Integrable Systems around the world

Correlators of classical unitary ensembles and enumerative problems

Massimo Gisonni
15 Settembre 2020

Overview and goals of the work

Joint work with T. Grava and G. Ruzza
Laguerre Ensemble: Correlators, Hurwitz Numbers and Hodge Integrals.
Annales Henri Poincaré, 2020

(1) Give an effective way to compute correlators of the classical unitary ensembles

- GUE [Dubrovin \& Yang, 2016] cracked this old unsolved problem
- LUE [G., Grava, Ruzza] with somewhat different techniques
- JUE Work in progress can be dealt with the same approach used for LUE
(2) Coefficients of these correlators have a combinatorial interpretation
- GUE \rightarrow Ribbon Graphs
- LUE \rightarrow Monotone Double Hurwitz Numbers
- JUE \rightarrow Monotone Triple Hurwitz Numbers
(3) They also have a role in the Enumerative Geometry side
- GUE \rightarrow Gromov-Witten Invariants of $\mathbb{P}^{\mathbf{1}}$
- LUE \rightarrow Triple Hodge Integrals
- JUE \rightarrow ?

Generating series for GUE correlators

The Gaussian Unitary Ensemble

The GUE is the datum of a measure on the N^{2}-dimensional vector space \mathcal{H}_{N} of Hermitian matrices which can be written as

$$
d \mu=Z_{G U E}^{-1}(N) \exp \left\{-\frac{1}{2} \operatorname{tr} M^{2}\right\} d M
$$

where

$$
d M=\prod_{i=1}^{N} d M_{i i} \prod_{i<j} d \operatorname{Re}\left(M_{i j}\right) d \operatorname{Im}\left(M_{i j}\right), \quad Z_{G U E}(N)=2^{-\frac{N}{2}} \pi^{-\frac{N^{2}}{2}}
$$

The objects of interest in our study are the so called multi-point correlators, which is

$$
\left\langle\operatorname{tr} M^{i_{1}} \cdots \operatorname{tr} M^{i_{k}}\right\rangle:=\frac{\int_{\mathcal{H}_{N}} \operatorname{tr} M^{i_{1}} \ldots \operatorname{tr} M^{i_{k}} e^{-\frac{1}{2} \operatorname{tr} M^{2}} d M}{\int_{\mathcal{H}_{N}} e^{-\frac{1}{2} \operatorname{tr} M^{2}} d M} .
$$

Or rather, the connected correlators,

$$
\begin{gathered}
\left\langle\operatorname{tr} M^{k_{1}} \cdots \operatorname{tr} M^{k_{r}}\right\rangle_{c}:=\sum_{\mathcal{P} \text { partition of }\{\mathbf{1}, \ldots, r\}}(-1)^{|\mathcal{P}|-1}(|\mathcal{P}|-1)!\prod_{I \in \mathcal{P}}\left\langle\prod_{i \in l} \operatorname{tr} M^{k_{i}}\right\rangle \\
\left\langle\operatorname{tr} M^{k_{\mathbf{1}}}\right\rangle_{c}:=\left\langle\operatorname{tr} M^{k_{1}}\right\rangle, \quad\left\langle\operatorname{tr} M^{k_{1}} \operatorname{tr} M^{k_{2}}\right\rangle_{c}:=\left\langle\operatorname{tr} M^{k_{1}} \operatorname{tr} M^{k_{2}}\right\rangle-\left\langle\operatorname{tr} M^{k_{1}}\right\rangle\left\langle\operatorname{tr} M^{k_{\mathbf{2}}}\right\rangle
\end{gathered}
$$

GUE correlators and Ribbon Graphs

It is an old and beautiful result by [Bessis, Itzykson \& Zuber, 1980] that the GUE correlators admit a genus expansions in terms of ribbon graphs

$$
\left\langle\prod_{j=1}^{\nu}\left(\operatorname{tr} M^{j}\right)^{n_{j}}\right\rangle=\sum_{g}\left\{\begin{array}{c}
g \text {-ribbon graphs with } n_{j} \\
j \text {-valent vertices }
\end{array}\right\} N^{2-2 g+\sum_{j=\mathbf{1}}^{\nu}\left(\frac{j}{2}-1\right) n_{j}}
$$

- Harer and Zagier computed the generating series for the one-point correlators (1986)
- Morozov and Shakirov extended the construction for the two-point correlators (2009)
- For higher orders no explicit formula was known

The breakthrough came with the paper of [Dubrovin \& Yang, 2016] using the resolvent method elaborated by [Bertola, Dubrovin \& Yang, 2015]. The authors were able to find generating functions for these objects,

$$
C_{k}\left(N, \lambda_{1}, \ldots, \lambda_{k}\right)=\sum_{i_{1}, \ldots, i_{k}=1}^{\infty} \frac{\left\langle\operatorname{Tr} M^{i_{1}} \ldots \operatorname{Tr}^{i_{k}}\right\rangle_{c}}{\lambda_{1}^{i_{1}+1} \ldots \lambda_{k}^{i_{k}+1}}
$$

in terms of sums of products of Gauss hypergeometric functions, e.g.

