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Dubrovin-Frobenius Manifolds
A Dubrovin-Frobenius structure on the manifold M is the data
(M, o, <,>, e, E) satisfying:
1 :=<,> is a flat pseudo-Riemannian metric;

2 e is product of Frobenius algebra on T,,M which depends
smoothly on m;

3 e is the unity vector field for the product e and Ve = 0;
4 Vyc(x,y,z)is symmetric, where c(x,y,z) =< xey,z > ;

5 A linear vector field E € I'(M) must be fixed on M, i.e.
VVE = 0 such that:

Le <,>=(2—-d) <, >,
LE. = e,

Lee = e.



The function F(t),t = (t, t?,..,t") is a solution of WDVV
equation if its third derivatives

o O3F

T Hreothor
satisfies the following conditions:

1
NaB = ClaB
is constant nondegenerate matrix.

2 The function

C(;Yﬁ = 7775Ca55

is structure constant of assosciative algebra.

3 F(t) must be quasihomogeneous function
F(chtl, .. c®tn) = c¥ F(t, .., t")

for any nonzero ¢ and for some numbers dy, ..., d,, dr.



WDDV equation/Dubrovin Frobenius
manifold correspondence

Theorem (Dubrovin 1992)

There is a one to one correspondence between a
Dubrovin-Frobenius manifold and solutions of WDVV equation.



Main applications of Dubrovin Frobenius manifold theory
1 Gromov Witten theory,
2 Singularity theory,
3 Hamiltonian theory of integrable hierarchies.



Intersection form and Monodromy

The intersection form is the bilinear pairing in T*M defined by:
(w1, w2)" := te(w1 @ w2)

where w1, ws € T*M and e is the induced Frobenius algebra
product in the cotangent space. Let us denote by g* the
intersection form.



Intersection form and Monodromy

The intersection form g* of a Dubrovin-Frobenius manifold is a flat
almost everywhere nondegenerate metric. Let us define:

Y ={x € M: det(g) =0}
Hence, the linear system of differential equations,
g8%0:0px + I3°0cx = 0,

denoted by Gauss-Manin connection, determining g*-flat
coordinates has poles , and consequently its solutions x,(t?, .., t")
are multivalued, where (t1,..,t") are flat coordinates of . The
analytical continuation of the solutions x,(t!, .., t") has
monodromy corresponding to loops around X. This gives rise to a
monodromy representation of m1(M \ X), which is called
Monodromy of the Dubrovin-Frobenius manifold.



Frobenius Manifolds as Orbit spaces

Theorem (Dubrovin Conjecture, Hertling 1999)

Any irreducible semisimple polynomial Dubrovin-Frobenius
manifold with positive invariant degrees is isomorphic to the orbit
space of a finite Coxeter group.

Main Point

Differential geometry of the orbit spaces of reflection groups and of
their extensions — Dubrovin-Frobenius manifolds.

Example: W is Extended affine Weyl Group [Dubrovin, Zhang
1998] and for Jacobi groups [Bertola 1999].



Examples of Orbit spaces
Example 1:
For C/As:

1 Group action: vy — —vp;
2 Invariant metric: ds? = dvg

3 Invariant functions: C[v3],

4 WDVV solution: F(ty) = 2.
ExampIeN2:
For C2/A;:

1 Group action: (vg, v2) — (—vo + mg, va + my);
2 Invariant metric: ds®> = dvg — dva

3 Invariant functions: C[e?™"2 cos(2mivp), €2™2],

. t2¢2 £2
4 WDVV solution: F(ti,t) = 45— +e".



Examples of Orbit spaces

Example 3:
For Co C @ H/J(A1):

1 Group action:
(Qb, VOaT) = (¢a —Vo, T )
(¢, v0,7) = (¢ — nvo — 27V0+m+”77)
2
by.
(¢, v0,7) = (¢ — ci\jgd’ g )

5 Invariant metric: ds?> = dvZ + dodr

w N

»~

6 Invariant functions: M,[po, 2],

. 7 ut? l7rt2
7 WDVV solution: F(t1,t2,7) = %5 + 5% — Ex(7).

where (m, n) € Z?, and (25) € SL5(Z), and

N
")

Yo = @2@(V0,T)~

p2 =€



Hurwitz space as Frobenius manifold

The Hurwitz space Hg ng,ny,...n, 1S the moduli space of curves Cg of
genus g endowed with N = m+ 1+ ng + ..n,, branched covering
A : Cg — CP! with m + 1 branching points over co in CP! of
branching degree n; +1, j =0,..,m.

The set of branch points {/\1, ...y An} gives coordinates on the
Hurwitz space Hg .

