Differential geometry of orbit space of extended Jacobi group A_1

Guilherme Almeida

Advisor: Boris Dubrovin and Davide Guzzetti

SISSA, Trieste

September 15, 2020

Dubrovin-Frobenius Manifolds

A Dubrovin-Frobenius structure on the manifold M is the data (M, \bullet , <, > , e, E) satisfying:

- 1 η :=<,> is a flat pseudo-Riemannian metric;
- 2 is product of Frobenius algebra on T_mM which depends smoothly on m;
- 3 e is the unity vector field for the product \bullet and $\nabla e = 0$;
- 4 $\nabla_w c(x, y, z)$ is symmetric, where $c(x, y, z) := \langle x \bullet y, z \rangle$;
- 5 A linear vector field $E \in \Gamma(M)$ must be fixed on M, i.e. $\nabla \nabla E = 0$ such that:

$$L_E <,>= (2-d) <,>,$$

 $L_E \bullet = \bullet,$
 $L_E e = e.$

The function F(t), $t = (t^1, t^2, ..., t^n)$ is a solution of WDVV equation if its third derivatives

$$c_{\alpha\beta\gamma} = \frac{\partial^3 F}{\partial t^\alpha \partial t^\beta \partial t^\gamma} \tag{1}$$

satisfies the following conditions:

1

$$\eta_{\alpha\beta} = c_{1\alpha\beta}$$

is constant nondegenerate matrix.

2 The function

$$c_{lphaeta}^{\gamma}=\eta^{\gamma\delta}c_{lphaeta\delta}$$

is structure constant of assosciative algebra.

3 F(t) must be quasihomogeneous function

$$F(c^{d_1}t^1,..,c^{d_n}t^n) = c^{d_F}F(t^1,..,t^n)$$

for any nonzero c and for some numbers $d_1, ..., d_n, d_F$.

WDDV equation/Dubrovin Frobenius manifold correspondence

Theorem (Dubrovin 1992)

There is a one to one correspondence between a Dubrovin-Frobenius manifold and solutions of WDVV equation.

Main applications of Dubrovin Frobenius manifold theory

- 1 Gromov Witten theory,
- 2 Singularity theory,
- 3 Hamiltonian theory of integrable hierarchies.

Intersection form and Monodromy

The intersection form is the bilinear pairing in T^*M defined by:

$$(\omega_1,\omega_2)^* := \iota_E(\omega_1 \bullet \omega_2)$$

where $\omega_1, \omega_2 \in T^*M$ and \bullet is the induced Frobenius algebra product in the cotangent space. Let us denote by g^* the intersection form.

Intersection form and Monodromy

The intersection form g^* of a Dubrovin-Frobenius manifold is a flat almost everywhere nondegenerate metric. Let us define:

$$\Sigma = \{x \in M : det(g) = 0\}$$

Hence, the linear system of differential equations,

$$g^{\alpha\epsilon}\partial_{\epsilon}\partial_{\beta}x + \Gamma^{\alpha\epsilon}_{\beta}\partial_{\epsilon}x = 0,$$

denoted by Gauss-Manin connection, determining g^* -flat coordinates has poles , and consequently its solutions $x_a(t^1,..,t^n)$ are multivalued, where $(t^1,..,t^n)$ are flat coordinates of η . The analytical continuation of the solutions $x_a(t^1,..,t^n)$ has monodromy corresponding to loops around Σ . This gives rise to a monodromy representation of $\pi_1(M\setminus\Sigma)$, which is called Monodromy of the Dubrovin-Frobenius manifold.

Frobenius Manifolds as Orbit spaces

Theorem (Dubrovin Conjecture, Hertling 1999)

Any irreducible semisimple polynomial Dubrovin-Frobenius manifold with positive invariant degrees is isomorphic to the orbit space of a finite Coxeter group.

Main Point

Differential geometry of the orbit spaces of reflection groups and of their **extensions** \mapsto Dubrovin-Frobenius manifolds.

Example: W is Extended affine Weyl Group [Dubrovin, Zhang 1998] and for Jacobi groups [Bertola 1999].

