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Outline

I will discuss a few fun random processes related to random Young tableaux and
random sorting networks.
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THE ORIENTED SWAP PROCESS 1971

FIG. 1. An illustration of an oriented swap process with n = 5. Trajectories are shown by lines.

THEOREM 1.1 (Trajectories). Let k = k(n) be a sequence satisfying k/n →
y ∈ [0,1] as n → ∞. Then the scaled trajectory Tk of particle k satisfies

Tk $⇒ φy as n → ∞.

Here, “$⇒” denotes convergence in distribution with respect to the uniform topol-
ogy on functions [0,∞) → R, and φy is a random function given by

φy(s) :=
{

L−
y (s) ∨ (y + Us) ∧ L+

y (s), s < γy ,
1 −y, s ≥ γy ,

(a)

(b) (c)

FIG. 2. (a) Selected particle trajectories in a simulated oriented swap process with n = 1000;
(b) selected possible limiting trajectories for particle ⌊3n/10⌋; (c) selected limiting trajectories (see
Theorem 1.1).

• The main new phenomenon is a set of distributional identities between the
finishing times of the di�erent processes.

• The study of these identities leads to interesting algebraic combinatorics and
involves the RSK, Burge, and Edelman-Greene correspondences.

• Emergent random matrix distributions.
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Three continuous time random processes

Oriented Swap Process (OSP)

(a,b)

(c,d)

Corner Growth Process (CGP) Last Passage Percolation (LPP)
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Background: sorting networks

The symmetric group Sn with Coxeter generators τi = (i i +1), i = 1, . . . ,n−1.

(Every permutation σ can be wri�en as a product of adjacent swaps σ = τi1τi2 · · ·τik .)

Consider the Cayley graph (permutahedron):

BALANCED TABLEAUX 53 

We have included Lemma 3.5 and its rather lengthy proof to illustrate 
some of the complexity which seems to underlie this problem. It would be 
extremely interesting to extend these methods to tableaux of arbitrary 
shape. We believe such extensions exist, though we have not been able to 
find them. The notion of evacuation path turns out to play a central role in 
the proof of the general case, but in a quite different way (see Sections 5,6, 
and 7). 

4. STAIRCASE SHAPES AND MAXIMAL CHAINS 
IN THE WEAK ORDER 

In this section we establish the connection between balanced staircase 
tableaux and maximal chains in the weak order of S,. We begin by review- 
ing the basic properties of the weak order. The reader is referred to [ 1 ] for 
a more complete exposition of these ideas, most of which can be extended 
to any Coxeter group. 

If d is a permutation in S,, the length I(a) of o is defined to be the 
smallest integer k such that o can be expressed as the product of k adjacent 
transpositions. We define 0 < o if o = Qll/, with 1(O) = Z(a) + I($). This 
defines a partial order on S,, known as the weak order, sometimes referred 
to as the weak Bruhat order. There is a simple combinatorial way to 
represent the weak order on S,. Think of permutations CJ as acting on 
rearrangements of { 1, 2,..., n}, with composition defined from left to right, 
and identify o with the sequence [a,, (TV,..., a,]. Then cx covers o in the 
weak order if and only if t transposes two adjacent increasing elements of 
G‘. Figure 4.1 illustrates the weak order of S,. 

FIG. 4.1. The weak order of S, 
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Background: sorting networks

The symmetric group Sn with Coxeter generators τi = (i i +1), i = 1, . . . ,n−1.

A sorting network of order n is a path of minimal length in the permutahedron
from idn = [1,2, . . . ,n] to revn = [n, . . . ,2,1].

Can be encoded as reduced decompositions of revn .

Ex. [1,2,3,4]
τ1
→ [2,1,3,4]

τ3
→ [2,1,4,3]

τ2
→ [2,4,1,3]

τ1
→ [4,2,1,3]

τ3
→ [4,2,3,1]

τ2
→ [4,3,2,1].
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Background: sorting networks

The symmetric group Sn with Coxeter generators τi = (i i +1), i = 1, . . . ,n−1.

Ex.
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SN4 = {123121,121321,212321,231231, 213231,123212,312312,132312,
312132,132132,321232,231213, 213213,232123,323123,321323}
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Background: staircase shape Young tableaux

Identify integer partitions λ = (λ1,λ2, . . . ,λk ) with Young diagrams.
Denote by SYT(λ) the set of standard† Young tableaux of shape λ.

Ex. λ = (4,3,1) ` 8.

986 T. K. Petersen and L. Serrano

3. Fill the empty box with n.

Here is an example:

T =
1 2 4 8
3 6 7
5

7!
1 3 6 7
2 5 8
4

= p(T ).

As a permutation, promotion naturally splits SY T (�) into disjoint orbits. For a general shape � there
seems to be no obvious pattern to the sizes of the orbits. However, for certain shapes, notably Haiman’s
“generalized staircases” more can be said [H2] (see also Edelman and Greene [EG, Cor. 7.23]). In
particular, rectangles fall into this category, with the following result.

Theorem 2 ([H2], Theorem 4.4) If � ` N = bn is a rectangle, then pN (T ) = T for all T 2 SY T (�).