$$
C_{1}(N, \lambda)=N \sum_{j \geq 0} \frac{(2 j-1)!!}{\lambda^{2 j+1}}{ }_{2} F_{1}\left(\left.\begin{array}{c|c}
-j, & 1-N \\
2
\end{array} \right\rvert\, 2\right)
$$

One consider the GUE partition function

$$
Z_{N}\left(\mathbf{t}=t_{1}, t_{2}, \ldots\right):=\int_{\mathcal{H}_{N}} \exp \operatorname{tr}\left(-\frac{1}{2} M^{2}+\sum_{k \geq 1} t_{k} M^{k}\right) \mathrm{d} M=h_{0}(\mathbf{t}) h_{1}(\mathbf{t}) \ldots h_{N-1}(\mathbf{t}),
$$

the $h_{k}(\mathbf{t})$'s are the norming constants of the corresponding system of (Hermite deformed) monic orthogonal polynomials. Notice that connected correlators can be recovered as

$$
\left.\frac{\partial^{r} \log Z_{N}(\mathbf{t})}{\partial t_{i_{\mathbf{1}}} \cdots \partial t_{i_{r}}}\right|_{\mathbf{s}=\mathbf{0}}=\left\langle\operatorname{tr} M^{i_{\mathbf{1}}} \cdots \operatorname{tr} M^{i_{r}}\right\rangle_{\mathbf{c}}
$$

Two lines idea of the proof

- There exists a matrix $R_{n}(\lambda)=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)+\mathcal{O}\left(\lambda^{-1}\right) \in \operatorname{Mat}\left(2, \mathbb{Z}[\mathbf{v}, \mathbf{w}]\left[\left[\lambda^{-1}\right]\right]\right)$ called the matrix resolvent which can be determined from a system of recursion relations
- Multi-point correlators can be recovered via the master formula

$$
\sum_{i_{1}, \ldots, i_{k}=0}^{\infty} \frac{1}{\lambda_{1}^{i_{1}+2} \ldots \lambda_{k}^{i_{k}+2}} \frac{\partial^{k} \log Z_{N}(\mathbf{t})}{\partial t_{i_{\mathbf{1}}} \ldots \partial t_{i_{k}}}=-\frac{1}{k} \sum_{\sigma \in S_{k}} \frac{\operatorname{tr}\left[R_{n}\left(\mathbf{t}, \lambda_{\sigma_{\mathbf{1}}}\right) \ldots R_{n}\left(\mathbf{t}, \lambda_{\sigma_{k}}\right)\right]}{\left(\lambda_{\sigma_{\mathbf{1}}}-\lambda_{\sigma_{\mathbf{2}}}\right) \ldots\left(\lambda_{\sigma_{k-\mathbf{1}}}-\lambda_{\sigma_{k}}\right)\left(\lambda_{\sigma_{k}}-\lambda_{\sigma_{\mathbf{1}}}\right)}
$$

The LUE case

The Laguerre partition function

Over the cone \mathcal{H}_{N}^{+}of positive definite hermitian matrices of size N endowed with the probability measure $\operatorname{det}^{\alpha} M \exp \operatorname{tr}(-M) \mathrm{d} M$, define

$$
Z_{N}^{L U E}(\alpha ; \mathbf{t})=\int_{\mathcal{H}_{N}^{+}} \operatorname{det}^{\alpha} M e^{-\operatorname{tr}\left(M+\sum_{k \neq 0} t_{k} M^{k}\right)} d M=h_{0}^{\alpha}(\mathbf{t}) h_{1}^{\alpha}(\mathbf{t}) \ldots h_{N-\mathbf{1}}^{\alpha}(\mathbf{t})
$$

Trying to follow similar steps for the Laguerre Unitary Ensemble, one considers the (deformed) Laguerre Polynomials

$$
\begin{gathered}
x \pi_{\ell}^{\alpha}(x ; \mathbf{t})=\pi_{\ell+1}^{\alpha}(x ; \mathbf{t})+v_{\ell}^{\alpha}(\mathbf{t}) \pi_{\ell}^{\alpha}(x ; \mathbf{t})+w_{\ell}^{\alpha}(\mathbf{t}) \pi_{\ell-1}^{\alpha}(x ; \mathbf{t}) \\
\int_{-\infty}^{\infty} \pi_{\ell}^{\alpha}(x ; \mathbf{t}) \pi_{\ell^{\prime}}^{\alpha}(x ; \mathbf{t}) e^{-V_{\alpha}(x, \mathbf{t})} d x=h_{\ell}(\mathbf{t}) \delta_{\ell \ell^{\prime}}, \quad w r t \quad V_{\alpha}(x, \mathbf{t})=x-\alpha \log x+\sum_{k \neq 0} t_{k} x^{k}
\end{gathered}
$$

and the LUE multi-point correlators. defined akin the GUE ones as

$$
\left\langle\operatorname{tr} M^{i_{1}} \cdots \operatorname{tr} M^{i_{k}}\right\rangle:=\frac{\int_{\mathcal{H}_{N}^{+}} \operatorname{tr} M^{i_{1}} \cdots \operatorname{tr} M^{i_{k}} \operatorname{det}^{\alpha} M e^{-\operatorname{tr} M} d M}{\int_{\mathcal{H}_{N}^{+}} e^{-\frac{1}{2} \operatorname{tr} M^{2}} d M}
$$

