),...,V,(n—1)).
+ U, (k) = time of last swap between positions k and k +1 in OSP;
+ V,(k) = time when box at (n—k, k) was filled in CGP.
Conjecture [BCGR]

The equidistribution U, 4 V,, holds for all n > 2.

Note: U, = max Uy,(k),and V,, = max V,(k)are the absorbing times.

1<k<n-1 1<k<n-1
Sanity check:
Theorem [Angel-Holroyd-Romik, 2009]

U, (k) 3V, (k), for all n,k.

Proof based on a coupling of the oriented swap process to a family of TASEPs.
(This is a much weaker statement.)



The oriented swap process and random standard Young tableaux

Combinatorial identity

By taking a Fourier transform (basically), the conjecture can be recast as a purely
combinatorial identity - a kind of weighted, vector-valued version of Stanley’s
equi-enumeration result.

Theorem [BCGR]

The equidistribution conjecture U, = V,, is equivalent to the identity of
Clxq,...,x,_11S,,_1-valued generating functions

Fo(xq,....x0_1) =Gp(xg,..., % 1)

Fn = Z JeGens o xp1) 0y G, = Z 9s(X1s -+ s X 1) 7
teSYT(S,,) SESN,,
fi(x1, ..., x,,_1) = the generating factor of ¢ gs(xy, ..., x,,_1) = the generating factor of s
o, = the finishing permutation of ¢ 7, = the finishing permutation of s

(See the paper for precise definitions.)



The oriented swap process and random standard Young tableaux

Example

For the tableau t and the sorting network s = EG(¢) in the running example,

6 1
13|47 |11 . X X ,
26814

G 4 3
5 (12]15 — 3 4
10 ! 6
L 5 1 2 4 1 3 5 4 2 1 5 3 2 4 3
0, =(1,3,5,4,2) the order of the ‘finishing times’ of ¢
1 1 1 1 1
f = ; . - : . . ]
(0 + D)oy +2)% (0 +3)°( +4)*F X2 +3 (x3+2)(x3+3) x+2 x5+1
g =(1,3,54,2) the order of the ‘finishing times’ of s
1 1 1 1 1
9s

T (g +5)(x +4)(x; +3)°(xy +2)° X +2 (D)6 +2) X+l xg+1]

Note that o; = 7 (by Edelman-Green) but f; # g;.

14/22



The oriented swap process and random standard Young tableaux

Combinatorial version of the conjecture

Using the combinatorial reformulation we were able to compute the generating
functions and verify the identity for small values of n (computer-assisted proof).

Theorem [BCGR]

The generating function equality
Fo(xq,...x,-1) =Gp(xq,. ., x_1)

and hence the equidistribution relation

hold for n < 6.



The oriented swap process and random standard Young tableaux

The absorbing time of the OSP

Angel-Holroyd-Romik (2009) posed the question:

An interesting open problem would be to find sequences of scaling constants (a,,), (b,)
and a distribution function F such that |[...]

d
an(ﬂn _bn) m F.

16/22



The oriented swap process and random standard Young tableaux

The absorbing time of the OSP

+ U, = absorbing time of the OSP, V,, = point-to-line LPP time.

Corollary [BCGR]

Assuming the conjecture,

() P (U, <1) / /0 —y,~|ﬁe‘yfdyi,

1<i<j<n-1

(L[ —
(ii) p( (2;)1/23'1 gt) — Fy(t)

« U, is distributed as the max eigenvalue of LOE;
+ F;: Tracy-Widom § = 1 distribution.



The oriented swap process and random standard Young tableaux

The absorbing time of the OSP

+ U, = absorbing time of the OSP, V,, = point-to-line LPP time.

Corollary [BCGR]

Assuming the conjecture,

() P (U, <1) / /0 —y,~|ﬁe‘yfdyi,

1<i<j<n-1

(L[ —
(ii) p( (2;)1/23'1 gt) — Fy(t)

« U, is distributed as the max eigenvalue of LOE;
+ F;: Tracy-Widom § = 1 distribution.
Theorem [Bufetov-Gorin-Romik, 2020]

u, d V, (hence (i) and (ii) are true unconditionally).
(Proof based on results by Borodin-Gorin-Wheeler (2019) for multicoloured TASEPs.)



Symmetries in last passage percolation models

Last passage percolation
The empirical discovery that U, d V,, led us to to discover yet another vector W,
with the same distribution. This vector can be thought of as a kind of dual to V,,.

To define W,,, we first need to reinterpret the model of randomly growing Young
diagrams as a last passage percolation model.



Symmetries in last passage percolation models

Last passage percolation
The empirical discovery that U, d V,, led us to to discover yet another vector W,
with the same distribution. This vector can be thought of as a kind of dual to V,,.

To define W,,, we first need to reinterpret the model of randomly growing Young
diagrams as a last passage percolation model.

Last passage percolation (LPP) from (a,b) to (c,d):

L(a,b;c,d) = X .
(a,b;c,d) n:(afll;l?i(c‘,d)(iz ij

Jen
(oA
[HEH !
i S A
[ L I L -
Hh : 0
Hth |
oo mme=—n |
[=r= 1
] ==
s 1
=iy
— R (c.d)

+ the max is over directed paths 7 from (a,b) to (c,d);
* (Xj,;); j is a random environment of i.i.d. Exp(1) waiting times.



