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Introduction

The Maxwell-Bloch system: quantum interaction of light and matter

Maxwell equation: g, = — [ Pg(A) dA.

Describes the evolution of an optical pulse g(t,z) € C along an
active-medium fiber with spatial coordinate z. The optical field is
driven by the medium polarization P(t,z;A) € C with frequency
detuning A.

Bloch subsystem: P; —2iAP = —2qD and D; = 2Re(g* P).

Describes the (retarded, t = t, — z/c) time variation of the medium
polarization and population inversion D(f,z;A) € R. These are driven
by the optical field.

g(A) is a probability density describing the distribution of atoms with
different frequency detunings A, for instance if the atoms are in a gas,
there is a Doppler shift in their frequencies due to relative motion.



Introduction
The Maxwell-Bloch system: Cauchy problem

To study the injection of an optical pulse into the end of a half-line
optical medium (z > 0) that is prepared in some asymptotic state in the
distant past (f - —oo) we take the Maxwell-Bloch system

g—Z(t,z) __ []RP(t,z;A)g(A) dA
%—I;(t,z;/\) —-2iAP(t,z; A) = =2q(t,z)D(t,z; \)
aa—lt)(t,z) =2Re(q(t,z)"P(t,z; 1))
with a (mathematical) initial condition
q(t,0) =qo(t) (the incident pulse)

and (mathematical) boundary conditions

tlim q(t,z) =0, D_:= tlim D(t,z;A) =+1, P_:= tlim P(t,z;A) = 0.



Introduction
The Maxwell-Bloch system: the sharp-line limit

If the atoms are in a crystal instead of a gas, minimal Doppler shift
= g(A) = dp. Then it is only necessary to track the polarization

P(t,z; A) and population inversion D(t,z; A) for detuning A = 0, so with
P(t,z) := P(t,z;0) and D(t,z) := D(t,z;0) we obtain the sharp-line limit:

9:=-P, q(t,0)=qo(t), lim q(t,z)=0
Py =-2qD, tliEn P(t,z) =0
D; =2Re(q"P), tlirn D(t,z) =D_ = 1.

The Bloch subsystem and BCs imply that |P(t,z)[* + D(t,z)? = 1. If
furthermore go(t) € R, then q(t,z) and P(t,z) are both real, and

P=sin(®), D=cos(®), gq-= —%@t = O, = 2sin(O)

the sine-Gordon equation in characteristic/light-cone coordinates.



Introduction
The Maxwell-Bloch system: the sharp-line limit

The sine-Gordon equation has been studied by
Cheng-Venakides-Zhou and Chen-Liu-Lu in the long-time limit for the
(non-characteristic) Cauchy problem in laboratory coordinates:

O - G)XX + Sil’l(@) =0, CH)(X/ 0) = F(X)/ @T(XIO) = G(X)

Some important observations:

@ For this problem, the reflection coefficient 7(A) comes from the
Faddeev-Takhtajan scattering problem which automatically yields
r(0) = 0. But for the characteristic Cauchy problem r comes instead
from the Zakharov-Shabat problem, and r(0) # 0 in general.

@ For this hyperbolic problem, the solution is asymptotically
confined to the light cone |x/7| < 1, and r(0) = 0 implies that ©® — 0
as |x/t| - 1. For Maxwell-Bloch we may expect something
different if 7(0) # 0 in the sine-Gordon reduction, or if the
reduction is not possible. ..



Introduction

Results

We study the characteristic Cauchy problem for the sharp-line
Maxwell-Bloch system near the light cone edge: z/t - 0 as t - +oo:

e We find a boundary-layer phenomenon: the pulse undergoes a
sudden transition upon entering the medium. The transition is
described by a specific 1-parameter family of solutions of the
Painlevé-III equation recently seen in large-amplitude limits for
the focusing nonlinear Schrédinger equation:

o Nongeneric focusing of waves in the semiclassical limit
(Suleimanov, Buckingham-Jenkins-M).

o Near-field high-order limits of iterated Backlund transformations
(rogue waves of infinite order: Bilman-Ling-M; high-order solitons:
Bilman-Buckingham; general backgrounds: Bilman-M).

e Further implications: the optical pulse fails to be in L' (R) for all
z > 0 even if it has compact support at z = 0; most pulses, but not
all, switch the medium into its ground state as t - +co.

Similar results without full justification were reported by
Gabitov-Zakharov-Mikhailov. Fokas-Menyuk gave a more rigorous
analysis of a similar problem, with different results.