Examples of Orbit spaces

Example 1:

For \mathbb{C}/A_1 :

- 1 Group action: $v_0 \mapsto -v_0$;
- 2 Invariant metric: $ds^2 = dv_0^2$
- 3 Invariant functions: $\mathbb{C}[v_0^2]$,
- 4 WDVV solution: $F(t_1) = \frac{t_1^3}{6}$.

Example 2:

For \mathbb{C}^2/\tilde{A}_1 :

- 1 Group action: $(v_0, v_2) \mapsto (-v_0 + m_0, v_2 + m_2)$;
- 2 Invariant metric: $ds^2 = dv_0^2 dv_2^2$
- 3 Invariant functions: $\mathbb{C}[e^{2\pi i v_2}\cos(2\pi i v_0), e^{2\pi i v_2}]$,
- 4 WDVV solution: $F(t_1, t_2) = \frac{t_1^2 t^2}{2} + e^{t^2}$.

Examples of Orbit spaces

Example 3:

For $\mathbb{C} \oplus \mathbb{C} \oplus \mathbb{H}/\mathcal{J}(A_1)$:

- 1 Group action:
- **2** $(\phi, v_0, \tau) \mapsto (\phi, -v_0, \tau)$
- 3 $(\phi, v_0, \tau) \mapsto (\phi nv_0 \frac{n^2\tau}{2}, v_0 + m + n\tau, \tau);$
- 4 $(\phi, v_0, \tau) \mapsto (\phi \frac{cv_0^2}{c\tau + d}, \frac{v_0}{c\tau + d}, \frac{a\tau + b}{c\tau + d});$
- 5 Invariant metric: $ds^2 = dv_0^2 + d\phi d\tau$
- 6 Invariant functions: $M_{\bullet}[\varphi_0, \varphi_2]$,
- 7 WDVV solution: $F(t_1, t_2, \tau) = \frac{t_1^2 \tau}{2} + \frac{t_1 t_2^2}{2} \frac{i \pi t_2^4}{48} E_2(\tau)$.

where $(m,n) \in \mathbb{Z}^2$, and $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z})$, and

$$\varphi_2 = e^{2\pi i \phi} \left(\frac{\theta_1(v_0, \tau)}{\theta_1'(0, \tau)} \right)^2,$$

$$\varphi_0 = \varphi_2 \wp(v_0, \tau).$$
(2)

Hurwitz space as Frobenius manifold

The Hurwitz space $H_{g,n_0,n_1,...,n_m}$ is the moduli space of curves C_g of genus g endowed with $N=m+1+n_0+...n_m$ branched covering $\lambda:C_g\mapsto \mathbb{C}P^1$ with m+1 branching points over ∞ in $\mathbb{C}P^1$ of branching degree $n_j+1,\,j=0,...,m$.

The set of branch points $\{\lambda_1,...,\lambda_n\}$ gives coordinates on the Hurwitz space $\hat{H}_{g;n_0,...,n_m}$.

To build a frobenius structure on $\hat{H}_{g;n_0,...,n_m}$ take $\partial_i := \frac{\partial}{\partial \lambda_i}$,

- 1 the multiplication as $\partial_i \bullet \partial_j = \delta_{ij} \partial_i$,
- 2 $e = \sum \partial_i$,
- 3 $E = \sum \lambda^i \partial_i$,
- 4 $\eta = \sum res_{P_i} \frac{\phi^2}{d\lambda} (d\lambda^i)^2$,

where ϕ are the primary differential.

Examples of Hurwitz spaces

Example 1:

For $H_{0,1}$:

1
$$\lambda(p, v_0) = p^2 - v_0^2$$
;

2
$$H_{0,1} \cong \mathbb{C}/A_1$$
.

Example 2:

For $H_{0,0,0}$:

1
$$\lambda(p,a,b)=p+\frac{a}{p-b}$$
;

$$H_{0,0,0}\cong \mathbb{C}^2/\tilde{A_1}$$
,

Example 3:

For $H_{1,1}$:

1
$$\lambda(v, v_0, \phi, \tau) = e^{2\pi i \phi} \frac{\theta_1(v - v_0|\tau)\theta_1(v + v_0|\tau)}{\theta_1^2(v|\tau)};$$

$$2 H_{1,1} \cong \mathbb{C}^3/\mathcal{J}(A_1),$$

Problem Setting

$$H_{1,1}\cong \mathbb{C}^3/\mathcal{J}(A_1)$$
 Example of Orbit space of Jacobi Group

$$H_{0,0,0}\cong \mathbb{C}^2/ ilde{A}_1$$

Example of Orbit space of
Extended Affine Weyl Group

Mixed of Extended Affine Weyl Group + Jacobi Group?