Combinatorial intepretation of the LUE correlators

Strictly and weakly monotone double Hurwitz numbers

Let μ, ν be partitions of the same integer $d=|\mu|=|\nu|$, and denote with $\mathfrak{C}_{\mu} \subset \mathfrak{S}_{d}$ the conjugacy class of permutations whose disjoint cycle factorization contains cycles of lengths $\mu_{1}, \ldots, \mu_{\ell}$.
Define $h_{g}^{>}(\mu ; \nu)$ (resp. $\left.h_{g}^{>}(\mu ; \nu)\right)$, the strictly (resp. weakly) monotone double Hurwitz numbers, as the number of tuples $\left(\rho, \eta, \tau_{1}, \ldots, \tau_{r}\right)$ satisfying
(i) $r=\ell(\mu)+\ell(\nu)+2 g-2$
(ii) $\rho \in \mathfrak{C}_{\mu}, \eta \in \mathfrak{C}_{\nu}$,
(iii) $\tau_{i}=\left(a_{i}, b_{i}\right)$ are transpositions, with $a_{i}<b_{i}$ and $b_{1}<\cdots<b_{r}$ (resp. $\left.b_{1} \leq \cdots \leq b_{r}\right)$,
(iv) $\rho \tau_{1} \cdots \tau_{r}=\eta$,
(v) the subgroup generated by $\rho, \tau_{1}, \ldots, \tau_{r}$ acts transitively on $\{1, \ldots, d\}$.

For example for $\mu=\{1,1,1\}$ and $\nu=\{3\}$ we have

$$
h_{g}^{>}(\{1,1,1\} ;\{3\})=2, \quad h_{g}^{\geq}(\{1,1,1\} ;\{3\})=4
$$

Since a 3-cycle in \mathfrak{S}_{3} can be factorized with $r=2$ transpositions as

$$
(12)(13)=(132), \quad(12)(23)=(123)
$$

in the strictly monotone case, and rather in the weakly monotone case

$$
(12)(13)=(132), \quad(12)(23)=(123), \quad(23)(13)=(132), \quad(13)(23)=(123)
$$

Like in the GUE case, the genus expansion of the LUE correlators can be written in terms of combinatorial objects, a result of [Cunden, Dahlqvist \& O'Connell, 2018]. Namely

Genus expansion of the LUE correlators

In the scaling $\alpha=N(c-1)$ we have

$$
\begin{array}{rlrl}
N^{\ell-|\mu|-2}\left\langle\operatorname{tr} M^{\mu_{1}} \cdots \operatorname{tr} M^{\mu_{\ell}}\right\rangle_{c} & =\sum_{g \geq 0} \frac{1}{N^{2 g}} \sum_{s=1}^{1-2 g+|\mu|-\ell} H_{g}^{>}(\mu ; s) c^{s}, & c>1-\frac{1}{N}, \\
N^{\ell+|\mu|-2}\left\langle\operatorname{tr} M^{-\mu_{1}} \cdots \operatorname{tr} M^{-\mu_{\ell}}\right\rangle_{c} & =\sum_{g \geq 0} \frac{1}{N^{2 g}} \sum_{s \geq 1} \frac{H_{g}^{\geq}(\mu ; s)}{(c-1)^{2 g-2+|\mu|+\ell+s},} \quad c>1+\frac{|\mu|}{N},
\end{array}
$$

Here above,

$$
H_{g}^{>}(\mu ; s)=\frac{z_{\mu}}{|\mu|!} \sum_{\nu \text { of length } s} h_{g}^{>}(\mu ; \nu), \quad H_{g}^{\geq}(\mu ; s)=\frac{z_{\mu}}{|\mu|!} \sum_{\nu \text { of length } s} h_{\bar{g}}^{>}(\mu ; \nu),
$$

are so called multiparametric single Hurwitz numbers, $|\mu|:=\mu_{1}+\cdots+\mu_{\ell}$ and $z_{\mu}:=\prod_{i \geq 1}\left(i^{m_{i}}\right) m_{i}!$, is the cardinality of the conjugacy class \mathfrak{C}_{μ}.

Computing the correlators

Unfortunately, the method used for the GUE case does not fit very well for the LUE, since

$$
v_{\ell}^{\alpha}(\mathbf{t}=\mathbf{0})=2 \ell+\alpha+1, \quad w_{\ell}^{\alpha}(\mathbf{t}=\mathbf{0})=\ell(\ell+\alpha)
$$

the initial conditions are much more complicated than the ones for Hermite.
But! logarithmic derivatives can be retrieved also analyzing the Riemann-Hilbert problem of the associated orthogonal polynomials.