Self-similar solutions of the Maxwell-Bloch system

Painlevé-III equation
Forz >0and t > 0, set x = \/2tz (similarity variable). Try

q(t,z) =t 'y(X), P(t,z)=2X"'s(X), D(tz)=1-2X"'U(X), X=x
Then the sharp-line Maxwell-Bloch equations for real 4 and P imply

y'(X) = -2s(X)
Xs'(X) = s(X) - 2Xy(X) +4y(X)U(X)
XU'(X) = U(X) - 4y(X)s(X).
A related system replaces the third ODE with
XU'(X) = U(X) - 4Xs(X) Ly(X)U(X) +4s(X) " y(X)U(X)2.

The modified system implies that u(X) := —s(X)ly(X) satisfies
W'(X)* u X, 4
uX) X u(X)’

and it has a first integral | := s(X)‘ZU(X)(LI(X) -X). When ] = -1 we
recover the original ODE for U(X).

u"(X) = - + 4u(X)? -

(Painlevé-III)



Causality
Our Cauchy problem is characteristic (data given on the light cone).

Definition (Causal solutions)

A solution of the Cauchy problem for a given incident pulse go(#) is
called causal if q(z,t) = 0 holds for all t <0 and z > 0.

Obviously a causal solution can only be generated from an incident
pulse go(t) vanishing identically for t < 0. From the boundary
conditions at t = —oo, the Bloch subsystem implies that for causal
solutions, D(z,t) = D_ and P(z,t) =0 forallt <O and z > 0.

Theorem

If qo(t) =0 for all t <0, there can exist at most one causal solution of the
Maxwell-Bloch Cauchy problem.

Generally, there exist multiple non-causal solutions for the same
Cauchy data. Note that causality is fundamentally connected with the
reflection coefficient; reflectionless solutions (solitons) are non-causal.



Lax pair

Jost solutions for z = 0

The Lax pair for the Maxwell-Bloch system reads

g, = (A +Q)p, Q= (_q(g N q(gz))
_(D(t,z) P(tz)
0. 509, p._(P(t,Z)* —D(t,z))'

Thus, the spectral problem that can be analyzed when z = 0 is the
nonselfadjoint Zakharov-Shabat equation. The inverse-scattering
transform should be based on that problem, with the z-equation
supplying (mathematical) time-evolution of scattering data.

Taking z = 0 and ¢(t,0) = qo(t) € L'(R) with support on ¢ > 0 (for
causality), Jost matrices are defined for A € R by the asymptotic
behavior ¢ (£;A) = €% +0(1) as t — +oo.



Lax pair

Reflection coefficient for z = 0

The scattering matrix is defined by S(A) := ¢ (1)1, (£ A) and is
independent of . The assumption that go(t) = 0 for t < 0 means that
¢ _(tA) = e holds exactly forall t <0, s0 S(A) = ¢, (0;A). The
reflection coefficient r(A) is defined by

_S5a1(Ad) _ 921 (0A)
CSu(A) e (0A)

r(A)

Lemma
Suppose that qo(t) € #(R), that qo(t) =0 for t <0, and that S11(A) # 0 for
Im(A) > 0. Then r(A) € Z(R) admits analytic continuation to Im(A) > 0.

Evolution of the reflection coefficient in z > 0 is difficult to justify;
nonetheless we can formulate a Riemann-Hilbert problem that
produces the unique causal solution of the Cauchy problem.



Riemann-Hilbert problem

Let Xy be the contour shown and take

r(A) € Z(R) analytic for Im(A) > 0. For B
given D_ := +1 and coordinates (t,z) € IR?, /»‘3’\
seek M(A) = M(A;t,z), 2 x 2, analytic for W \, e R
AeC Xy withM —» T as A - oo, and with W
the indicated jumps, where
1 0 D_z
W(A) := (r()\)e_zw()‘) 1), O(A) := At - o

and where W'(1) := W(A*)'. A dressing argument proves:

Theorem

Let qo(t) € 7 (R) with qo(t) = 0 for t < 0 generate no discrete eigenvalues or
spectral singularities and have reflection coefficient ¥(A). Then the RHP is
uniquely solvable for all (t,z) € R? and the unique causal solution to the
Maxwell-Bloch Cauchy problem is

q(t;z) = =21 lim AM1p(A;t,2) and  p(t,z) = D-M(0;t,2)o3M(0; t,z)7.

v




Key quantities obtained from the reflection coefficient

Denote r( ) = p(m) (0), write rq for r(()o), and let M be the index m of the

first nonzero ré ) . Also, set

si= I PR D = arg(r)
Atz =0, p(t,0) can be expressed in terms of the Jost matrices as

p(t,O):(l?((tfb(;Z _I;(E’tlog)):D_cp(t;O)(Tg,q)(t;O)l, £50.