Thus for n⇥ n square shapes �, pn2

= 1 and the size of every orbit divides n2. With n = 3, here is an
orbit of size 3:

1 2 5
3 6 8
4 7 9

!
1 4 7
2 5 8
3 6 9

!
1 3 6
2 4 7
5 8 9

! · · · . (1)

There are 42 standard Young tableaux of shape (3, 3, 3), and there are 42 reduced expressions in the
set R(w

(B3)
0 ). Stanley first conjectured that R(w

(B3)
0 ) and SY T (nn) are equinumerous, and Proctor

suggested that rather than SY T (nn), a more direct correspondence might be given with SY T 0(2n �
1, 2n � 3, . . . , 1), that is, with shifted standard tableaux of “doubled staircase” shape. (That the squares
and doubled staircases are equinumerous follows easily from hook length formulas.)

Haiman answers Proctor’s conjecture in such a way that the structure of promotion on doubled staircases
corresponds precisely to cyclic permutation of words in R(w0) [H2, Theorem 5.12]. Moreover, in [H1,
Proposition 8.11], he gives a bijection between standard Young tableaux of square shape and those of
doubled staircase shape that (as we will show) commutes with promotion.

As an example, his bijection carries the orbit in 1 to this shifted orbit:

1 2 4 5 8
3 6 9

7
!

1 2 3 4 7
5 6 8

9
!

1 2 3 6 9
4 5 7

8
! · · · .

Both of these orbits of tableaux correspond to the orbit of the reduced word 132132132.

3 Haiman’s bijections
We first describe the bijection between reduced expressions and shifted standard tableaux of doubled
staircase shape. This bijection is described in Section 5 of [H2].

Let T in SY T 0(2n � 1, 2n � 3, . . . , 1). Notice the largest entry in T , (i.e., n2), occupies one of the
outer corners. Let r(T ) denote the row containing this largest entry, numbering the rows from the bottom
up. The promotion sequence of T is defined to be �(T ) = r1 · · · rn2 , where ri = r(pi(T )). Using the
example above of

T =
1 2 4 5 8

3 6 9
7

,

Standard Young tableaux encode growths of Young diagrams. In the example:

∅

Theorem (Hook-length formula) [Frame-Robinson-Thrall, 1953]

|SYT(λ)| =
|λ |!∏
(i, j)∈λ hi j

†labelling of a diagrams, strictly increasing along rows and columns.
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Background: staircase shape Young tableaux

In this talk, SYT(δn ) denote the set of standard Young tableaux of shape
δn = (n−1,n−2, . . . ,2,1), aka staircase shape Young tableaux of order n.
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Sorting networks and staircase shape Young tableaux

Theorem [Stanley, 1984]

|SNn | = |SYT(δn )|.

Theorem [Edelman-Greene, 1987]

Combinatorial bijection

SNn
1:1
←→ SYT(δn ).

Based on a generalised RSK algorithm (Coxeter-Knuth insertion).
SORTING NETWORKS, STAIRCASE YOUNG TABLEAUX AND LAST PASSAGE PERCOLATION 17
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FIGURE 4. A staircase shape standard Young tableau t of order 6,
shown in “English notation”, and the associated sorting network s =

EG(t) of order 6 (illustrated graphically as a wiring diagram) with
swap sequence (5, 1, 2, 4, 1, 3, 5, 4, 2, 1, 5, 3, 2, 4, 3).

the associated sequence of growing diagrams (22); then,

P(T = t) =

N-1Y

j=0

1

degt(j)
for all t 2 SYT(�n) . (23)

Finally, we define the generating factor of t as the rational function

ft(x1, . . . , xn-1) :=

n-1Y

k=1

Y

cort(k-1)<j6cort(k)

1

xk + degt(j)
. (24)

Example 3.1. For the tableau t shown in Fig. 4 (left), we have

cort = (10, 13, 15, 14, 11),

�t = (1, 3, 5, 4, 2),

degt = (1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 3, 2, 3, 2, 1),

ft =
1

(x1 + 1)(x1 + 2)2(x1 + 3)3(x1 + 4)4
· 1

x2 + 3
· 1

(x3 + 2)(x3 + 3)
· 1

x4 + 2
· 1

x5 + 1
.

Here, we have used colors to illustrate how the entries of cort determine a de-
composition of degt into blocks, which correspond to different variables xk in the
definition of the generating factor ft.

3.2. SORTING NETWORKS. Recall that a sorting network of order n is a synonym for
a reduced word decomposition of the reverse permutation revn = (n, n- 1, . . . , 1)

in terms of the Coxeter generators ⌧j = (j j + 1), 1 6 j < n, of the symmetric
group Sn. Formally, a sorting network is a sequence of indices s = (s1, . . . , sN) of
length N = n(n- 1)/2, such that 1 6 sj < n for all j and revn = ⌧sN

· · · ⌧s2
⌧s1

.
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Random sorting networks

The oriented swap process (Angel-Holroyd-Romik, 2009):

• At t = 0 start from particles labelled idn = (1,2, . . . ,n);
• Independent Poisson clocks between adjacent positions;

• When a clock rings, the adjacent particles a�empt to swap position. If they
are in increasing order, they swap, otherwise, they do not;

• The absorbing state is revn = (n,n−1, . . . ,2,1);
• Continuous time random walk on the permutahedron.