The Riemann-Hilbert Problem

From work that dates back to [Its, Kitaev \& Fokas, 1990] the matrix

$$
Y(x ; \mathbf{t}):=\left(\begin{array}{cc}
\pi_{\mathrm{i}}^{\alpha}(x ; \mathbf{t}) & \widehat{\pi}_{N}^{\alpha}(x ; \mathbf{t}) \\
-\frac{2 \mathrm{i}^{\prime}}{h_{N-\mathbf{1}}(\mathbf{t})} \pi_{N-\mathbf{1}}^{\alpha}(x ; \mathbf{t}) & -\frac{2 \pi_{\mathrm{i}}\left(\widehat{\pi}^{\prime} \widehat{\pi}_{N-1}^{\alpha}(x ; \mathbf{t})\right.}{h_{N-\mathbf{1}}(\mathbf{t}}
\end{array}\right)
$$

solves the RHP for the associated orthogonal polynomials. Notice that it is analytic for $x \in \mathbb{C} \backslash[0, \infty)$ and continuous up to the boundary $(0, \infty)$ where it satisfies the jump condition

$$
Y_{+}(x ; \mathbf{t})=Y_{-}(x ; \mathbf{t})\left(\begin{array}{cc}
1 & \mathrm{e}^{-V_{\alpha}(x ; \mathbf{t})} \\
0 & 1
\end{array}\right), \quad x \in(0, \infty)
$$

Introduce the 2×2 matrix $\Psi(x ; \mathbf{t})$, analytic for $x \in \mathbb{C} \backslash[0, \infty)$,

$$
\Psi(x ; \mathbf{t}):=Y(x ; \mathbf{t}) \exp \left(-V_{\alpha}(x ; \mathbf{t}) \frac{\sigma_{3}}{2}\right) .
$$

which has constant jump matrix along $x \in(0, \infty)$. It then satisfies a compatible system of linear 2×2 matrix ODEs with rational coefficients,

$$
\frac{\partial \Psi(x ; \mathbf{t})}{\partial x}=\mathcal{A}(x ; \mathbf{t}) \Psi(x ; \mathbf{t}), \quad \frac{\partial \Psi(x ; \mathbf{t})}{\partial t_{k}}=\Omega_{k}(x ; \mathbf{t}) \Psi(x ; \mathbf{t}), \quad k \neq 0 .
$$

- $\Omega_{k}(x ; \mathbf{t})$ being a polynomial in $x^{ \pm 1}$ of degree $|k|$, for k positive/negative
- $\mathcal{A}(x ; \mathbf{t})$ is a Laurent polynomial in x, modulo a proper truncation fo times
- Existence of the solution $\Psi(x ; \mathbf{t})$ implies compatibility and hence the zero curvature conditions

$$
\frac{\partial \mathcal{A}}{\partial t_{k}}-\frac{\partial \Omega_{k}}{\partial x}=\left[\Omega_{k}, \mathcal{A}\right], \quad k \neq 0
$$

Isomonodromic tau function, [Bertola, Eynard \& Harnad, CMP 2006]

The key fact is that we can identify the LUE partition funcion with the isomonodromic tau function of the monodromy-preserving deformation system above.

In particular, defining the matrix

$$
R(x ; \mathbf{t}):=\Psi(x ; \mathbf{t}) \mathrm{E}_{11} \Psi^{-1}(x ; \mathbf{t})=Y(x ; \mathbf{t}) \mathrm{E}_{11} Y^{-1}(x ; \mathbf{t})
$$

Logarithmic derivatives of $Z_{N}(\alpha ; \mathbf{t})$ can be expressed in terms of residues of computable objects

$$
\begin{aligned}
\frac{\partial \log Z_{N}(\alpha ; \mathbf{t})}{\partial t_{k}}= & -\underset{x}{\operatorname{res}}\left(\operatorname{tr}(\mathcal{A}(x ; \mathbf{t}) R(x ; \mathbf{t}))+\frac{1}{2} \frac{\partial}{\partial x} V_{\alpha}(x ; \mathbf{t})\right) x^{k} \mathrm{~d} x, \\
\frac{\partial^{2} \log Z_{N}(\alpha ; \mathbf{t})}{\partial t_{k_{\mathbf{2}}} \partial t_{k_{\mathbf{1}}}}= & \underset{x_{\mathbf{1}}}{\operatorname{res}} \operatorname{res}_{x_{\mathbf{2}}} \frac{\operatorname{tr}\left(R\left(x_{1} ; \mathbf{t}\right) R\left(x_{2} ; \mathbf{t}\right)\right)-1}{\left(x_{1}-x_{2}\right)^{2}} x_{1}^{k_{1}} x_{2}^{k_{2}} \mathrm{~d} x_{1} \mathrm{~d} x_{2}, \\
\frac{\partial^{r} \log Z_{N}(\alpha ; \mathbf{t})}{\partial t_{k_{r}} \cdots \partial t_{k_{\mathbf{1}}}}= & \underset{x_{\mathbf{1}}}{\operatorname{res} \cdots \operatorname{res}_{x_{r}}\left[\sum_{\left(i_{\mathbf{1}}, \ldots, i_{r}\right) \in \mathcal{C}_{r}} \frac{(-1)^{r+1} \operatorname{tr}\left(R (x _ { i _ { \mathbf { 1 } } ; \mathbf { t } }) \cdots R \left(x_{\left.\left.i_{r} ; \mathbf{t}\right)\right)}^{\left(x_{i_{2}}\right) \cdots\left(x_{i_{r-1}}-x_{i_{r}}\right)\left(x_{i_{r}}-x_{i_{\mathbf{1}}}\right)}+\right.\right.}{}\right.} \begin{aligned}
& \left.-\frac{\delta_{r, 2}}{\left(x_{1}-x_{2}\right)^{2}}\right] x_{1}^{k_{1}} \cdots x_{r}^{k_{r}} \mathrm{~d} x_{1} \cdots \mathrm{~d} x_{r}
\end{aligned}
\end{aligned}
$$