This satisfies the enforced boundary condition p(t,0) - D_o3 as
t - —oo, and using the scattering matrix and a trace identity;,

5 2role™ . 1-|rof?
_— lim D(t,0)=D_ .
Am P(,0) = 1+ [rol? and - lim D(#,0) 1+ [rof?

Physically, one expects D(t,z) - -1 as t — +co. Obviously not true at
z=0unlessrg=0and D_ = -1.



Selection of self-similar solutions
For each given w € C, there is a unique odd analytic solution

u=u(X;w)=-u(-X;w) of Painlevé-Ill (x =0, p =y =-06 =4)

" _ MI(X)z u (X) 4 " _
u"(X) = ——— (%) % §+4 u(X)® - " (X) = w.

Taking w € (-3,3) and enforcing the consistent constraint | = -1 gives a

solution (y(X),s(X), U(X)) of the self-similar Maxwell-Bloch system
with Taylor expansions

y(X;w) == \/1——X2 \/1——X4+O(X6
s(X;w) = \/1—“’—2X \/1——X3+(’)(X5

U(X;w) = ( )X+ o(x%),

These functions are exactly the ones that describe infinite-order
solitons and rogue waves in the focusing NLS at time t = 0
(Bilman-Buckingham and Bilman-Ling-M).




Selection of self-similar solutions

The functions y(X; w), s(X; w), and U(X; w) are analytic on the real
and imaginary axes of the X-plane.

Definition (Particular self-similar solutions of Maxwell-Bloch)
Given w € (-3,3) and ¢ = e, x € R, with x = /2tz > 0, two real-valued
self-similar solutions of the Maxwell-Bloch system are
q(t,2) = qu(t, z;w,§) = 'y (x; @)
P(t,z) = Pu(t, z;w, &) = 26x 7 Ls(x; w)
D(t,z) = Dy(t,x;w) =1 -2x"1U(x;w)

and

q(t,2) = gs(t, z; w, &) == 1 Ey(~ix; w)
P(t,z) = Ps(t,z;w, €) = =2i&x " s(~ix; w)
D(t,2) = Ds(t,x;w) := =1+ 2ix U (-ix; w).




Plots of the particular self-similar solutions: ¢ =1




Asymptotic regimes within the light cone

Definition (Asymptotic regimes)
Let C > 0 be a fixed constant. The three
asymptotic regimes within the light cone | -
z>0,t>0 are defined as follows.
e The corresponds
tot - +oo withz = Ct* and & < -1.

@ The transition regime corresponds to

t - +oo withz=Ct* and a = 1.

o The medium-bulk regime corresponds
tot - +oo with z = Ct* and |a| < 1.




Main theorem

Theorem (Global asymptotics — generic case)

Suppose that the incident pulse satisfies qo(t) € - (IR) and qo(t) = 0 for t <0,
and qo generates no discrete eigenvalues or spectral singularities. If M = 0
(ie., ro =1(0) #0), then with

[rol* ~ 1

=3
P

€(-3,3),

as t - +oo with z > 0 and z = o(t), the causal solution of the Maxwell-Bloch
Cauchy problem

q(t,2) = gm(t, z;w, e ) + O(z/t) + O(t)

P(t,z) = Pm(t,2;0,e7™) + O((2/1)1*) + O()

D(t,z) = D(t,z;w) + O((z/H)1?) + O(£),

where m = s for propagation in an initially-stable medium (D_ = -1) and
m = u for propagation in an initially-unstable medium (D_ = 1).




Corollaries
asymptotics — generic case.

The following is proved by Taylor expansion of the functions y(X; w),
(X, w), and U(X; w).

Corollary

Under the same assumptions on qo(t), as t - +oo with z = Ct* and « < -1,

2|role o
q(t,z) = D—1| °||r0| +o(P o

|70|e a+1 (a-1)
P(t,z)=-D_ "0
()= -D-T |r0| LO(E) + 01D

D(t ) D_ |7’0| O(ttx+1)+0(t2(a 1))
1+ [rof?

regardless of whether D_ = -1 or D_ = 1.

This corollary shows that the solution in the

is
very close to the exact solution for z = 0.