1 2 3 4

1 3 2 4 1 2 4 32 1 3 4

2 3 1 4 3 1 2 4 2 1 4 3 1 3 4 2 1 4 2 3

3 2 1 4 2 3 4 1 3 1 4 2 2 4 1 3 1 4 2 3 4 1 2 3

3 2 4 1 2 4 3 1 3 4 1 2 4 2 1 3 4 1 3 2

4 2 3 1 4 3 1 23 4 2 1

4 3 2 1

To each transition edge in the graph is associated an Exp(1)-distributed
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Random sorting networks
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Randomly growing Young staircase shape

Our model for randomly growing Young diagrams is the CGP (Rost 1980, . . . ), in a
continuous time version where each new box that can be added to the existing
Young diagram gets added at a random time following a Poisson clock
(independently of all other clocks).

• continuous time random walk on Y (to each edge is
associated an Exp(1) random variable).

We stop the process when the staircase shape δn = (n−1,n−2, . . . ,2,1) is reached.
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A mysterious equidistribution phenomenon

Consider the continuous-time simple random walks on these graphs:

1 2 3 4

1 3 2 4 1 2 4 32 1 3 4

2 3 1 4 3 1 2 4 2 1 4 3 1 3 4 2 1 4 2 3

3 2 1 4 2 3 4 1 3 1 4 2 2 4 1 3 1 4 2 3 4 1 2 3

3 2 4 1 2 4 3 1 3 4 1 2 4 2 1 3 4 1 3 2

4 2 3 1 4 3 1 23 4 2 1

4 3 2 1

∅

Un = absorbing time of the Vn = absorbing time of the
random walk on Pn . random walk on Y(δn ).

Conjecture [Bisi-Cunden-Gibbons-Romik]

The equality in distributionUn
d
=Vn holds for all n ≥ 2.

(Later in this talk: connections to RMT and recent progresses)
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Finishing times

The conjectureUn
d
=Vn follows from a more detailed equidistribution

phenomenon involving the random finishing times

Un = (Un (1), . . . ,Un (n−1)) and Vn = (Vn (1), . . . ,Vn (n−1)).

• Un (k) = time of last swap between positions k and k +1 in OSP;

• Vn (k) = time when box at (n−k,k) was filled in CGP.

Ex. In a simpler discrete se�ing:
SORTING NETWORKS, STAIRCASE YOUNG TABLEAUX AND LAST PASSAGE PERCOLATION 17

1 3 4 7 11

2 6 8 14

5 12 15

9 13

10

EG7���!

1

2

3

4

5

6

6

5

4

3

2

1

5 1 2 4 1 3 5 4 2 1 5 3 2 4 3

FIGURE 4. A staircase shape standard Young tableau t of order 6,
shown in “English notation”, and the associated sorting network s =

EG(t) of order 6 (illustrated graphically as a wiring diagram) with
swap sequence (5, 1, 2, 4, 1, 3, 5, 4, 2, 1, 5, 3, 2, 4, 3).

the associated sequence of growing diagrams (22); then,

P(T = t) =

N-1Y

j=0

1

degt(j)
for all t 2 SYT(�n) . (23)

Finally, we define the generating factor of t as the rational function

ft(x1, . . . , xn-1) :=

n-1Y

k=1

Y

cort(k-1)<j6cort(k)

1

xk + degt(j)
. (24)

Example 3.1. For the tableau t shown in Fig. 4 (left), we have

cort = (10, 13, 15, 14, 11),

�t = (1, 3, 5, 4, 2),

degt = (1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 3, 2, 3, 2, 1),

ft =
1

(x1 + 1)(x1 + 2)2(x1 + 3)3(x1 + 4)4
· 1

x2 + 3
· 1

(x3 + 2)(x3 + 3)
· 1

x4 + 2
· 1

x5 + 1
.

Here, we have used colors to illustrate how the entries of cort determine a de-
composition of degt into blocks, which correspond to different variables xk in the
definition of the generating factor ft.

3.2. SORTING NETWORKS. Recall that a sorting network of order n is a synonym for
a reduced word decomposition of the reverse permutation revn = (n, n- 1, . . . , 1)

in terms of the Coxeter generators ⌧j = (j j + 1), 1 6 j < n, of the symmetric
group Sn. Formally, a sorting network is a sequence of indices s = (s1, . . . , sN) of
length N = n(n- 1)/2, such that 1 6 sj < n for all j and revn = ⌧sN

· · · ⌧s2
⌧s1

.

Un = (10,13,15,14,11) and Vn = (10,13,15,14,11)
(in this case the two vectors are equal by Edelman-Greene).
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Finishing times

Un = (Un (1), . . . ,Un (n−1)) and Vn = (Vn (1), . . . ,Vn (n−1)).

• Un (k) = time of last swap between positions k and k +1 in OSP;

• Vn (k) = time when box at (n−k,k) was filled in CGP.

Conjecture [BCGR]

The equidistribution Un
d
=Vn holds for all n ≥ 2.