where the symbol $\underset{x_{i}}{\text { res denotes }} \underset{x_{i}=\infty}{\text { res }}($ resp. res $)$ if $k_{i}>0\left(\right.$ resp. $\left.k_{i}<0\right)$.

Positive, negative and mixed type correlators

Evaluating at $\mathbf{t}=0$ and computing the asymptotic expansions of $R(x ; \mathbf{0})$ at 0 and ∞, we get straightforwardly formulæ for multi-point connected correlators of general type

$$
\left\langle\operatorname{tr} M^{\mu_{1}} \cdots \operatorname{tr} M^{\mu_{\ell}} \operatorname{tr} M^{-\nu_{\mathbf{1}}} \cdots \operatorname{tr} M^{-\nu_{\ell^{\prime}}}\right\rangle_{c}
$$

Asymptotics for the matrix R

$$
\begin{aligned}
& R_{+}(x):=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)+\sum_{\ell \geq \mathbf{0}} \frac{1}{x^{\ell+1}}\left(\begin{array}{cc}
\ell A_{\ell}(N, N+\alpha) & B_{\ell}(N+1, N+\alpha+1) \\
-N(N+\alpha) B_{\ell}(N, N+\alpha) & -\ell A_{\ell}(N, N+\alpha)
\end{array}\right) \\
& R_{-}(x):=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)+\sum_{\ell \geq \mathbf{0}} \frac{x^{\ell}}{(\alpha-\ell)_{\mathbf{2} \ell+\mathbf{1}}}\left(\begin{array}{cc}
(\ell+1) A_{\ell}(N, N+\alpha) & -B_{\ell}(N+1, N+\alpha+1) \\
N(N+\alpha) B_{\ell}(N, N+\alpha) & -(\ell+1) A_{\ell}(N, N+\alpha)
\end{array}\right)
\end{aligned}
$$

with $M=N+\alpha$ and

$$
A_{\ell}(N, M):=\left\{\begin{array}{ll}
N, & \ell=0, \\
\frac{1}{\ell} \sum_{j=\mathbf{0}}^{\ell-\mathbf{1}}(-1)^{j} \frac{(N-j)_{\ell}(M-j)_{\ell}}{j!(\ell-\mathbf{1}-j)!}, & \ell \geq 1,
\end{array} \quad B_{\ell}(N, M):=\sum_{j=\mathbf{0}}^{\ell}(-1)^{j} \frac{(N-j)_{\ell}(M-j)_{\ell}}{j!(\ell-j)!} .\right.
$$

These are obtained from the Lax differential equation satisfied by $R(x)$

$$
\frac{\partial}{\partial x} R(x)=[\mathcal{A}(x), R(x)], \quad \mathcal{A}(x)=-\frac{1}{2} \sigma_{3}+\frac{1}{x}\left(\begin{array}{cc}
N+\frac{\alpha}{2} & -\frac{h_{N}}{2 \pi \mathrm{i}} \\
\frac{2 \pi \mathrm{i}}{h_{N-1}} & -N-\frac{\alpha}{2}
\end{array}\right)
$$

We also retrieve two important properties of the moments which first appeared in [Cunden, Mezzadri, O'Connell \& Simm, 2019]

- $A_{\ell}(N, M), B_{\ell}(N, M)$ satisfy a three-term recurrence relation, they are Hahn orthogonal polynomials, and $\left\langle\operatorname{tr} M^{k}\right\rangle=A_{k}(N, N+\alpha)$
- Reciprocity laws:

$$
\left\langle\operatorname{tr} M^{-k-1}\right\rangle=\frac{\left\langle\operatorname{tr} M^{k}\right\rangle}{(\alpha-k)_{2 k+1}}, \quad\left\langle\operatorname{tr} X^{k} \operatorname{tr} X\right\rangle_{\mathrm{c}}=k A_{k}(N, N+\alpha)=\alpha(\alpha-k)_{2 k+1}\left\langle\operatorname{tr} X^{-k} \operatorname{tr} X^{-1}\right\rangle_{\mathrm{c}}
$$

Hence multi-point correlators are themselves combination of orthogonal polynomials.