Corollaries

Medium-bulk asymptotics — generic case.

Corollary

Under the same assumptions on qo(t), let

:—ln(1+|ro| “2D-) 50, A= \/? [T+ ie))

T Jro|2P- (1 -+ fro[20-)

and for x > 0 define ¢(x) = 2x —eIn(8x) — 7'[ +arg(I'(1+ie)). Then as
t - +oo withz=Ct* and w e (-1,1), in both cases D_ = +1,

1
q(t,z) = D—e’m% (tEZ) Asin(p(V2Ez)) + O(£10%9)) + O(#71)
1

P(tz)=-D-e ( )7AC03(§0(\/2E))+(’)(t_%(”‘+1))+(’)(t%(“‘1))

.;;




Corollaries
Lack of absolute integrability of the optical pulse.

The previous result allows for a = 0. It shows that, unlike the situation
near the edge of the medium z = 0, for each fixed z > 0, the active medium
decays as t — +oo to the stable pure state (P = 0 and D = -1) regardless of
whether the initial state was stable (D_ = —1) or unstable (D_ = 1). The
decay is quite slow however:

Corollary

Under the same assumptions on qo(t), for every z > 0 the optical pulse
function t — q(t,z) does not lie in L*(R).

This is important to observe, because (-, z) € L'(R) is the fundamental
assumption of scattering theory for the Zakharov-Shabat system. Jost
solutions are not guaranteed to exist for all A € R as soon as z > 0.

However, this is not an obstruction to using the Riemann-Hilbert

problem to capture the unique causal solution because existence and
uniqueness are proved by independent means.



Corollaries

Ill-posedness of the Cauchy problem for an initially-unstable medium.

Using an elementary symmetry S : (q(t,z),P(t,z),D(t,z)) —
(8q(t,z),SP(t,z),S8D(t,z)) = (q(T - t,z), P(T - t,z),-D(T - t,z)) we
can use the t - +o0 decay of causal solutions to the stable pure state to
prove the following.

Corollary

There exist incident pulses qo(t) satisfying the same assumptions as above for
which the Maxwell-Bloch Cauchy problem for an initially-unstable medium
(D_ =1) has (other) solutions that are not causal and that decay to both stable
and unstable pure states as t — +oo.

This proves rigorously that without the imposition of causality, the Cauchy
problem on an initially-unstable medium is ill-posed.



The nongeneric case — initially-stable medium

Theorem

Suppose that the incident pulse satisfies qo(t) € . (R) and qo(t) =0 for t <0,
and qo generates no discrete eigenvalues or spectral singularities. If
ro =1(0) =0, so that the index M of the first nonzero value r(()m) form=Mis

positive, then the causal solution of the Maxwell-Bloch Cauchy problem on an
initially-stable medium (D_ = -1) satisfies

L(M+1)
0062) =24l (2] a2V + O 1)

P(t,z) = Z_IV(M)| —1r<1\,1(22t)E ]M(Z\/ZE)-FO((Z#)%(MH))
5P
D(t,z)=-1+ Z(M')Z

(—) Tm(2V212)2 + O((2/t)} 1+,

as t - +oo withz > 0and z = o(t).




The nongeneric case — initially-stable medium

This result admits corollaries obtained by restriction to the
with the help of

Ju(2x) = 2—7(1 +0(x%), x-0

and by restriction to the medium-bulk regime with the help of

1
\/ TTX

In the latter case, we can obtain asymptotics as t — +oo with z > 0 fixed
and obtain that g(t,z) = O(t_l_%M), soasM=1,2,3,..., absolute
integrability of t — g(t,z) is recovered. Also D(t,z) - -1 as t - +o0, s0
the medium returns to the stable state in this limit, even for a
nongeneric incident pulse.

Jn(2x) = (COS (Zx—%nﬂ—%n)JrO(x‘l)), X = +00.



The nongeneric case — initially-unstable medium

Theorem

Suppose that the incident pulse satisfies qo(t) € . (R) and qo(t) =0 for t <0,
and qo generates no discrete eigenvalues or spectral singularities. If

ro =1(0) =0, so that the index M of the first nonzero value r(()m) form=Mis

positive, then the causal solution of the Maxwell-Bloch Cauchy problem on an
initially-unstable medium (D_ = 1) satisfies

q(t,z) =2 i( A}?AHV(M)' —iRy (2zt)2(M+l)]M+1(2i@)+O(t_;(M+z)(1—zx)
P(tz) = , DT 1\21! e i&M(%)% Im(2iV/2E) + O(F 3 M+ D (1-0))
D(tz) =1+2(- 1)M+1| e ( )M] (2iV/2tz)2 + O+ 2 (M+D (1)

vz \2t) ™ ’
ast — +oo with z = Ct* and a < -1 ( and transition regimes

only).