Note: Un = max
1≤k≤n−1

Un (k), andVn = max
1≤k≤n−1

Vn (k) are the absorbing times.

Sanity check:

Theorem [Angel-Holroyd-Romik, 2009]

Un (k)
d
=Vn (k), for all n,k .

Proof based on a coupling of the oriented swap process to a family of TASEPs.
(This is a much weaker statement.)
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Combinatorial identity

By taking a Fourier transform (basically), the conjecture can be recast as a purely
combinatorial identity - a kind of weighted, vector-valued version of Stanley’s
equi-enumeration result.

Theorem [BCGR]

The equidistribution conjecture Un
d
=Vn is equivalent to the identity of

C[x1, . . . ,xn−1]Sn−1-valued generating functions

Fn (x1, . . . ,xn−1) =Gn (x1, . . . ,xn−1)

Fn =
∑

t∈SYT(δn )
ft (x1, . . . , xn−1)σt

ft (x1, . . . , xn−1) = the generating factor of t
σt = the finishing permutation of t

Gn =
∑

s∈SNn

дs (x1, . . . , xn−1)πs

дs (x1, . . . , xn−1) = the generating factor of s
πs = the finishing permutation of s

(See the paper for precise definitions.)
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Example

For the tableau t and the sorting network s = EG(t) in the running example,
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the associated sequence of growing diagrams (22); then,

P(T = t) =

N-1Y
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1
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for all t 2 SYT(�n) . (23)

Finally, we define the generating factor of t as the rational function

ft(x1, . . . , xn-1) :=

n-1Y

k=1

Y
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. (24)
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· 1

x2 + 3
· 1

(x3 + 2)(x3 + 3)
· 1

x4 + 2
· 1

x5 + 1
.

Here, we have used colors to illustrate how the entries of cort determine a de-
composition of degt into blocks, which correspond to different variables xk in the
definition of the generating factor ft.

3.2. SORTING NETWORKS. Recall that a sorting network of order n is a synonym for
a reduced word decomposition of the reverse permutation revn = (n, n- 1, . . . , 1)

in terms of the Coxeter generators ⌧j = (j j + 1), 1 6 j < n, of the symmetric
group Sn. Formally, a sorting network is a sequence of indices s = (s1, . . . , sN) of
length N = n(n- 1)/2, such that 1 6 sj < n for all j and revn = ⌧sN

· · · ⌧s2
⌧s1

.

σt = (1, 3, 5, 4, 2) the order of the ‘finishing times’ of t

ft =
1

(x1 +1)(x1 +2)
2
(x1 +3)

3
(x1 +4)

4 ·
1

x2 +3
·

1
(x3 +2)(x3 +3)

·
1

x4 +2
·

1
x5 +1

.

πs = (1, 3, 5, 4, 2) the order of the ‘finishing times’ of s

дs =
1

(x1 +5)(x1 +4)(x1 +3)
5
(x1 +2)

3 ·
1

x2 +2
·

1
(x3 +1)(x3 +2)

·
1

x4 +1
·

1
x5 +1

.

Note that σt = πs (by Edelman-Green) but ft , дs .
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Combinatorial version of the conjecture

Using the combinatorial reformulation we were able to compute the generating
functions and verify the identity for small values of n (computer-assisted proof).

Theorem [BCGR]

The generating function equality

Fn (x1, . . . ,xn−1) =Gn (x1, . . . ,xn−1)

and hence the equidistribution relation

Un
d
=Vn

hold for n ≤ 6.
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The absorbing time of the OSP

Angel-Holroyd-Romik (2009) posed the question:

An interesting open problem would be to find sequences of scaling constants (an ), (bn )
and a distribution function F such that […]

an (Un −bn )
d

−−−−−→
n→∞

F .
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The absorbing time of the OSP

• Un = absorbing time of the OSP, Vn = point-to-line LPP time.

Corollary [BCGR]

Assuming the conjecture,

(i) P
(
Un ≤ t

)
=

1
Cn

∫ t

0
· · ·

∫ t

0

∏
1≤i<j≤n−1

���yi −yj ���n−1∏
i=1

e−yi dyi ,

(ii) P

(
Un −2n

(2n)1/3
≤ t

)
−−−−−→
n→∞

F1(t)

• Un is distributed as the max eigenvalue of LOE;

• F1: Tracy-Widom β = 1 distribution.

Theorem [Bufetov-Gorin-Romik, 2020]

Un
d
=Vn (hence (i) and (ii) are true unconditionally).

(Proof based on results by Borodin-Gorin-Wheeler (2019) for multicoloured TASEPs.)
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Last passage percolation

The empirical discovery that Un
d
=Vn led us to to discover yet another vectorWn

with the same distribution. This vector can be thought of as a kind of dual to Vn .

To defineWn , we first need to reinterpret the model of randomly growing Young
diagrams as a last passage percolation model.