Symmetries in last passage percolation models

Last passage percolation

From the standard theory we can redefine V,, in terms of
point-to-line LPP times by

Va(ke+3)

Vv, =(L(1,1;n-1,1),L(1,1;n-2,2),...,L(1,1;1,n—1)) =

19/22



Symmetries in last passage percolation models

Last passage percolation

From the standard theory we can redefine V,, in terms of
point-to-line LPP times by

Va(ke+3)

Vv, =(L(1,1;n-1,1),L(1,1;n-2,2),...,L(1,1;1,n—1)) =

and, by analogy, we define W,, as line-to-line LPP times

Wi (k+3)
Wi (k+2)

W, = (Ln=1,1,1,1),L(n=2,151,2), .., L(1, 1;1,n = 1)) = Yeteen

19/22



Symmetries in last passage percolation models

LPP and LPP*

-V, = (LA, n—kK)C] - W, =Lk, 1;1,n—K)p]
Wi (k+3)
Wi (k+2)
Wi (k+1)
Wi (k)
Point-to-line LPP Line-to-line LPP

It is clear that V,,(k) d W, (k) (by definition + symmetry).
A much stronger and non-trivial result holds...

Theorem [BCGR]

The equality in distribution V,, 4 W, holds for all n.

20/22



Symmetries in last passage percolation models

LPP and LPP*

-V, = (LA, n—kK)C] - W, =Lk, 1;1,n—K)p]
Wi (k+3)
Wi (k+2)
Wi (k+1)
Wa(K)
Point-to-line LPP Line-to-line LPP

Theorem [BCGR]

The equality in distribution V,, 4 W, holds for all n.

Proof based on RSK and Burge correspondences (Krattenthaler (2006), Bisi-O’Connell-Zygouras (2020)). In
a discrete setting of i.i.d. geometric weights, V,, and W, arise as border entries of the RSK and Burge
output tableaux. A short calculation shows that these two tableaux have the same distribution. Take the
limit to get the result for exponential weights.

20/22



Symmetries in last passage percolation models

LPP and LPP*

-V, = (LA, n—kK)C] - W, =Lk, 1;1,n—K)p]
Wi (k+3)
Wi (k+2)
Wi(k+1)
Vi(k+1) Wi (k)
Va(k)
Point-to-line LPP Line-to-line LPP

Theorem [BCGR]
The equality in distribution V,, 4 W, holds for all n.

This is a special case of ‘hidden’ distributional symmetries for LPP conjectured by
Borodin-Gorin-Wheeler. Recent proof of general conjecture by Dauvergne (2020).



Conclusions

Take-home messages

We discovered new connections between the models described above. Specifically,
an interesting pair of distributional identities
d d
u,=Vv, =W,
of random (n— 1)-vectors of times for these random processes:

U, \4 W,

n n n

OSP  CGP/LPP  LPP*




Conclusions

Take-home messages

We discovered new connections between the models described above. Specifically,
an interesting pair of distributional identities

d d
u,=Vv, =W,
of random (n —1)-vectors of times for these random processes:

U, \4 W,

n n n

OSP  CGP/LPP  LPP*

Results:

d
+ We proved that V,, = W;
« Proof based on the duality between the RSK and Burge correspondences;
- Cf. ‘hidden distributional symmetries’ for LPP, polymers and related models.

+ We conjectured that U, d Vs
« It implies that the absorbing time of the OSP has a random matrix distribution;
« It can be expressed as a purely combinatorial identity of generating functions
(related to Edelman-Greene correspondence);
- Strong evidence supporting the conjecture: true for the marginals [AHR09]; true
for n < 6 [BCGR19]; true for the maxima [BGR20].

21



Conclusions
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Coupling between the oriented swap process and TASEPs




Coupling between the oriented swap process and TASEPs
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Robinson-Schensted-Knuth and Burge correspondences

RSK and Bur can be seen as bijections on (real) tableaux of shape A:
. RSK .
x={x;;: L)) €A ——>r={r;;: (i,j) €A}

B
x={x;;: (L) €Ay —>b={b;;: (ij) € A}

If (m,n) is on the border strip:

r = max X; i
m,n . Z i,j
T (l,l)—)(m,n)(i’j)eﬂ_

bm.n = max Z X

m: (m,1)—(1,n) (i.pen

— “deterministic” LPP times!




Robinson-Schensted-Knuth and Burge correspondences

o(fo)|6 (9
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' 414|111
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Point-to-line and line-to-line LPP vectors

Lemma [BCGR]
If X is a random tableau of shape A with i.i.d. geometric or exponential entries,

then RSK(X) £ Bur(X).

TakingA=46,=(n-1,n-2,...,1) and Xi’j ~ Exp(1):

(RSK(X) — . 1)k 4 (Bur(X)y—k, )k
(L(L, 1;n -k k) d (L(n—k,1;1,k));
v, 4w,
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