Hurwitz numbers and Hodge Integrals

Hodge-GUE Correspondence

In [Dubrovin, Liu, Yang \& Zhang, 2016] is shown that defining the generating function for special cubic Hodge integrals

$$
\mathcal{H}_{\text {cubic }}(\mathbf{p} ; \epsilon)=\sum_{g \geq 0} \epsilon^{2 g-2} \sum_{n \geq 0} \sum_{k_{\mathbf{1}}, \ldots, k_{n} \geq 0} \frac{p_{k_{\mathbf{1}}} \cdots p_{k_{n}}}{n!} \int_{\overline{\mathcal{M}}_{g, n}} \Lambda^{2}(-1) \Lambda\left(\frac{1}{2}\right) \prod_{i=1}^{n} \psi_{i}^{k_{i}},
$$

its exponential $Z_{\text {cubic }}(\mathbf{p} ; \epsilon):=e^{\mathcal{H}(\mathbf{p} ; \epsilon)}$ uniqely factorize the GUE partition function with even couplings only, which is

$$
Z_{N}^{\text {even }}(\mathbf{s} ; \epsilon)=c \cdot Z_{\text {cubic }}\left(\mathbf{p}\left(x+\frac{\epsilon}{2}, \mathbf{s}\right) ; \sqrt{2 \epsilon}\right) Z_{\text {cubic }}\left(\mathbf{p}\left(x-\frac{\epsilon}{2}, \mathbf{s}\right) ; \sqrt{2 \epsilon}\right)
$$

Otos! the LUE partition function for $\alpha= \pm \frac{1}{2}$ also does the job by almost trivial arguments

$$
Z_{2 N}^{\text {even }}(\mathbf{s})=D_{N} Z_{N}\left(-\frac{1}{2} ; \mathbf{t}_{+}\right) Z_{N}\left(\frac{1}{2} ; \mathbf{t}_{+}\right)
$$

Hodge-LUE Correspondence

By uniqueness of the factorization for $Z_{N}^{\text {even }}$, we are able to identify the partition functions $Z_{\text {cubic }}$ and $Z_{L U E}^{\left(\alpha=-\frac{1}{2}\right)}$, in particular unveiling the existence of a matrix model for the former.

Most interestingly, this carries a relation between cubic Hodge integrals and double monotone Hurwitz numbers, namely

$$
\begin{gathered}
\sum_{\gamma=0}^{g} 2^{4 \gamma} \sum_{s \geq 1}\left[\sum_{p \geq 0}(-1)^{p}\binom{2-2 \gamma+|\mu|-\ell-s}{p}\binom{s}{2 g-2 \gamma-p}\right] H_{\gamma}^{>}(\mu ; s) \\
=2^{3 g+1-\ell} \int_{\overline{\mathcal{M}}_{g, \ell}} \Lambda^{2}(-1) \Lambda\left(\frac{1}{2}\right) \exp \left(-\sum_{d \geq 1} \frac{\kappa_{d}}{d}\right) \prod_{a=1}^{\ell} \frac{\mu_{a}\binom{2 \mu_{a}}{\mu_{a}}}{1-\mu_{a} \psi_{a}}
\end{gathered}
$$

which for example in genus zero reads

$$
\mathscr{H}_{0, \mu}=2^{\ell-2} \lambda^{|\mu|+2-\ell} \sum_{s=1}^{|\mu|+1-\ell} H_{0}^{>}(\mu ; s) .
$$

The JUE case [Work in progress]

The Jacobi partition function

On the set $\mathcal{H}_{N}^{(0,1)}$ of hermitian matrices of size N with spectrum in the real interval $(0,1)$, endowed with the probability measure $Z_{N}\left(\alpha_{1}, \alpha_{2} ; \mathbf{0}\right)^{-1} \operatorname{det}^{\alpha_{1}}(\mathbf{1}-M) \operatorname{det}^{\alpha_{2}} M \mathrm{~d} M$, define

$$
Z_{N}\left(\alpha_{1}, \alpha_{2} ; \mathbf{t}_{+}, \mathbf{t}_{-}\right)=\int_{\mathcal{H}^{(0,1)}} \operatorname{det}^{\alpha_{1}}(\mathbf{1}-M) \operatorname{det}^{\alpha_{2}} M \exp \operatorname{tr}\left(\sum_{k \neq 0} t_{k} M^{k}\right) \mathrm{d} M
$$