Last passage percolation (LPP) from (a,b) to (c,d):

L(a,b;c,d) = max
π : (a,b)→(c,d )

∑
(i, j)∈π

Xi, j

(a,b)

(c,d)

• the max is over directed paths π from (a,b) to (c,d);
• (Xi, j )i, j is a random environment of i.i.d. Exp(1) waiting times.
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Last passage percolation

From the standard theory we can redefine Vn in terms of
point-to-line LPP times by

Vn = (L(1,1;n−1,1),L(1,1;n−2,2), . . . ,L(1,1;1,n−1)) =
Vn(k)

Vn(k+1)

Vn(k+2)

Vn(k+3)

and, by analogy, we defineWn as line-to-line LPP times

Wn = (L(n−1,1;1,1),L(n−2,1;1,2), . . . ,L(1,1;1,n−1)) =
Vn(k)

Vn(k+1)
Vn(k+2)
Vn(k+3)

Wn(k)
Wn(k+1)
Wn(k+2)
Wn(k+3)

Point-to-line LPP Line-to-line LPP
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LPP and LPP*

• Vn = (L(1,1;n−k,k))
n−1
k=1 • Wn = (L(k,1;1,n−k)))

n−1
k=1

Vn(k)

Vn(k+1)

Vn(k+2)

Vn(k+3)

Wn(k)

Wn(k+1)

Wn(k+2)

Wn(k+3)

Point-to-line LPP Line-to-line LPP

It is clear that Vn (k)
d
=Wn (k) (by definition + symmetry).

A much stronger and non-trivial result holds. . .

Theorem [BCGR]

The equality in distribution Vn
d
=Wn holds for all n.
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n−1
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Vn(k+3)

Wn(k)

Wn(k+1)

Wn(k+2)

Wn(k+3)

Point-to-line LPP Line-to-line LPP

Theorem [BCGR]

The equality in distribution Vn
d
=Wn holds for all n.

Proof based on RSK and Burge correspondences (Kra�enthaler (2006), Bisi-O’Connell-Zygouras (2020)). In
a discrete se�ing of i.i.d. geometric weights, Vn andWn arise as border entries of the RSK and Burge
output tableaux. A short calculation shows that these two tableaux have the same distribution. Take the
limit to get the result for exponential weights.
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LPP and LPP*

• Vn = (L(1,1;n−k,k))
n−1
k=1 • Wn = (L(k,1;1,n−k)))

n−1
k=1

Vn(k)

Vn(k+1)

Vn(k+2)

Vn(k+3)

Wn(k)

Wn(k+1)

Wn(k+2)

Wn(k+3)

Point-to-line LPP Line-to-line LPP

Theorem [BCGR]

The equality in distribution Vn
d
=Wn holds for all n.

This is a special case of ‘hidden’ distributional symmetries for LPP conjectured by
Borodin-Gorin-Wheeler. Recent proof of general conjecture by Dauvergne (2020).
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Take-home messages

We discovered new connections between the models described above. Specifically,
an interesting pair of distributional identities

Un
d
=Vn

d
=Wn

of random (n−1)-vectors of times for these random processes:

Un Vn Wn
OSP CGP/LPP LPP*

Results:

• We proved that Vn
d
=Wn ;

• Proof based on the duality between the RSK and Burge correspondences;
• Cf. ‘hidden distributional symmetries’ for LPP, polymers and related models.

• We conjectured that Un
d
=Vn ;

• It implies that the absorbing time of the OSP has a random matrix distribution;
• It can be expressed as a purely combinatorial identity of generating functions

(related to Edelman-Greene correspondence);
• Strong evidence supporting the conjecture: true for the marginals [AHR09]; true

for n ≤ 6 [BCGR19]; true for the maxima [BGR20].
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Coupling between the oriented swap process and TASEPs

n = 3:

(1, 2, 3) (2, 1, 3) (2, 3, 1) (3, 2, 1)
● ○ ○

● ● ○

● ● ●

○ ● ○

● ● ○

● ● ●

○ ○ ●

● ○ ●

● ● ●

○ ○ ●

○ ● ●

● ● ●

(1, 2, 3) (1, 3, 2) (3, 1, 2) (3, 2, 1)
● ○ ○

● ● ○

● ● ●

● ○ ○

● ○ ●

● ● ●

○ ● ○

○ ● ●

● ● ●

○ ○ ●

○ ● ●

● ● ●
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Coupling between the oriented swap process and TASEPs

n = 4:
(1, 2, 3, 4) (2, 1, 3, 4) (2, 3, 1, 4) (2, 3, 4, 1) (3, 2, 4, 1) (3, 4, 2, 1) (4, 3, 2, 1)
● ○ ○ ○
● ● ○ ○
● ● ● ○
● ● ● ●

○ ● ○ ○
● ● ○ ○
● ● ● ○
● ● ● ●

○ ○ ● ○
● ○ ● ○
● ● ● ○
● ● ● ●

○ ○ ○ ●
● ○ ○ ●
● ● ○ ●
● ● ● ●

○ ○ ○ ●
○ ● ○ ●
● ● ○ ●
● ● ● ●

○ ○ ○ ●
○ ○ ● ●
● ○ ● ●
● ● ● ●

○ ○ ○ ●
○ ○ ● ●
○ ● ● ●
● ● ● ●

(1, 2, 3, 4) (2, 1, 3, 4) (2, 3, 1, 4) (3, 2, 1, 4) (3, 2, 4, 1) (3, 4, 2, 1) (4, 3, 2, 1)
● ○ ○ ○
● ● ○ ○
● ● ● ○
● ● ● ●

