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The Bernoulli Free Boundary Problem

Let Ao, Ay, A_ > 0 be given and for D C RY let us consider
J(u, D) = / VUl + M [{u> 0} + A_[{u < 0} + Aol{u = 0}].
D

and the minimization problem

(TPBP) min J(u, D).

ulap=g

where g is a given function.
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The Bernoulli Free Boundary Problem: some remarks

A few simple properties.

- Minimizers are easily seen to exist.
- Uniqueness in general fails.

- A minimizers would like to be harmonic where it is # 0, but the
functional might penalize to be always non zero and/or might impose a
“balance” between the negative and positive phase
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The Bernoulli Free Boundary Problem: some remarks

When Ao, A_ = 0 and g > 0, the problem reduces to the one phase free
boundary problem:

u:rglgzo J(u, D)

(OPBP) R
J(u,D) = /D IVul? + My [{u > 0}
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@ These problems have been introduced in the 80's by Alt-Caffarelli
(OPBP) and by Alt-Caffarelli-Friedmann (TPBP) motivated by some
problems in flows with jets and cavities.
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@ These problems have been introduced in the 80's by Alt-Caffarelli
(OPBP) and by Alt-Caffarelli-Friedmann (TPBP) motivated by some
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Since then they have been the model problems for a huge class of free
boundary problems.
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@ These problems have been introduced in the 80's by Alt-Caffarelli
(OPBP) and by Alt-Caffarelli-Friedmann (TPBP) motivated by some
problems in flows with jets and cavities.

Since then they have been the model problems for a huge class of free
boundary problems.

@ More recently these types of problems turned out to have applications
in the study of shape optimization problems.
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Shape Optimization Problems

Let us consider the following minimization problem:
in C D) —
min Cap(U, D) — AU
where
Cap(U,D) = min{/ IVul> ue Wg?(D),u=1on U}
D

is the Newtonian capacity of U relative to D.

G. De Philippis (CIMS): Two phase Bernoulli problem



Shape Optimization Problems

Let us consider the following minimization problem:

in C D) —
min Cap(U, D) — AU
where
Cap(U,D) = min{/ IVul> ue Wg?(D),u=1on U}
D
is the Newtonian capacity of U relative to D.The problem is equivalent to

min / IVv|]? = N{v =1}
)JD

veWy (D

= min / IVv|? + \{0 < v <1} = \D|.
vew,2(D) Jp
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Shape Optimization Problems

Let us consider the following minimization problem:

in C D) —
min Cap(U, D) — AU
where
Cap(U,D) = min{/ IVul> ue Wg?(D),u=1on U}
D
is the Newtonian capacity of U relative to D.The problem is equivalent to

min / IVv|]? = N{v =1}
)JD

veWy (D
= min / IVv|? + \{0 < v <1} = \D|.
vew,2(D) Jp

u =1 — v solves a one phase problem.
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Shape Optimization Problems

Let us consider the following minimal partition problem:

mln{Z)\ )+ mi|D;| D:c D, D,-ﬂDj:Q)ifi;éj}.

Here (D) is the first eigenvalue of the Dirichlet Laplacian on D;, i.e.

A(D;) = {fo; ue W01'2(D,-)}.
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Shape Optimization Problems

How minimizers look like?
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Shape Optimization Problems

How minimizers look like?

One can show (Spolaor-Trey-Velichkov):
- There are no triple points 9D; N 9D; N ODy = 0.

- If uj, uj are the first (positive) eigenfunctions of D;, D; then
v = uj — uj is a (local) minimizer of

/|vV|2 + mil{v > 0} + m;|{v < 0}| + H.O.T.
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Back to the Bernoulli free boundary problem

We are interested in the regularity of u and of the free boundary:

r=rtur-
M =o{u>0} ™ =0{u<0}.
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Known results

- u is Lipschitz, Alt-Caffarelli (one phase), Alt-Caffarelli-Friedmann
(two-phase).

- If uis a solution of the one-phase problem, then [T is smooth outside
a (relatively) closed set ¥ with dimy < d — 5 (Alt-Caffarelli, Weiss,
Jerison-Savin, a recent new proof from De Silva).

- There is a minimizer in dimension d = 7 with a point singularity (De
Silva-Jerison).