To build a frobenius structure on Hg no,....nm take Oi == a,\
1 the multiplication as 0; @ 9; = 608,-,
2 e=> 0
3 E=>_ )0,

4 n=> resPi%(dAi)2,
where ¢ are the primary differential.



Examples of Hurwitz spaces

Example 1:
For H071:
1 A(p,vo) = P* — g
2 H071 = (C/Al
Example 2:
For H0’070 .
1 A(p,a,b) =p+ ;%5
2 Hooo = C?/A;,

Example 3:
For H171:

_ q2mip01(v—w|T)01(v+vo|T).
1AV, o, 6, 7) = 2T e

2 Hi12C3/J(A),



Problem Setting

Hi1 = C3/J(A1) Ho o0 = C?/A;
Example of Orbit space of Jacobi Example of Orbit space of
Group Extended Affine Weyl Group

Mixed of Extended Affine Weyl Group + Jacobi Group?

Hip0 = C*H/W



[ay

Results

Hooo = C2/A;  «——  Ho1 = C/A

| |

Hioo = C*/J (A1) ¢—— Hi1 = C3/J(A1)

Ho,1, g=0, 1 double pole.
Ho o0 .8=0, 2 simple pole.
Hi 1, g=1, 1 double pole.
Hi,00, g=1, 2 simple pole.



Action of J(A;)

ForN((C eC’q H)/j(/z\l)
J(A) ~CaC?aH> (¢, v, v2,7)

W(¢7 Vo, V2)T) = (¢7 —\o, V277—)
t(p,vo,v2, 7)) =(p—2<n,v>+<nn>t,v+m+nr,T)

c<v,v> % ar+b
1(d; vo, v2, 7) = (& — ct+d 7(:7'+d’c7'—i-d)

(3)
where v = (vg, v2), m, n € Z2, and

< (o, v2), (vo, v2) >= Vg - V22 (4)



Jacobi forms of j(;\l)

The weak Al -invariant Jacobi forms of weight k, order /, and
index m are functions on
Q=CeC?>®H> (¢, v, v2,7) = (¢, v, 7) which satisfy

o(w(p,v,7)) =¢(¢,v,7), Ap invariant condition

o(t(,v,7)) = @(, v, 7)
o(v(¢, v, 7)) = (c7 + d) *p($,v,T) (5)

E(bv.7) = —

0
_%%Qp(gﬁ? Vo, V2, T) = m¢(¢7 Vo, V2, T)



Chevalley theorem, and generating
function of the invariants

Hurwitz space/ Orbit space correspondence

27”-¢01(v — V0|7')91(V + V0|7')
01(v — wo|1)01(v + v2|T) (6)
= 0 + p1[C(v = va|T) = ((v + va|T) + 2¢(v2|T)]

[(¢, vo, v2,T)] > €

Theorem 1

The trigraded algebra of Jacobi forms J;7 oo =P kol k Im
freely generated by 2 fundamental Jacobi forms (goo ,gol ) over
the graded ring E, o

SO0 = B, ol o (7)

where Eq o := Jo o0



Dubrovin Frobenius structure on the Orbit
space of J(A;)

The natural candidate to be the intersection form of J(A;) is:

ds? = 2dv@ — 2dv3 + 2dédT (8)

Lemma 2
The metric
ds?® = 2dvZ — 2dv2 + 2dédT (9)

is invariant under the action of A1, and translations. Moreover, the
SL>(Z) transformations determine a conformal transformation of
the metric ds?, i.e:

2dvg — 2dv3 + 2d¢dT (10)
(cT + d)?

2dvg — 2dv3 + 2dpdT



Dubrovin Frobenius structure on the Orbit
space of J(A;)

For H1,070:
1 ds? = 2dvZ — 2dv2 + 2d¢dT
_ 0.
2 €= D0’
_ 8 9 .
3 E= 05 + P17
4 Leg®=n"
5 (1,213, ¢4) = (goo+2s01glgzm,<p1,m 7)
_ A _PF__ gP
6 FoF =P Fthotr . deg(goP)

07(0,t*
7 F(th 12,63, t%) = L (£1)2t* — 2616283 — (£2)? log(t? (gtftﬂ))



[ay

Generalization

Hon-10 =2 CY/A, «———  Hy,=C"/A,

| !

Hip 1022 C"3/T(A,) +—— Hin 2 C2/J(A,)

Ho,», =0, 1 pole of order n;
Ho,n—1,0 .&=0, 1 simple pole, 1 pole of order n-1;
Hi,n, g=1, 1 pole of order n;
Hi,n—1,0, g=1, 1 simple pole, 1 pole of order n-1.



