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The Bernoulli Free Boundary Problem

Let λ0,λ+,λ− ≥ 0 be given and for D ⊂ Rd let us consider

J(u,D) =

∫
D
|∇u|2 + λ+|{u > 0}|+ λ−|{u < 0}|+ λ0|{u = 0}|.

and the minimization problem

(TPBP) min
u|∂D=g

J(u,D).

where g is a given function.
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The Bernoulli Free Boundary Problem: some remarks

A few simple properties.

- Minimizers are easily seen to exist.

- Uniqueness in general fails.

- A minimizers would like to be harmonic where it is 6= 0, but the
functional might penalize to be always non zero and/or might impose a
“balance” between the negative and positive phase
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The Bernoulli Free Boundary Problem: some remarks

When λ0,λ− = 0 and g ≥ 0, the problem reduces to the one phase free
boundary problem:

(OPBP)

min
u=g , u≥0

Ĵ(u,D)

Ĵ(u,D) :=

∫
D
|∇u|2 + λ+|{u > 0}|
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Motivations

These problems have been introduced in the 80’s by Alt-Caffarelli
(OPBP) and by Alt-Caffarelli-Friedmann (TPBP) motivated by some
problems in flows with jets and cavities.

Since then they have been the model problems for a huge class of free
boundary problems.

More recently these types of problems turned out to have applications
in the study of shape optimization problems.
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Shape Optimization Problems

Let us consider the following minimization problem:

min
U⊂D

Cap(U,D)− λ|U|

where

Cap(U,D) = min
{∫

D
|∇u|2 u ∈W 1,2

0 (D), u = 1 on U
}

is the Newtonian capacity of U relative to D.

The problem is equivalent to

min
v∈W 1,2

0 (D)

∫
D
|∇v |2 − λ|{v = 1}|

= min
v∈W 1,2

0 (D)

∫
D
|∇v |2 + λ|{0 < v < 1}| − λ|D|.

u = 1− v solves a one phase problem.
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Shape Optimization Problems

Let us consider the following minimal partition problem:

min
{∑

i

λ(Di ) + mi |Di | Di ⊂ D, Di ∩ Dj = ∅ if i 6= j
}

.

Here λ(Di ) is the first eigenvalue of the Dirichlet Laplacian on Di , i.e.

λ(Di ) = inf

{∫
Di
|∇u|2∫
Di

u2
: u ∈W 1,2

0 (Di )

}
.
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Shape Optimization Problems

How minimizers look like?

One can show (Spolaor-Trey-Velichkov):

- There are no triple points ∂Di ∩ ∂Dj ∩ ∂Dk = ∅.
- If ui , uj are the first (positive) eigenfunctions of Di ,Dj then
v = ui − uj is a (local) minimizer of∫

|∇v |2 + mi |{v > 0}|+ mj |{v < 0}|+ H.O.T.
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Back to the Bernoulli free boundary problem

We are interested in the regularity of u and of the free boundary:

Γ = Γ+ ∪ Γ−

Γ+ = ∂{u > 0} Γ− = ∂{u < 0}.

u > 0
u < 0

u = 0

u = 0

Γ+

Γ−
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Known results

- u is Lipschitz, Alt-Caffarelli (one phase), Alt-Caffarelli-Friedmann
(two-phase).

- If u is a solution of the one-phase problem, then Γ+ is smooth outside
a (relatively) closed set Σ+ with dimH ≤ d − 5 (Alt-Caffarelli, Weiss,
Jerison-Savin, a recent new proof from De Silva).

- There is a minimizer in dimension d = 7 with a point singularity (De
Silva-Jerison).

- If u is a solution of the two phase problem and λ0 ≥ min{λ+,λ−},
then Γ+ = Γ− = Γ is smooth. (Alt-Caffarelli-Friedmann, Caffarelli, De
Silva-Ferrari-Salsa).
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The case λ0 ≥ min{λ+,λ−}
If λ− ≤ λ0, let v be the harmonic function which is equal to u− on
∂(D \ {u > 0}). Then

w = u+ − v

satisfies
J(w ,D) ≤ J(u,D).

since
λ−|{w < 0}| ≤ λ−|{u < 0}|+ λ0|{u = 0}|

and ∫
|∇v |2 ≤

∫
|∇u−|2

u > 0 u < 0
u > 0 w < 0
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The case λ0 < min{λ+,λ−}

When λ0 < min{λ+,λ−} the three phases may co-exist and branch points
might appear.

u > 0
u < 0

u = 0

u = 0

Branch points

P

Q
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Main result

Theorem D.-Spolaor-Velichkov ’19 (Spolaor-Velichkov’16 for d = 2)

Let u be a local minimizer of J. Let us define

Γ± = ∂{±u > 0} ΓDP = Γ+ ∩ Γ− Γ±OP = Γ± \ ΓDP,

Then

- Γ± are C 1,α manifolds outside relatively closed set Σ± with
dimH(Σ±) ≤ d − 5.

- ΓDP ∩ Σ± = ∅. In particular ΓDP is a closed subset of a C 1,α graph.

u > 0 u < 0
ΓDP

Γ+
OP

Γ−
OP

u = 0
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Steps in the proof

As it is customary in Geometric Measure Theory, the above result is based
on two steps:

- Blow up analysis.

- ε-regularity theorem.
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Optimality conditions

Before detailing the proof, let us start by deriving the optimality conditions
for minimizers.

The first (trivial) one, one is that u is harmonic where 6= 0 (which is open)

∆u = 0 on {u 6= 0}

What are the optimality conditions on the free boundary?