$$H_{1,0,0}\cong \mathbb{C}^4/W$$

Results

$$\begin{array}{cccc} H_{0,0,0} \cong \mathbb{C}^2/\tilde{A}_1 & \longleftarrow & H_{0,1} \cong \mathbb{C}/A_1 \\ & \downarrow & & \downarrow \\ H_{1,0,0} \cong \mathbb{C}^4/\mathcal{J}(\tilde{A}_1) & \longleftarrow & H_{1,1} \cong \mathbb{C}^3/\mathcal{J}(A_1) \end{array}$$

- $H_{0,1}$, g=0, 1 double pole.
- $H_{0,0,0}$, g=0, 2 simple pole.
- $H_{1,1}$, g=1, 1 double pole.
- $H_{1,0,0}$, g=1, 2 simple pole.

Action of $\mathcal{J}(\tilde{A}_1)$

For
$$(\mathbb{C} \oplus \mathbb{C}^2 \oplus \mathbb{H})/\mathcal{J}(\tilde{A}_1)$$

 $\mathcal{J}(\tilde{A}_1) \curvearrowright \mathbb{C} \oplus \mathbb{C}^2 \oplus \mathbb{H} \ni (\phi, v_0, v_2, \tau)$

$$w(\phi, v_0, v_2, \tau) = (\phi, -v_0, v_2, \tau)$$

$$t(\phi, v_0, v_2, \tau) = (\phi - 2 < n, v > + < n, n > \tau, v + m + n\tau, \tau)$$

$$\gamma(\phi, v_0, v_2, \tau) = (\phi - \frac{c < v, v >}{c\tau + d}, \frac{v}{c\tau + d}, \frac{a\tau + b}{c\tau + d})$$
(3)

where $v = (v_0, v_2), m, n \in \mathbb{Z}^2$, and

$$<(v_0, v_2), (v_0, v_2)>=v_0^2-v_2^2$$
 (4)

Jacobi forms of $\mathcal{J}(\tilde{A_1})$

The weak \tilde{A}_1 -invariant Jacobi forms of weight k, order l, and index m are functions on

$$\Omega=\mathbb{C}\oplus\mathbb{C}^2\oplus\mathbb{H}
ightarrow(\phi,v_0,v_2, au)=(\phi,v, au)$$
 which satisfy

$$\varphi(w(\phi, v, \tau)) = \varphi(\phi, v, \tau), \quad A_1 \text{ invariant condition}$$

$$\varphi(t(\phi, v, \tau)) = \varphi(\phi, v, \tau)$$

$$\varphi(\gamma(\phi, v, \tau)) = (c\tau + d)^{-k} \varphi(\phi, v, \tau)$$

$$E\varphi(\phi, v, \tau) := -\frac{1}{2\pi i} \frac{\partial}{\partial \phi} \varphi(\phi, v_0, v_2, \tau) = m\varphi(\phi, v_0, v_2, \tau)$$
(5)

Chevalley theorem, and generating function of the invariants

Hurwitz space/ Orbit space correspondence

$$[(\phi, v_0, v_2, \tau)] \leftrightarrow e^{2\pi i \phi} \frac{\theta_1(v - v_0 | \tau) \theta_1(v + v_0 | \tau)}{\theta_1(v - v_2 | \tau) \theta_1(v + v_2 | \tau)}$$

$$= \varphi_0 + \varphi_1[\zeta(v - v_2 | \tau) - \zeta(v + v_2 | \tau) + 2\zeta(v_2 | \tau)]$$
(6)

Theorem 1

The trigraded algebra of Jacobi forms $J_{\bullet,\bullet,\bullet}^{\mathcal{J}(\tilde{A}_1)}=\bigoplus_{k,l,m}J_{k,l,m}^{\tilde{A}_1}$ is freely generated by 2 fundamental Jacobi forms $(\varphi_0^{\tilde{A}_1},\varphi_1^{\tilde{A}_1})$ over the graded ring $E_{\bullet,\bullet}$

$$J_{\bullet,\bullet,\bullet}^{\mathcal{J}(\tilde{A}_1)} = E_{\bullet,\bullet}[\varphi_0^{\tilde{A}_1}, \varphi_1^{\tilde{A}_1}] \tag{7}$$

where $E_{\bullet,\bullet} := J_{\bullet,\bullet,0}$

Dubrovin Frobenius structure on the Orbit space of $\mathcal{J}(\tilde{\mathcal{A}}_1)$