- If u is a solution of the two phase problem and A\g > min{A\y, A\_},
then It =T~ =T is smooth. (Alt-Caffarelli-Friedmann, Caffarelli, De
Silva-Ferrari-Salsa).
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The case A\g > min{ A, A\_}

If A_ < Ag, let v be the harmonic function which is equal to v~ on
O(D\ {u>0}). Then

w=u" —v
satisfies
J(w, D) < J(u, D).
since
A_{w < 0} < A_[{u < 0}] + Ao|{u = 0}]
and

YA
Y

N
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The case A\g < min{\, A_}

When A\g < min{A;, A_} the three phases may co-exist and branch points
might appear.

u=20

Y

N



The case A\g < min{\, A_}

When A\g < min{A;, A_} the three phases may co-exist and branch points
might appear.

u=20

Branch points 4
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Main result

Theorem D.-Spolaor-Velichkov '19 (Spolaor-Velichkov'16 for d = 2)

Let u be a local minimizer of J. Let us define
M =0{+u>0} Tpp=T"NT" T[5,=I"\Tpp,

Then

- T* are CY® manifolds outside relatively closed set ¥+ with
dimg(X*) < d —5.
- Tpp N Xt = 0. In particular T pp is a closed subset of a C* graph.

v

Iop
u>0 u<O0

()
ez

u=20
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Steps in the proof

As it is customary in Geometric Measure Theory, the above result is based
on two steps:

- Blow up analysis.

- e-regularity theorem.
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Optimality conditions

Before detailing the proof, let us start by deriving the optimality conditions
for minimizers.
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Optimality conditions

Before detailing the proof, let us start by deriving the optimality conditions
for minimizers.

The first (trivial) one, one is that u is harmonic where 7 0 (which is open)

Au=0 on {u # 0}
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Optimality conditions

Before detailing the proof, let us start by deriving the optimality conditions
for minimizers.
The first (trivial) one, one is that u is harmonic where 7 0 (which is open)

Au=0 on {u # 0}

What are the optimality conditions on the free boundary?
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Optimality conditions

Before detailing the proof, let us start by deriving the optimality conditions
for minimizers.

The first (trivial) one, one is that u is harmonic where 7 0 (which is open)

Au=0 on {u # 0}
What are the optimality conditions on the free boundary?

They can be formally obtained by performing inner variations

d

E E:OJ(UE) =0 Ue(X) = U(X + €X(X)) X e Cc(D;Rd)
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Optimality condition

Let us assume that v is one dimensional:
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Optimality condition

Let us assume that v is one dimensional:
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Optimality condition

Let us assume that v is one dimensional:

u=axy — Bx_ Us = 7 (x — &)y — Bx_
arF----- ‘ afF----- ‘
-1 =
1 £ 1
v ] _ﬁ v ] _5
a2
0< J(u) —J(u) = —a? —(A\p — Xo)e

19

=a% — (A\y — Xo)e +o(e)
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Optimality condition

Moreover
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Optimality condition

Moreover

0 < J(u)— J(u) = (a® = %) — (A\y — A )e +o(e)
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Optimality conditions

We get the following problem

Au=0 on {u # 0}
IVuE2 =X — Ao on Iy
IVut]2—|Vu=|?=XA —A_ onTlpp
IVuE2 > Mg — Xo on I+
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Blow up analysis

The first step consists in understanding which is the asymptotic behavior of
the function and of the free boundary.
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Blow up analysis

The first step consists in understanding which is the asymptotic behavior of
the function and of the free boundary.
Let xp € ' and r > 0. Let

u(xo + rx)

ar(x) = D (u(x0) = 0).

Then {uy,.r}r>0 is pre-compact in C% and every limit point is
one-homogeneous (Weiss Monotonicity Formula).
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Blow up analysis

The first step consists in understanding which is the asymptotic behavior of
the function and of the free boundary.
Let xp € ' and r > 0. Let

o) = P (4 (50) = )

Then {uy,.r}r>0 is pre-compact in C% and every limit point is
one-homogeneous (Weiss Monotonicity Formula).

If xo € I is regular it is easy to see that there is a unique limit v,, and
. +
/Ay — )\o(X . exo)i if xg € FOP

Vg = § g (X e)+ —a—(x-ey)- if xo € pp

ar > /A —Xo, af —a? =Xy — A

where e, is the normal to I at xg.
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Regular points

We are going to call a point regular if {ux, .} admits one limit point of the
above form (for some e).
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Regular points

We are going to call a point regular if {ux, .} admits one limit point of the
above form (for some e).