○ ● ○ ○
● ● ○ ○
● ● ● ○
● ● ● ●

○ ○ ● ○
● ○ ● ○
● ● ● ○
● ● ● ●

○ ○ ● ○
○ ● ● ○
● ● ● ○
● ● ● ●

○ ○ ○ ●
○ ● ○ ●
● ● ○ ●
● ● ● ●

○ ○ ○ ●
○ ○ ● ●
● ○ ● ●
● ● ● ●

○ ○ ○ ●
○ ○ ● ●
○ ● ● ●
● ● ● ●

(1, 2, 3, 4) (1, 3, 2, 4) (3, 1, 2, 4) (3, 2, 1, 4) (3, 2, 4, 1) (3, 4, 2, 1) (4, 3, 2, 1)
● ○ ○ ○
● ● ○ ○
● ● ● ○
● ● ● ●

● ○ ○ ○
● ○ ● ○
● ● ● ○
● ● ● ●

○ ● ○ ○
○ ● ● ○
● ● ● ○
● ● ● ●

○ ○ ● ○
○ ● ● ○
● ● ● ○
● ● ● ●

○ ○ ○ ●
○ ● ○ ●
● ● ○ ●
● ● ● ●

○ ○ ○ ●
○ ○ ● ●
● ○ ● ●
● ● ● ●

○ ○ ○ ●
○ ○ ● ●
○ ● ● ●
● ● ● ●

(1, 2, 3, 4) (1, 3, 2, 4) (1, 3, 4, 2) (3, 1, 4, 2) (3, 4, 1, 2) (3, 4, 2, 1) (4, 3, 2, 1)
● ○ ○ ○
● ● ○ ○
● ● ● ○
● ● ● ●

● ○ ○ ○
● ○ ● ○
● ● ● ○
● ● ● ●

● ○ ○ ○
● ○ ○ ●
● ● ○ ●
● ● ● ●

○ ● ○ ○
○ ● ○ ●
● ● ○ ●
● ● ● ●

○ ○ ● ○
○ ○ ● ●
● ○ ● ●
● ● ● ●

○ ○ ○ ●
○ ○ ● ●
● ○ ● ●
● ● ● ●

○ ○ ○ ●
○ ○ ● ●
○ ● ● ●
● ● ● ●

(1, 2, 3, 4) (1, 3, 2, 4) (3, 1, 2, 4) (3, 1, 4, 2) (3, 4, 1, 2) (3, 4, 2, 1) (4, 3, 2, 1)
● ○ ○ ○
● ● ○ ○
● ● ● ○
● ● ● ●

● ○ ○ ○
● ○ ● ○
● ● ● ○
● ● ● ●

○ ● ○ ○
○ ● ● ○
● ● ● ○
● ● ● ●

○ ● ○ ○
○ ● ○ ●
● ● ○ ●
● ● ● ●

○ ○ ● ○
○ ○ ● ●
● ○ ● ●
● ● ● ●

○ ○ ○ ●
○ ○ ● ●
● ○ ● ●
● ● ● ●

○ ○ ○ ●
○ ○ ● ●
○ ● ● ●
● ● ● ●

(1, 2, 3, 4) (2, 1, 3, 4) (2, 3, 1, 4) (2, 3, 4, 1) (2, 4, 3, 1) (4, 2, 3, 1) (4, 3, 2, 1)
● ○ ○ ○
● ● ○ ○
● ● ● ○
● ● ● ●

○ ● ○ ○
● ● ○ ○
● ● ● ○
● ● ● ●

○ ○ ● ○
● ○ ● ○
● ● ● ○
● ● ● ●

○ ○ ○ ●
● ○ ○ ●
● ● ○ ●
● ● ● ●

○ ○ ○ ●
● ○ ○ ●
● ○ ● ●
● ● ● ●

○ ○ ○ ●
○ ● ○ ●
○ ● ● ●
● ● ● ●

○ ○ ○ ●
○ ○ ● ●
○ ● ● ●
● ● ● ●

(1, 2, 3, 4) (1, 2, 4, 3) (2, 1, 4, 3) (2, 4, 1, 3) (2, 4, 3, 1) (4, 2, 3, 1) (4, 3, 2, 1)
● ○ ○ ○
● ● ○ ○
● ● ● ○
● ● ● ●

● ○ ○ ○
● ● ○ ○
● ● ○ ●
● ● ● ●

○ ● ○ ○
● ● ○ ○
● ● ○ ●
● ● ● ●

○ ○ ● ○
● ○ ● ○
● ○ ● ●
● ● ● ●

○ ○ ○ ●
● ○ ○ ●
● ○ ● ●
● ● ● ●

○ ○ ○ ●
○ ● ○ ●
○ ● ● ●
● ● ● ●

○ ○ ○ ●
○ ○ ● ●
○ ● ● ●
● ● ● ●

(1, 2, 3, 4) (2, 1, 3, 4) (2, 1, 4, 3) (2, 4, 1, 3) (2, 4, 3, 1) (4, 2, 3, 1) (4, 3, 2, 1)
● ○ ○ ○
● ● ○ ○
● ● ● ○
● ● ● ●