Then, JUE multi-point connected correlators

$$
\left.\frac{\partial^{\ell} \log Z_{N}\left(\alpha_{1}, \alpha_{2} ; \mathbf{t}_{+}, \mathbf{t}_{-}\right)}{\partial t_{k_{\mathbf{1}}} \cdots \partial t_{k_{\ell}}}\right|_{\mathbf{t}_{+}=\mathbf{t}_{-}=\mathbf{0}}=\left\langle\operatorname{tr} M^{k_{\mathbf{1}}} \cdots \operatorname{tr} M^{k_{\ell}}\right\rangle_{\mathrm{c}}
$$

where $k_{1}, k_{2}, \ldots, k_{\ell} \in \mathbb{Z}$, can be computed adapting the exact same procedure, working now with the Jacobi orthogonal Polynomials,

$$
\int_{0}^{1} \pi_{\ell}^{\left(\alpha_{1}, \alpha_{2}\right)}(x) \pi_{\ell^{\prime}}^{\left(\alpha_{1}, \alpha_{2}\right)}(x) \mathrm{e}^{-V_{\alpha_{1}, \alpha_{2}}(x)} \mathrm{d} x=\delta_{\ell, \ell^{\prime}} h_{\ell}, \quad V_{\alpha_{1}, \alpha_{\mathbf{2}}}(x):=-\alpha_{1} \log (1-x)-\alpha_{2} \log x .
$$

Asymptotics for the matrix R

$$
R^{\infty}(x):=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)+\sum_{\ell \geq 0} \frac{1}{x^{\ell+1}} \frac{1}{\alpha_{1}+\alpha_{2}+2 N}\left(\begin{array}{cc}
\ell A_{\ell}\left(N, \alpha_{1}, \alpha_{2}\right) & c_{N, \alpha} \cdot B_{\ell}\left(N+1, \alpha_{1}, \alpha_{2}\right) \\
-B_{\ell}\left(N, \alpha_{1}, \alpha_{2}\right) & -\ell A_{\ell}\left(N, \alpha_{1}, \alpha_{2}\right)
\end{array}\right) .
$$

Similar expansions hold at the other singular points $x=0$ and $x=1$.

As in the LUE case, massaging the Lax equation for R we deduce a number of facts

- the A_{ℓ} and B_{ℓ} 's are Wilson orthogonal polynomials, a fact already observed in [Cunden, Mezzadri, O'Connell \& Simm, 2019]. For example

$$
A_{\ell}=d_{N, \alpha} \cdot W_{N-1}\left(-\left(\ell+\frac{1}{2}\right)^{2} ; \frac{3}{2}, \frac{1}{2}, \alpha_{2}+\frac{1}{2}, \frac{1}{2}-\alpha_{1}-\alpha_{2}-2 N\right)
$$

- a Reciprocity law holds in this case as well,

$$
\left(\left\langle\operatorname{tr} M^{-k-1}\right\rangle-\left\langle\operatorname{tr} M^{-k}\right\rangle\right)=\left(\prod_{j=-k}^{k} \frac{\alpha_{1}+\alpha_{2}+2 n-j}{\alpha_{2}-j}\right)\left(\left\langle\operatorname{tr} M^{k}\right\rangle-\left\langle\operatorname{tr} M^{k+1}\right\rangle\right)
$$

notice that, in this case, the differences of moments are the correct quantities to consider.

Combinatorial intepretation of the JUE correlators

Weakly monotone triple Hurwitz numbers

Given three partitions $\lambda, \mu, \nu \vdash d$, for any integer $g \geq 0$ define $h_{g}(\lambda, \mu, \nu)$ to be the number of tuples $\left(\pi_{1}, \pi_{2}, \tau_{1}, \ldots, \tau_{r}\right)$ of permutations in \mathfrak{S}_{d} such that
(i) $r=\ell(\mu)+\ell(\nu)+\ell(\lambda)-d+2 g-2$,
(ii) $\pi_{1} \in \mathfrak{C}_{\mu}, \pi_{2} \in \mathfrak{C}_{\nu}$,
(iii) $\tau_{i}=\left(a_{i}, b_{i}\right)$ are transpositions, with $a_{i}<b_{i}$ and $b_{1} \leq \cdots \leq b_{r}$,
(iv) $\pi_{1} \pi_{2} \tau_{1} \cdots \tau_{r} \in \mathfrak{C}_{\lambda}$,
(v) the subgroup generated by $\pi_{1}, \pi_{2}, \tau_{1}, \ldots, \tau_{r}$ acts transitively on $\{1, \ldots, d\}$.

In the scaling limit $N \rightarrow+\infty$ with $\alpha_{1}=\left(c_{1}-1\right) N, \alpha_{2}=\left(c_{2}-1\right) N$, we have the following expansions for any partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{\ell(\lambda)}\right)$

$$
N^{\ell-|\mu|-2}\left\langle\prod_{j=1}^{\ell(\lambda)} \operatorname{tr} X^{\lambda_{j}}\right\rangle_{c}=\sum_{g \geq 0} N^{2-2 g} \sum_{\mu, \nu \vdash|\lambda|} c_{2}^{\ell^{*}(\nu)}\left(-\frac{c_{2}}{c_{1}+c_{2}}\right)^{\ell(\mu)+\ell(\nu)-\ell^{*}(\lambda)+2 g-2} h_{g}(\lambda, \mu, \nu) .
$$

A similar expansion also holds for negative multi-point correlators.
The Jacobi partition function is a KP hypergeometric τ-function [Okounkov, Harnad, Orlov]
KP hypergeometric τ-function are in correspondence with families of multiparametric Hurwitz numbers, from which the above expansion can be deduced.