They can be formally obtained by performing inner variations

d

dε

∣∣∣
ε=0

J(uε) = 0 uε(x) = u(x + εX (x)) X ∈ Cc(D;Rd)
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Optimality condition

Let us assume that u is one dimensional:

1

−1

α

−β

u = αx+ − βx−

1

−1

α

−β

ε

uε =
α

1− ε
(x − ε)+ − βx−

0 ≤ J(uε)− J(u) =
α2

(1− ε)
− α2 − (λ+ − λ0)ε

= α2ε− (λ+ − λ0)ε+ o(ε)
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Optimality condition

Moreover

1
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α
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Optimality conditions

We get the following problem
∆u = 0 on {u 6= 0}
|∇u±|2 = λ± − λ0 on Γ±OP

|∇u+|2 − |∇u−|2 = λ+ − λ− on ΓDP

|∇u±|2 ≥ λ± − λ0 on Γ±
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Blow up analysis

The first step consists in understanding which is the asymptotic behavior of
the function and of the free boundary.

Let x0 ∈ Γ and r > 0. Let

ux0,r (x) =
u(x0 + rx)

r
(u(x0) = 0).

Then {ux0,r}r>0 is pre-compact in C 0 and every limit point is
one-homogeneous (Weiss Monotonicity Formula).

If x0 ∈ Γ is regular it is easy to see that there is a unique limit vx0 and

vx0 =


±
√
λ± − λ0(x · ex0)± if x0 ∈ Γ±OP

α+(x · ex0)+ − α−(x · ex0)− if x0 ∈ ΓDP

α± ≥
√
λ± − λ0, α2

+ − α2
− = λ+ − λ−

where ex0 is the normal to Γ at x0.
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Regular points

We are going to call a point regular if {ux0,r} admits one limit point of the
above form (for some e).

1 One can prove that the complement of regular point has small
dimension (Federer dimension reduction) and it does not intersect the
two phase free boundary (these are Σ±).

2 The difficult part consists in proving that if x0 is regular the Γ has the
desired structure in a neighborhood, in particular all blow-up coincide.
(ε-regularity theory).

3 The ε regularity theory was known at one phase points (Alt-Caffarelli,
De Silva) and at points which are at the interior of the two phase free
boundary (Caffarelli, De Silva-Ferrari-Salsa)

4 The new step is to understand what happens at branch points and to
put everything together.
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The ε-regularity theorem at one phase point

Let us show De Silva’s proof at one-phase points (λ+ = 1,λ−,λ0 = 0,
e = e1).
Assume that in B1

u+ ≈ (x1)+ u+ = x1+εvε on {u > 0} ε := ‖u+−x1‖L∞({u>0}∩B1)

What are the equation satisfied by vε?

∆vε = 0 on {u > 0} ≈ B+
1 .

moreover

1 = |∇u+|2 = 1 + ε∂1vε + o(ε) on ∂{u > 0}

i.e.
∂1vε ≈ 0 on ∂{u > 0} ≈ {x1 = 0}
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The ε-regularity theorem at one phase point

In other words vε is almost a solution of a Neumann problem

(NP)

{
∆v = 0 on B+

1

∂1v = 0 on {x1 = 0} ∩ B1

The C 2 regularity theory for the (NP) allows to show the existence of

Sd−1 3 e = e1 + ε∇v(0) + O(ε2)
(
e1 ⊥ ∇v(0)

)
such that for ρ, δ � 1

‖u+ − (x · e)+‖L∞({u>0}∩Bρ) ≤ ρ
2−δ‖u+ − (x1)+‖L∞({u>0}∩B1).
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What happens at branch points?

Assume λ± = 1, λ0 = 0. At branch points

u ≈ (x1)+ − (x1)− + εv+ε + εv−ε

The functions v±ε are almost solutions of a thin two membrane problem
(this was first observed by Andersson-Shahgholian-Weiss).


∆u = 0 on {u 6= 0}
|∇u±|2 = 1 on Γ±

OP

|∇u+|2 = |∇u−|2 on ΓDP

|∇u±|2 ≥ 1 on Γ±

⇒


∆v± = 0 on B±

1

∂1v
± = 0 on {v+ 6= v−} ∩ {x1 = 0}

∂1v
+ = ∂1v

− on {v+ = v−} ∩ {x1 = 0}
∂1v

± ≥ 0 on {x1 = 0}

C 1, 1
2 regularity for the two membrane problem would to conclude (same

caveat).
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The ε-regularity theorem at one phase point: compactness

The key point to make the above proofs rigorous is compactness of v±ε .

A good topology is C 0 (solutions will be intended in the viscosity sense)
which is the topology where the sequences are bounded. Some a-priori
regularity theory is needed (De Silva: adapt Savin’s “Partial Harnack
inequality”).

Furthermore the functions are defined on varying domains
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which is the topology where the sequences are bounded. Some a-priori
regularity theory is needed (De Silva: adapt Savin’s “Partial Harnack
inequality”).

Furthermore the functions are defined on varying domains
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Compactness at branch points

In order to prove compactness one does not only to deal with the case where

u ≈ (x1)+ − (x1)− but also u ≈ (x1 + δ1)+ − (x1 + δ1)−

with δ1, δ2 � 1. This is the behavior close to branch points.

Indeed this is the local picture close a branch point:

u > 0 u < 0

u > 0 u < 0
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Thank you
for your attention!

G. De Philippis (CIMS): Two phase Bernoulli problem