○ ● ○ ○
● ● ○ ○
● ● ● ○
● ● ● ●

○ ● ○ ○
● ● ○ ○
● ● ○ ●
● ● ● ●

○ ○ ● ○
● ○ ● ○
● ○ ● ●
● ● ● ●

○ ○ ○ ●
● ○ ○ ●
● ○ ● ●
● ● ● ●

○ ○ ○ ●
○ ● ○ ●
○ ● ● ●
● ● ● ●

○ ○ ○ ●
○ ○ ● ●
○ ● ● ●
● ● ● ●

(1, 2, 3, 4) (1, 2, 4, 3) (2, 1, 4, 3) (2, 4, 1, 3) (4, 2, 1, 3) (4, 2, 3, 1) (4, 3, 2, 1)
● ○ ○ ○
● ● ○ ○
● ● ● ○
● ● ● ●

● ○ ○ ○
● ● ○ ○
● ● ○ ●
● ● ● ●

○ ● ○ ○
● ● ○ ○
● ● ○ ●
● ● ● ●

○ ○ ● ○
● ○ ● ○
● ○ ● ●
● ● ● ●

○ ○ ● ○
○ ● ● ○
○ ● ● ●
● ● ● ●

○ ○ ○ ●
○ ● ○ ●
○ ● ● ●
● ● ● ●

○ ○ ○ ●
○ ○ ● ●
○ ● ● ●
● ● ● ●

(1, 2, 3, 4) (2, 1, 3, 4) (2, 1, 4, 3) (2, 4, 1, 3) (4, 2, 1, 3) (4, 2, 3, 1) (4, 3, 2, 1)
● ○ ○ ○
● ● ○ ○
● ● ● ○
● ● ● ●

○ ● ○ ○
● ● ○ ○
● ● ● ○
● ● ● ●

○ ● ○ ○
● ● ○ ○
● ● ○ ●
● ● ● ●

○ ○ ● ○
● ○ ● ○
● ○ ● ●
● ● ● ●

○ ○ ● ○
○ ● ● ○
○ ● ● ●
● ● ● ●

○ ○ ○ ●
○ ● ○ ●
○ ● ● ●
● ● ● ●

○ ○ ○ ●
○ ○ ● ●
○ ● ● ●
● ● ● ●

(1, 2, 3, 4) (1, 2, 4, 3) (1, 4, 2, 3) (4, 1, 2, 3) (4, 2, 1, 3) (4, 2, 3, 1) (4, 3, 2, 1)
● ○ ○ ○
● ● ○ ○
● ● ● ○
● ● ● ●

● ○ ○ ○
● ● ○ ○
● ● ○ ●
● ● ● ●

● ○ ○ ○
● ○ ● ○
● ○ ● ●
● ● ● ●

○ ● ○ ○
○ ● ● ○
○ ● ● ●
● ● ● ●

○ ○ ● ○
○ ● ● ○
○ ● ● ●
● ● ● ●

○ ○ ○ ●
○ ● ○ ●
○ ● ● ●
● ● ● ●

○ ○ ○ ●
○ ○ ● ●
○ ● ● ●
● ● ● ●

(1, 2, 3, 4) (1, 3, 2, 4) (1, 3, 4, 2) (3, 1, 4, 2) (3, 4, 1, 2) (4, 3, 1, 2) (4, 3, 2, 1)
● ○ ○ ○
● ● ○ ○
● ● ● ○
● ● ● ●

● ○ ○ ○
● ○ ● ○
● ● ● ○
● ● ● ●

● ○ ○ ○
● ○ ○ ●
● ● ○ ●
● ● ● ●

○ ● ○ ○
○ ● ○ ●
● ● ○ ●
● ● ● ●

○ ○ ● ○
○ ○ ● ●
● ○ ● ●
● ● ● ●

○ ○ ● ○
○ ○ ● ●
○ ● ● ●
● ● ● ●

○ ○ ○ ●
○ ○ ● ●
○ ● ● ●
● ● ● ●

(1, 2, 3, 4) (1, 3, 2, 4) (3, 1, 2, 4) (3, 1, 4, 2) (3, 4, 1, 2) (4, 3, 1, 2) (4, 3, 2, 1)
● ○ ○ ○
● ● ○ ○
● ● ● ○
● ● ● ●

● ○ ○ ○
● ○ ● ○
● ● ● ○
● ● ● ●

○ ● ○ ○
○ ● ● ○
● ● ● ○
● ● ● ●

○ ● ○ ○
○ ● ○ ●
● ● ○ ●
● ● ● ●

○ ○ ● ○
○ ○ ● ●
● ○ ● ●
● ● ● ●

○ ○ ● ○
○ ○ ● ●
○ ● ● ●
● ● ● ●

○ ○ ○ ●
○ ○ ● ●
○ ● ● ●
● ● ● ●

(1, 2, 3, 4) (1, 3, 2, 4) (1, 3, 4, 2) (1, 4, 3, 2) (4, 1, 3, 2) (4, 3, 1, 2) (4, 3, 2, 1)
● ○ ○ ○
● ● ○ ○
● ● ● ○
● ● ● ●