Summarizing

What has been done

- Effective computation of correlators for the LUE and JUE ensemble
- The multi-point correlators of UE ensemble are combinations of hypergeometric OP
- Computation of monotone double hurwitz numbers
- A matrix model for the cubic Hodge partition function
- Link between Hodge integrals and monotone double Hurwitz numbers

What is to be done

- Combinatorial interpretation (if any) of the mixed JUE and LUE correlators
- A combinatorial proof that JUE correlators are linked to triple monotone Hurwitz numbers
- Extend the approach to the $\beta=1,4$ Orthogonal and Symplectic ensembles
- Orthogonality properties for multi-point UE correlators, [Jonnadula, Mezzadri \& Keating, 2020]
- Enumerative Geometry invariants associated to the Jacobi partition function

Fin

Thank you!

Introduce the weight generating function $G(z)=\prod_{k=1}^{\infty}\left(1+c_{k} z\right)$. For any $N \in \mathbb{Z}$, partition λ and non-vanishing parameter β define the content product

$$
r_{\lambda}^{(G, \beta)}(N):=r_{0}^{(G, \beta)}(N) \prod_{(i, j) \in \lambda} G(\beta(N+j-i)), \quad r_{0}^{(G, \beta)}(N):=\prod_{j=1}^{N} G(\beta(N-j))^{j} .
$$

These coefficients determine a 2D-Toda τ-function [Okounkov, Harnad, Orlov]

$$
\tau^{(G, \beta)}(N, \mathbf{t}, \mathbf{s}):=\sum_{\lambda} r_{\lambda}^{(G, \beta)}(N) s_{\lambda}(\mathbf{t}) s_{\nu}(\mathbf{s})
$$

On the other side, define the multiparametric double Hurwitz numbers

$$
\begin{aligned}
H_{G}^{d}(\mu, \nu) & :=\sum_{k=0}^{\infty} \sum_{\substack{\mu^{(\mathbf{1})}, \ldots, \mu^{(k)} \\
\sum_{i=\mathbf{1}}^{k} \ell^{*}\left(\mu^{(i)}\right)=d}} W_{G}\left(\mu^{(\mathbf{1})}, \ldots, \mu^{(k)}\right) H\left(\mu^{(\mathbf{1})}, \ldots, \mu^{(k)}, \mu, \nu\right), \\
W_{G}\left(\mu^{(\mathbf{1})}, \ldots, \mu^{(k)}\right) & :=\frac{1}{|\operatorname{aut}(\lambda)|} \sum_{\sigma \in \mathfrak{G}_{k}} \sum_{\mathbf{1} \leq \boldsymbol{i}_{\mathbf{1}}<\cdots<i_{k}} c_{i_{\sigma(\mathbf{1})}^{\ell^{*}\left(\mu^{(\mathbf{1})}\right)} \cdots c_{i_{\sigma(k)}}^{\ell^{*}\left(\mu^{(k)}\right)} .}
\end{aligned}
$$

These are the coefficients of the same τ-function in a different basis of symmetric polynomials

$$
\tau^{(G, \beta)}(N, \mathbf{t}, \mathbf{s})=\sum_{d=\mathbf{0}}^{\infty} \sum_{\mu, \nu,|\mu|=|\nu|} \beta^{d} H_{G}^{d}(\mu, \nu) p_{\mu}(\mathbf{t}) p_{\nu}(\mathbf{s})
$$

Notice that evaluation at $\mathbf{s}=\mathbf{s}_{\infty}=(1,0,0, \ldots)$ turns the above into $K P \tau$-functions.

- In particular, the parametric function $G(z)$ uniquely determines the "species" of the corresponding Hurwitz numbers, and it can be retrieved once the $r_{\lambda}^{(G, \beta)}(N)$ are known,
- The Jacobi partition function, restricting to positive times only, is a $K P \tau$-function itself,
- By standard arguments, matrix models for $\beta=2$ can be rewritten in a Schur expansion as

$$
\begin{aligned}
\tau_{N}(\mathbf{t}) & =\int_{\mathbf{R}^{N}} \Delta^{2}(\mathbf{x}) \prod_{j=1}^{N} \exp \left(\sum_{k \geq 1} t_{k} x^{k}\right) d m\left(x_{j}\right)=\sum_{\ell(\lambda) \leq N} c_{\lambda, N} s_{\lambda}(\mathbf{t}) \\
c_{\lambda, N} & =(-1)^{\frac{N(N-\mathbf{1})}{2}} N!\operatorname{det}\left[\mathcal{M}_{\lambda_{i}+N-i, j-1}\right], \quad \mathcal{M}_{i, j}=\int_{\mathbf{R}} x^{i+j} d m(x),
\end{aligned}
$$

in terms of the moments of the measure only.
Carrying out the above computation, one can correctly identify the function G corresponding to the Jacobi partition function, and in turn realize which kind of multiparametric Hurwitz numbers are associated to it.