The natural candidate to be the intersection form of $\mathcal{J}(\tilde{A}_1)$ is:

$$ds^2 = 2dv_0^2 - 2dv_2^2 + 2d\phi d\tau \tag{8}$$

Lemma 2

The metric

$$ds^2 = 2dv_0^2 - 2dv_2^2 + 2d\phi d\tau \tag{9}$$

is invariant under the action of A_1 , and translations. Moreover, the $SL_2(\mathbb{Z})$ transformations determine a conformal transformation of the metric ds^2 , i.e.

$$2dv_0^2 - 2dv_2^2 + 2d\phi d\tau \mapsto \frac{2dv_0^2 - 2dv_2^2 + 2d\phi d\tau}{(c\tau + d)^2}$$
 (10)

Dubrovin Frobenius structure on the Orbit space of $\mathcal{J}(\tilde{\mathcal{A}}_1)$

For $H_{1,0,0}$:

$$e = \frac{\partial}{\partial \varphi_0}$$
;

3
$$E = \varphi_0 \frac{\partial}{\partial \varphi_0} + \varphi_1 \frac{\partial}{\partial \varphi_1}$$
;

4
$$L_{e}g^{*} = \eta^{*}$$

5
$$(t^1, t^2, t^3, t^4) = (\varphi_0 + 2\varphi_1 \frac{\theta'_1(v_2|\tau)}{\theta_1(v_2|\tau)}, \varphi_1, v_2, \tau)$$

$$6 F^{\alpha\beta} = \eta^{\alpha\mu}\eta^{\beta\lambda} \frac{\partial^2 F}{\partial t^{\mu}\partial t^{\lambda}} = \frac{g^{\alpha\beta}}{\deg(g^{\alpha\beta})}$$

7
$$F(t^1, t^2, t^3, t^4) = \frac{i}{4\pi}(t^1)^2 t^4 - 2t^1 t^2 t^3 - (t^2)^2 \log(t^2 \frac{\theta_1'(0, t^4)}{\theta_1(2t^3, t^4)})$$

Generalization

- $H_{0,n}$, g=0, 1 pole of order n;
- $H_{0,n-1,0}$,g=0, 1 simple pole, 1 pole of order n-1;
- $H_{1,n}$, g=1, 1 pole of order n;
- $H_{1,n-1,0}$, g=1, 1 simple pole, 1 pole of order n-1.

Action of $\mathcal{J}(\tilde{A}_n)$

I will consider the A_n in the following extended space

$$L^{\tilde{A}_n} = \{(z_0, z_1, ..., z_n, z_{n+1}) \in \mathbb{Z}^{n+2} : \sum_{i=0}^n v_i = 0\}.$$

The action of A_n on $L^{\tilde{A}_n}$ is given by

$$w(z_0, z_1, z_2, ..., z_{n-1}, z_n, z_{n+1}) = (z_{i_0}, z_{i_1}, z_{i_2}, ..., z_{i_{n-1}}, z_{i_n}, z_{n+1})$$

permutations in the first n+1 variables. Let the quadratic form <,> given by

$$\langle v, v \rangle = = v^{T} \begin{pmatrix} 2 & 1 & 1 & \dots 1 & 1 & 0 \\ 1 & 2 & 1 & \dots 1 & 1 & 0 \\ 1 & 1 & 2 & \dots 1 & 1 & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots & \ddots & 0 \\ \vdots & \vdots & \vdots & \ddots & \ddots & \ddots & 0 \\ 1 & 1 & 1 & \dots 2 & 1 & 0 \\ 1 & 1 & 1 & \dots 2 & 1 & 0 \\ 0 & 0 & 0 & \dots & 0 & \neg (n+1) \neq \neg \land \exists \vdash \neg \exists \vdash \neg \land \exists \vdash \neg \exists$$