© One can prove that the complement of regular point has small
dimension (Federer dimension reduction) and it does not intersect the
two phase free boundary (these are ¥¥).
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Regular points

We are going to call a point regular if {ux, .} admits one limit point of the
above form (for some e).

© One can prove that the complement of regular point has small
dimension (Federer dimension reduction) and it does not intersect the
two phase free boundary (these are ¥¥).

@ The difficult part consists in proving that if xq is regular the I has the
desired structure in a neighborhood, in particular all blow-up coincide.
(e-regularity theory).
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Regular points

We are going to call a point regular if {ux, .} admits one limit point of the
above form (for some e).

© One can prove that the complement of regular point has small
dimension (Federer dimension reduction) and it does not intersect the
two phase free boundary (these are ¥¥).

@ The difficult part consists in proving that if xq is regular the I has the
desired structure in a neighborhood, in particular all blow-up coincide.
(e-regularity theory).

© The e regularity theory was known at one phase points (Alt-Caffarelli,
De Silva) and at points which are at the interior of the two phase free
boundary (Caffarelli, De Silva-Ferrari-Salsa)

@ The new step is to understand what happens at branch points and to
put everything together.
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The e-regularity theorem at one phase point

Let us show De Silva's proof at one-phase points (A = 1,A_, Ao =0,

e=ei).
Assume that in B;

U+ ~ (X1)+ U+ = X1+€EVe on {U > 0} g = ”U+_X1||Loo({u>0}nBl)

What are the equation satisfied by v.?
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The e-regularity theorem at one phase point

Let us show De Silva's proof at one-phase points (A = 1,A_, Ao =0,
e=ej).
Assume that in B;

ut =xyt+ev. on {u>0} €= ”U+_X1||Loo({u>0}mBl)

ut & (x1) 4
What are the equation satisfied by v.?
Av.=0 on{u>0}~B;.

moreover

1=|Vut2=1+¢ediv. + o(e) on 0{u > 0}

Ove =0 on 0{u >0} =~ {x3 =0}
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The e-regularity theorem at one phase point

In other words v, is almost a solution of a Neumann problem

(NP) {AV:O on Bff

Oiv=0 on {X1 :0}ﬂ81
The C? regularity theory for the (NP) allows to show the existence of
ST t1se=e +eVv(0)+O0(?)  (e1 L Vv(0))
such that for p,§ < 1

20 lut

[u™ = (x - €)ylloo(qus01nB,) < P x1)+ || Lo ({u>03nBy)-
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What happens at branch points?

Assume Ay =1, A\g = 0. At branch points

um () — () +evh e
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What happens at branch points?

Assume Ay =1, A\g = 0. At branch points

um () — () +evh e

The functions v are almost solutions of a thin two membrane problem

(this was first observed by Andersson-Shahgholian-Weiss).

Au=0 on {u # 0} Avt =0 on B

Vut? =1 on I3, N ovt =0 on {vF v }n{x =0}
|[Vur?=|Vu=|?> onTlpp vt =01vc on{vt =v=}Nn{x =0}
Vu£]?2 >1 on [+ ovE >0 on {x; = 0}

1 :
CY2 regularity for the two membrane problem would to conclude (same
caveat).
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The e-regularity theorem at one phase point: compactness

The key point to make the above proofs rigorous is compactness of vgc.
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The e-regularity theorem at one phase point: compactness

The key point to make the above proofs rigorous is compactness of vgc.

A good topology is C° (solutions will be intended in the viscosity sense)
which is the topology where the sequences are bounded. Some a-priori

regularity theory is needed (De Silva: adapt Savin's “Partial Harnack
inequality”).
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The e-regularity theorem at one phase point: compactness

The key point to make the above proofs rigorous is compactness of vgc.

A good topology is C° (solutions will be intended in the viscosity sense)
which is the topology where the sequences are bounded. Some a-priori

regularity theory is needed (De Silva: adapt Savin's “Partial Harnack
inequality”).

Furthermore the functions are defined on varying domains
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Compactness at branch points

In order to prove compactness one does not only to deal with the case where
um (x1)y — (x1)- but also ur (x1+01)+ — (x1+01)=

with 81, 9> < 1. This is the behavior close to branch points.

Indeed this is the local picture close a branch point:

S 2>

)
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THANK YOU
FOR YOUR ATTENTION!
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