The nongeneric case — initially-unstable medium

Because this result for a nongeneric pulse incident on an
initially-unstable medium is not (provably) valid in the medium-bulk
regime that includes t — +oco with z > 0 fixed, we cannot tell whether a
nongeneric pulse can trigger the decay of the medium to the stable pure state
ast — +oo.

Indeed, the simplest example of a nongeneric incident pulse is
qo(t) = 0, for which the unique causal solution is exactly

q(t,z)=0, P(t,z)=0, D(tz)=1

On the other hand, we know that a generic pulse results in D(t,z) - -1
ast — +oo for each z > 0.



Numerical experiments

A generic pulse incident on an initially-stable medium

Here we take qo(t) = 0.5eite‘(1/t+1/(3'5‘t))/10)([0,3.5] (t) and consider
propagation with D_ = 1.
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Numerical experiments

A generic pulse incident on an initially-unstable medium

Here we take go(t) = 0.5¢l'e~(1/#+1/(35-0)/ 10)([0,3.5] (t) and consider
propagation with D_ = 1.
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Numerical experiments

A nongeneric pulse incident on an initially-stable medium

Here we take qo(t) = 0.5e~(/#1/(6=D)/10tanh (¢ - 3) x(6) () and consider
propagation with D_ = -1.
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Numerical experiments

A nongeneric pulse incident on an initially-unstable medium

Here we take qo(t) = 0.5e~(/#1/(6=D)10tanh(t - 3) x (9 6] () and consider
propagation with D_ = 1.
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Proofs by 9 steepest-descent analysis: D_ = -1

3(A)

For propagation in an initially-stable medium (D_ =
-1), the phase in the Riemann-Hilbert problem is 6 = "u-
0s(A;t,z) == At +z/(2A), and the sign chart of Re(ifs)
involves the circle of (small, under our assumptions)

radius A, = \/z/(2t).

We choose this small circle to coincide with that in the RHP. Then, we
formulate an equivalent hybrid Riemann-Hilbert-0 problem based on

a non-analytic extension to the complex plane of the function
R(A) :=r(M)/(1+[r(M)P):

N-2 (: \n qn
R(A) » Qu(u,0) = 5 SR

n
= n! du

(1), (u,0)eR? A=u+io.

This can be done for any N, which gives rise to the error terms O (™)
in our theorems. The resulting unknown has jumps on and within the
small circle only, but is nonanalytic in a strip bisected by R (excluding
the circle).



Proofs by 9 steepest-descent analysis: D_ = -1

We then construct a parametrix for the hybrid RH-0 problem by:
@ Neglecting the 9 part;
e Approximating the jumps on and within the circle using the
Taylor expansion of 7(A) and the fact that the radius is small.

The parametrix is analytic for |k| # 1, tends to the identity as k — oo,
and with counterclockwise orientation the jump matrix for |k| = 1 is

X:=V2z
1 M i —
A (Aok) ™2 \/%We x(kek™) Ao = \/2/(20)
MMy oM —ix(k+k1) -1 ! _ (M)
—\/Wk e Api(Aok)™2 ay =1y [M!

AM(/\) =1+ |LZM|2)L2M.

When M = 0, this is solved in terms of Painlevé-III. When M > 0, itis a
small-norm problem, and its Neumann-series solution produces Bessel
functions at subleading order.



Proofs by 9 steepest-descent analysis: D_ = 1

I(A)

For propagation in an initially-unstable medium
(D- = 1), the phase is instead 6 = 0,(A;t,z) = At -
z/(2A) and the change in sign on the second term
yields a different sign chart for Re(if,). The phase
factors e*® are now non-oscillatory for |A| = Ao.

We can compensate with an explicit “g-function” cut on the whole
circle, the effect of which is:

e the “unstable” phase 6,(A; t,z) is replaced with the “stable” phase
0s(A;t,2);

@ the phase factors are moved from the off-diagonal jump matrix
elements to the diagonal.

The resulting parametrix is again solved by Painlevé-III (on a rotated
axis) when M = 0. When M > 0, after restoring the unstable phase 6,
we have a small-norm problem but only if zt is controlled. It is enough to
assume that zt = O(1) as t - +oo.
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