Action of J(A,)
| will consider the A, in the following extended space

n
LA" = {(207217 "7Zn,zn+1) S Zn+2 : Z v, = 0}
i=0

The action of A, on LA is given by
w(zo, 21,22, .., Zn—1, Zn, Znt1) = (Ziy, Ziy s Zips -+ Ziy_y» Zips Znt1)

permutations in the first n + 1 variables. Let the quadratic form
<, > given by

11 .1 1 0
1 21 11 0
11 2 11 0
v,V >== vl ' 8 v
1 11 2 1 0
1 11 2 0
0

0 =(n=1)



Action of J(A,)

Consider the action J(A,) ~Q=CoC"t e H

Definition 3 (Jacobi group of An)

The " Jacobi group of A, is represented on the Tits cone
Q =C @ C"! @ H by the definition of the action w € A,
t=(\p) €(Z+T1Z)", v € SLy(Z) as :

1 w(o,v,7) = (¢, wv,T)

. t( 7T):(¢_<M’V>—1<M’M>T,V+>\+TM’T)

¢, v
— +b
€ ’)/(QS, V’T) - (¢ 2(c7'+d) <V,v>T, CT‘de’ i:er)




Jacobi forms of A,

The weak A,, -invariant Jacobi forms of weight k, order /, and
index m are functions on
Q=Ca®C'""2pH> (¢, V', Var1,7) = (¢, v, T) which satisfy
o(w(p,v, 7)) =¢(¢,v,7), A, invariant condition
o(t(p,v, 7)) = p(d, v, T)
o(1(6,v,7)) = (c7 + d) (o, v, 7) (11)

1 0
E(p((b’ V’T) = _%%Qp(d)v VvT) = m<p(¢7 VvT)



Chevalley theorem
Theorem 4
J(An) A

The trigraded algebra of Jacobi forms Jg = Dx.im Jf"} m IS
freely generated by n+ 1 fundamental Jacobi forms

(cpoA”, gpf", ) go’;", ey 905”) over the graded ring E, o

A~I‘I ~f1 ~n ~l1 ~f1
Jo,o(,o ) - Eo,o[@é 34)0/14 m‘/’é PR (,0/,? ] (12)

Theorem 5
The functions (gpé‘", gpf", .., ") obtained by the formula

)\An = e27‘(’l‘¢1 H[n:() 91(2 —V + Vn+]_,7—)
07(z,7)01(z + (n + 1)vpy1)

A _ A _ A 13
— "2z, ) 4 o (2, 7) ot plr(zr) (D)
+ " [¢(z,7) = {(z + (7 + 1)Vor1, 7) + ¢



Work in progress

Using the orbifold charts of Q/J(A,), it is possible to prove that
there is an unique bilinear form that transforms as a modular form

of weight 2 under the action of SL(Z),i.e under 7 — (‘?ZIZ
ds? (ersd)y ds® _ This bilinear form is:
cT+d)?”

ds® = ds§ +2ddr (14)



1 The unit vector field and Euler vector field are given in terms
of the invariants. Indeed:

= 15
¢ Opo ( )
0 0 0 0
= ot op—— 1
£ %0% * S018901 * ‘”&pz ety Opn (16)

2 The last step is just to prove that (Q/j([\,,),g, Leg,e, E) has
a flat pencil strcuture, and therefore, a Frobenius structure.
To prove it, note that (Q/J(A,), g, e, E) is isomorphic to
(H1,n-1,0,8, e, E), therefore, (/T (An), g, Leg, €, E) has a
flat pencil structure because (H1n-10,8, Leg, €, E) has it.



Thank you!



Formulas for g and 7

< 05,0p >= — Z resg— o )Czj)??b)( (p)dp) (17)

[A|<oo

(0a,0p) = — Z resd)\zo83(Log/\(p)dp)ab(Log)‘(P)dp) (18)

[A]<o0 dLOg)\(p)
(P)dp)0b(A(p)dp)Oc(A(p)dp)
(8 ab |)\Z<:OO r€Sd = 0 dA( )

(19)



Flat coordinates of 1 on Hurwitz space

Theorem (Dubrovin 1992)

The corresponding flat coordinates ta, A= 1, ..., N consist of the
five parts:

. —1 )
1t = resg, A"t pd\ i=0,..m, o =1,..,n;

2 pl=v.p[Jidp i=0,..m;
3 q' = respoidp  i=0,...m;
4 7= [ dp i=1,..g

5 s'= [ Adp i=l,..g



Formulas

1

z+2mw+2nw)

m2+4-n2£0
a_
dz
dLogo
dz =¢
n=((w,w,w)
1
©1(v|7r) —22 ) exp(im n+2)
O4(Z
J(Z,w,w/) = 2w 1(2“"7)

©1(0[7)

n
exp(ﬂ)

7)sin((2n + 1)wv

72

)

(2mw + 2nw')?

(20)
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