Action of $\mathcal{J}(\tilde{A}_n)$

Consider the action $\mathcal{J}(\tilde{A}_n) \curvearrowright \Omega = \mathbb{C} \oplus \mathbb{C}^{n+1} \oplus \mathbb{H}$

Definition 3 (Jacobi group of \tilde{A}_n)

The "Jacobi group of \tilde{A}_n " is represented on the Tits cone $\Omega = \mathbb{C} \oplus \mathbb{C}^{n+1} \oplus \mathbb{H}$ by the definition of the action $w \in A_n$, $t = (\lambda, \mu) \in (\mathbb{Z} + \tau \mathbb{Z})^{n+1}$, $\gamma \in SL_2(\mathbb{Z})$ as :

1
$$w(\phi, v, \tau) = (\phi, wv, \tau)$$

2
$$t(\phi, \mathbf{v}, \tau) = (\phi - \langle \mu, \mathbf{v} \rangle - \frac{1}{2} \langle \mu, \mu \rangle \tau, \mathbf{v} + \lambda + \tau \mu, \tau)$$

3
$$\gamma(\phi, v, \tau) = (\phi - \frac{c}{2(c\tau + d)} < v, v > \tau, \frac{v}{c\tau + d}, \frac{a\tau + b}{c\tau + d})$$

Jacobi forms of \tilde{A}_n

The weak \tilde{A}_n -invariant Jacobi forms of weight k, order l, and index m are functions on

$$\Omega=\mathbb{C}\oplus\mathbb{C}^{n+2}\oplus\mathbb{H}
ightarrow(\phi,v',v_{n+1}, au)=(\phi,v, au)$$
 which satisfy

$$\varphi(w(\phi, v, \tau)) = \varphi(\phi, v, \tau), \quad A_n \text{ invariant condition}
\varphi(t(\phi, v, \tau)) = \varphi(\phi, v, \tau)
\varphi(\gamma(\phi, v, \tau)) = (c\tau + d)^{-k} \varphi(\phi, v, \tau)
E\varphi(\phi, v, \tau) := -\frac{1}{2\pi i} \frac{\partial}{\partial \phi} \varphi(\phi, v, \tau) = m\varphi(\phi, v, \tau)$$
(11)

Chevalley theorem

Theorem 4

The trigraded algebra of Jacobi forms $J_{\bullet,\bullet,\bullet}^{\mathcal{J}(\tilde{A}_n)} = \bigoplus_{k,l,m} J_{k,l,m}^{\tilde{A}_n}$ is freely generated by n+1 fundamental Jacobi forms $(\varphi_0^{\tilde{A}_n}, \varphi_1^{\tilde{A}_n}, , \varphi_2^{\tilde{A}_n}, ..., \varphi_n^{\tilde{A}_n})$ over the graded ring $E_{\bullet,\bullet}$

$$J_{\bullet,\bullet,\bullet}^{\mathcal{J}(\tilde{A}_n)} = E_{\bullet,\bullet}[\varphi_0^{\tilde{A}_n}, \varphi_1^{\tilde{A}_n}, , \varphi_2^{\tilde{A}_n}, ..., \varphi_n^{\tilde{A}_n}]$$
(12)

Theorem 5

The functions $(\varphi_0^{\tilde{A}_n}, \varphi_1^{\tilde{A}_n}, ..., \varphi_n^{\tilde{A}_n})$ obtained by the formula

$$\lambda^{\tilde{A}_{n}} = e^{2\pi i \phi_{1}} \frac{\prod_{i=0}^{n} \theta_{1}(z - v_{i} + v_{n+1}, \tau)}{\theta_{1}^{n}(z, \tau)\theta_{1}(z + (n+1)v_{n+1})}$$

$$= \varphi_{n}^{\tilde{A}_{n}} \wp^{n-2}(z, \tau) + \varphi_{n-1}^{\tilde{A}_{n}} \wp^{n-3}(z, \tau) + \dots + \varphi_{2}^{\tilde{A}_{n}} \wp(z, \tau) + \varphi_{1}^{\tilde{A}_{n}} [\zeta(z, \tau) - \zeta(z + (n+1)v_{n+1}, \tau) + \varphi_{0}^{\tilde{A}_{n}}]$$
(13)