● ○ ○ ○
● ○ ● ○
● ● ● ○
● ● ● ●

● ○ ○ ○
● ○ ○ ●
● ● ○ ●
● ● ● ●

● ○ ○ ○
● ○ ○ ●
● ○ ● ●
● ● ● ●

○ ● ○ ○
○ ● ○ ●
○ ● ● ●
● ● ● ●

○ ○ ● ○
○ ○ ● ●
○ ● ● ●
● ● ● ●

○ ○ ○ ●
○ ○ ● ●
○ ● ● ●
● ● ● ●

(1, 2, 3, 4) (1, 2, 4, 3) (1, 4, 2, 3) (1, 4, 3, 2) (4, 1, 3, 2) (4, 3, 1, 2) (4, 3, 2, 1)
● ○ ○ ○
● ● ○ ○
● ● ● ○
● ● ● ●

● ○ ○ ○
● ● ○ ○
● ● ○ ●
● ● ● ●

● ○ ○ ○
● ○ ● ○
● ○ ● ●
● ● ● ●

● ○ ○ ○
● ○ ○ ●
● ○ ● ●
● ● ● ●

○ ● ○ ○
○ ● ○ ●
○ ● ● ●
● ● ● ●

○ ○ ● ○
○ ○ ● ●
○ ● ● ●
● ● ● ●

○ ○ ○ ●
○ ○ ● ●
○ ● ● ●
● ● ● ●

(1, 2, 3, 4) (1, 2, 4, 3) (1, 4, 2, 3) (4, 1, 2, 3) (4, 1, 3, 2) (4, 3, 1, 2) (4, 3, 2, 1)
● ○ ○ ○
● ● ○ ○
● ● ● ○
● ● ● ●

● ○ ○ ○
● ● ○ ○
● ● ○ ●
● ● ● ●

● ○ ○ ○
● ○ ● ○
● ○ ● ●
● ● ● ●

○ ● ○ ○
○ ● ● ○
○ ● ● ●
● ● ● ●

○ ● ○ ○
○ ● ○ ●
○ ● ● ●
● ● ● ●

○ ○ ● ○
○ ○ ● ●
○ ● ● ●
● ● ● ●

○ ○ ○ ●
○ ○ ● ●
○ ● ● ●
● ● ● ●
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Robinson-Schensted-Knuth and Burge correspondences

RSK and Bur can be seen as bijections on (real) tableaux of shape λ:

x = {xi, j : (i, j) ∈ λ}
RSK
7−−−→ r = {r i, j : (i, j) ∈ λ}

x = {xi, j : (i, j) ∈ λ}
Bur
7−−−→ b = {bi, j : (i, j) ∈ λ}

If (m,n) is on the border strip:

rm,n = max
π : (1,1)→(m,n)

∑
(i, j)∈π

xi, j

bm,n = max
π : (m,1)→(1,n)

∑
(i, j)∈π

xi, j

→ “deterministic” LPP times!
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Robinson-Schensted-Knuth and Burge correspondences

Ex.
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RSK7���!

Bur7���!

FIGURE 3. Illustration of the RSK and Burge maps.

non-negative integer matrices x and a pairs (P, Q) of semistandard Young tableaux
of the same shape. They are defined, respectively, in terms of the row insertion
and column insertion, two combinatorial algorithms that “insert” a given positive
integer into a given semistandard Young tableau, yielding a new semistandard
Young tableau with one extra box — see [19, § 1.1 and A.2].

Theorem 2.4 presents the RSK and Burge correspondences, in a somewhat un-
traditional way, as bijections between tableaux and interlacing tableaux with non-
negative integer entries. This generalization goes through an alternative construc-
tion of these maps in terms of (max, min, +,-) operations on the elements of the
input tableau, as described in [8, § 2] (therein, the bijections are further extended
to tableaux with real entries). Relations (16)-(17) can be then regarded as an exten-
sion of so-called Greene’s theorem [20]. The paper of Krattenthaler [24] contains
all the details of the constructions leading to Theorem 2.4, even though expressed
in a slightly different language. For the reader’s convenience we translate the
results of [24] into our setting in Appendix A.

2.3. EQUIDISTRIBUTION OF RANDOM RSK AND BURGE TABLEAUX. The iden-
tities (16) and (17) explain the connection between the outputs of the RSK (respec-
tively, Burge) correspondence and the LPP (respectively, dual LPP) times. More
precisely, let x 2 TabZ>0

(�), and let r := RSK(x) and b := Bur(x). We denote by
(m1, n1), . . . , (ml, nl) the corners of �, ordered so that m1 > · · · > ml and n1 <

· · · < nl. It is then clear that the “global sum” of the tableau x can be expressed as
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Point-to-line and line-to-line LPP vectors

Lemma [BCGR]

If X is a random tableau of shape λ with i.i.d. geometric or exponential entries,

then RSK(X )
d
= Bur(X ).

Taking λ = δn = (n−1,n−2, . . . ,1) and Xi, j ∼ Exp(1):

(RSK(X )n−k,k )k
d
= (Bur(X )n−k,k )k

(L(1,1;n−k,k))k
d
= (L(n−k,1;1,k))k

Vn
d
=Wn
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