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Introduction
The Maxwell-Bloch system: quantum interaction of light and matter

Maxwell equation: qz = − ∫R Pg(λ)dλ.

Describes the evolution of an optical pulse q(t, z) ∈ C along an
active-medium fiber with spatial coordinate z. The optical field is
driven by the medium polarization P(t, z; λ) ∈ C with frequency
detuning λ.

Bloch subsystem: Pt − 2iλP = −2qD and Dt = 2Re(q∗P).
Describes the (retarded, t = tlab − z/c) time variation of the medium
polarization and population inversion D(t, z; λ) ∈ R. These are driven
by the optical field.

g(λ) is a probability density describing the distribution of atoms with
different frequency detunings λ, for instance if the atoms are in a gas,
there is a Doppler shift in their frequencies due to relative motion.
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Introduction
The Maxwell-Bloch system: Cauchy problem

To study the injection of an optical pulse into the end of a half-line
optical medium (z ≥ 0) that is prepared in some asymptotic state in the
distant past (t→ −∞) we take the Maxwell-Bloch system

∂q
∂z
(t, z) = −∫

R
P(t, z; λ)g(λ)dλ

∂P
∂t
(t, z; λ)− 2iλP(t, z; λ) = −2q(t, z)D(t, z; λ)

∂D
∂t
(t, z) = 2Re(q(t, z)∗P(t, z; λ))

with a (mathematical) initial condition

q(t, 0) = q0(t) (the incident pulse)

and (mathematical) boundary conditions

lim
t→−∞

q(t, z) = 0, D− ∶= lim
t→−∞

D(t, z; λ) = ±1, P− ∶= lim
t→−∞

P(t, z; λ) = 0.
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Introduction
The Maxwell-Bloch system: the sharp-line limit

If the atoms are in a crystal instead of a gas, minimal Doppler shift
Ô⇒ g(λ) = δ0. Then it is only necessary to track the polarization
P(t, z; λ) and population inversion D(t, z; λ) for detuning λ = 0, so with
P(t, z) ∶= P(t, z; 0) and D(t, z) ∶= D(t, z; 0)we obtain the sharp-line limit:

qz = −P, q(t, 0) = q0(t), lim
t→−∞

q(t, z) = 0

Pt = −2qD, lim
t→−∞

P(t, z) = 0

Dt = 2Re(q∗P), lim
t→−∞

D(t, z) = D− = ±1.

The Bloch subsystem and BCs imply that ∣P(t, z)∣2 +D(t, z)2 = 1. If
furthermore q0(t) ∈ R, then q(t, z) and P(t, z) are both real, and

P = sin(Θ), D = cos(Θ), q = −1
2

Θt Ô⇒ Θtz = 2 sin(Θ)

the sine-Gordon equation in characteristic/light-cone coordinates.
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Introduction
The Maxwell-Bloch system: the sharp-line limit

The sine-Gordon equation has been studied by
Cheng-Venakides-Zhou and Chen-Liu-Lu in the long-time limit for the
(non-characteristic) Cauchy problem in laboratory coordinates:

Θττ −Θχχ + sin(Θ) = 0, Θ(χ, 0) = F(χ), Θτ(χ, 0) = G(χ).

Some important observations:
For this problem, the reflection coefficient r(λ) comes from the
Faddeev-Takhtajan scattering problem which automatically yields
r(0) = 0. But for the characteristic Cauchy problem r comes instead
from the Zakharov-Shabat problem, and r(0) ≠ 0 in general.
For this hyperbolic problem, the solution is asymptotically
confined to the light cone ∣χ/τ∣ < 1, and r(0) = 0 implies that Θ → 0
as ∣χ/τ∣→ 1. For Maxwell-Bloch we may expect something
different if r(0) ≠ 0 in the sine-Gordon reduction, or if the
reduction is not possible. . .
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Introduction
Results

We study the characteristic Cauchy problem for the sharp-line
Maxwell-Bloch system near the light cone edge: z/t→ 0 as t→ +∞:

We find a boundary-layer phenomenon: the pulse undergoes a
sudden transition upon entering the medium. The transition is
described by a specific 1-parameter family of solutions of the
Painlevé-III equation recently seen in large-amplitude limits for
the focusing nonlinear Schrödinger equation:

Nongeneric focusing of waves in the semiclassical limit
(Suleimanov, Buckingham-Jenkins-M).
Near-field high-order limits of iterated Bäcklund transformations
(rogue waves of infinite order: Bilman-Ling-M; high-order solitons:
Bilman-Buckingham; general backgrounds: Bilman-M).

Further implications: the optical pulse fails to be in L1(R) for all
z > 0 even if it has compact support at z = 0; most pulses, but not
all, switch the medium into its ground state as t→ +∞.

Similar results without full justification were reported by
Gabitov-Zakharov-Mikhaĭlov. Fokas-Menyuk gave a more rigorous
analysis of a similar problem, with different results..
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Self-similar solutions of the Maxwell-Bloch system
Painlevé-III equation

For z ≥ 0 and t ≥ 0, set x =
√

2tz (similarity variable). Try

q(t, z) = t−1y(X), P(t, z) = 2X−1s(X), D(t, z) = 1− 2X−1U(X), X = x.