Work in progress

Using the orbifold charts of $\Omega/\mathcal{J}(\tilde{A}_n)$, it is possible to prove that there is an unique bilinear form that transforms as a modular form of weight 2 under the action of $SL_2(\mathbb{Z})$, i.e under $\tau\mapsto \frac{a\tau+b}{c\tau+d}$, $ds^2\mapsto \frac{ds^2}{(c\tau+d)^2}$. This bilinear form is:

$$ds^2 = ds_{\tilde{A}_n}^2 + 2d\tilde{\phi}d\tau \tag{14}$$

1 The unit vector field and Euler vector field are given in terms of the invariants. Indeed:

$$e = \frac{\partial}{\partial \varphi_0} \tag{15}$$

$$E = \varphi_0 \frac{\partial}{\partial \varphi_0} + \varphi_1 \frac{\partial}{\partial \varphi_1} + \varphi_2 \frac{\partial}{\partial \varphi_2} + \dots + \varphi_n \frac{\partial}{\partial \varphi_n}$$
 (16)

2 The last step is just to prove that $(\Omega/\mathcal{J}(\tilde{A}_n), g, L_e g, e, E)$ has a flat pencil structure, and therefore, a Frobenius structure. To prove it, note that $(\Omega/\mathcal{J}(\tilde{A}_n), g, e, E)$ is isomorphic to $(H_{1,n-1,0}, g, e, E)$, therefore, $(\Omega/\mathcal{J}(\tilde{A}_n), g, L_e g, e, E)$ has a flat pencil structure because $(H_{1,n-1,0}, g, L_e g, e, E)$ has it.

Thank you!

Formulas for g and η

$$<\partial_{a},\partial_{b}> = -\sum_{|\lambda|<\infty} res_{d\lambda=0} \frac{\partial_{a}(\lambda(p)dp)\partial_{b}(\lambda(p)dp)}{d\lambda(p)}$$
 (17)

$$(\partial_{a}, \partial_{b}) = -\sum_{|\lambda| < \infty} res_{d\lambda = 0} \frac{\partial_{a}(Log\lambda(p)dp)\partial_{b}(Log\lambda(p)dp)}{dLog\lambda(p)}$$
(18)

$$c(\partial_{a}, \partial_{b}, \partial_{c}) = -\sum_{|\lambda| < \infty} res_{d\lambda = 0} \frac{\partial_{a}(\lambda(p)dp)\partial_{b}(\lambda(p)dp)\partial_{c}(\lambda(p)dp)}{d\lambda(p)}$$
(19)

Flat coordinates of η on Hurwitz space

Theorem (Dubrovin 1992)

The corresponding flat coordinates t_A , A = 1, ..., N consist of the five parts:

1
$$t^{i;\alpha} = res_{\infty_i} \lambda^{\frac{-1}{n_i+1}} pd\lambda$$
 $i=0,...m$, $\alpha=1,...,n_i$;

2
$$p^{i} = v.p \int_{\infty 0}^{\infty_{i}} dp$$
 $i=0,...m;$

$$3 q^i = res_{\infty i} \lambda dp \quad i=0,...m;$$

4
$$\tau^{i} = \int_{bi} dp$$
 $i=1,...g;$

5
$$s^i = \int_{ai} \lambda dp$$
 $i=1,...g$.

Formulas

$$\wp(z,\omega,\omega') = \frac{1}{z^2} + \sum_{m^2 + n^2 \neq 0} \frac{1}{(z + 2m\omega + 2n\omega')^2} + \frac{1}{(2m\omega + 2n\omega')^2}$$
(20)

$$\frac{d\zeta}{dz} = -\wp \tag{21}$$

$$\frac{dLog\sigma}{dz} = \zeta \tag{22}$$

$$\eta = \zeta(\omega, \omega, \omega') \tag{23}$$

$$\Theta_1(v|\tau) = 2\sum_{n=0}^{\infty} (-1)^n \exp(i\pi(n+\frac{1}{2})^2\tau) \sin((2n+1)\pi v)$$
 (24)

$$\sigma(z,\omega,\omega') = 2\omega \frac{\Theta_1(\frac{z}{2\omega}|\tau)}{\Theta_1'(0|\tau)} exp(\frac{\eta z^2}{2\omega})$$
 (25)