Then the sharp-line Maxwell-Bloch equations for real q and P imply

y′(X) = −2s(X)
Xs′(X) = s(X)− 2Xy(X)+ 4y(X)U(X)

XU′(X) = U(X)− 4y(X)s(X).

A related system replaces the third ODE with

XU′(X) = U(X)− 4Xs(X)−1y(X)U(X)+ 4s(X)−1y(X)U(X)2.

The modified system implies that u(X) ∶= −s(X)−1y(X) satisfies

u′′(X) = u′(X)2

u(X)
− u′(X)

X
+ 4

X
+ 4u(X)3 − 4

u(X)
, (Painlevé-III)

and it has a first integral J ∶= s(X)−2U(X)(U(X)−X). When J = −1 we
recover the original ODE for U(X). .
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Causality

Our Cauchy problem is characteristic (data given on the light cone).

Definition (Causal solutions)

A solution of the Cauchy problem for a given incident pulse q0(t) is
called causal if q(z, t) = 0 holds for all t < 0 and z ≥ 0.

Obviously a causal solution can only be generated from an incident
pulse q0(t) vanishing identically for t < 0. From the boundary
conditions at t = −∞, the Bloch subsystem implies that for causal
solutions, D(z, t) = D− and P(z, t) = 0 for all t < 0 and z ≥ 0.

Theorem
If q0(t) = 0 for all t < 0, there can exist at most one causal solution of the
Maxwell-Bloch Cauchy problem.

Generally, there exist multiple non-causal solutions for the same
Cauchy data. Note that causality is fundamentally connected with the
reflection coefficient; reflectionless solutions (solitons) are non-causal.
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Lax pair
Jost solutions for z = 0

The Lax pair for the Maxwell-Bloch system reads

ϕt = (iλσ3 +Q)ϕ, Q ∶= ( 0 q(t, z)
−q(t, z)∗ 0

)

ϕz =
1

2iλ
ρϕ, ρ ∶= (D(t, z) P(t, z)

P(t, z)∗ −D(t, z)) .

Thus, the spectral problem that can be analyzed when z = 0 is the
nonselfadjoint Zakharov-Shabat equation. The inverse-scattering
transform should be based on that problem, with the z-equation
supplying (mathematical) time-evolution of scattering data.

Taking z = 0 and q(t, 0) = q0(t) ∈ L1(R)with support on t ≥ 0 (for
causality), Jost matrices are defined for λ ∈ R by the asymptotic
behavior ϕ±(t; λ) = eiλtσ3 + o(1) as t→ ±∞.
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Lax pair
Reflection coefficient for z = 0

The scattering matrix is defined by S(λ) ∶= ϕ−(t; λ)−1ϕ+(t; λ) and is
independent of t. The assumption that q0(t) = 0 for t < 0 means that
ϕ−(t; λ) = eiλtσ3 holds exactly for all t ≤ 0, so S(λ) = ϕ+(0; λ). The
reflection coefficient r(λ) is defined by

r(λ) ∶= S21(λ)
S11(λ)

=
ϕ+,21(0; λ)
ϕ+,11(0; λ)

.

Lemma
Suppose that q0(t) ∈S (R), that q0(t) = 0 for t < 0, and that S11(λ) ≠ 0 for
Im(λ) ≥ 0. Then r(λ) ∈S (R) admits analytic continuation to Im(λ) > 0.

Evolution of the reflection coefficient in z > 0 is difficult to justify;
nonetheless we can formulate a Riemann-Hilbert problem that
produces the unique causal solution of the Cauchy problem.
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Riemann-Hilbert problem
Let ΣM be the contour shown and take
r(λ) ∈ S (R) analytic for Im(λ) > 0. For
given D− ∶= ±1 and coordinates (t, z) ∈ R2,
seek M(λ) = M(λ; t, z), 2 × 2, analytic for
λ ∈ C ∖ΣM with M→ I as λ →∞, and with
the indicated jumps, where

W(λ) ∶= ( 1 0
r(λ)e−2iθ(λ) 1

) , θ(λ) ∶= λt− D−z
2λ

,

and where W†(λ) ∶=W(λ∗)†. A dressing argument proves:

Theorem
Let q0(t) ∈S (R) with q0(t) = 0 for t < 0 generate no discrete eigenvalues or
spectral singularities and have reflection coefficient r(λ). Then the RHP is
uniquely solvable for all (t, z) ∈ R2 and the unique causal solution to the
Maxwell-Bloch Cauchy problem is

q(t, z) = −2i lim
λ→∞

λM12(λ; t, z) and ρ(t, z) = D−M(0; t, z)σ3M(0; t, z)−1.
.
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Key quantities obtained from the reflection coefficient
Denote r(m)0 ∶= r(m)(0), write r0 for r(0)0 , and let M be the index m of the
first nonzero r(m)0 . Also, set

ℵ ∶= 1
π
−∫
R

ln(1+ ∣r(λ)∣2)dλ

λ
; ℵM ∶= arg(r(M)0 )+ℵ.

At z = 0, ρ(t, 0) can be expressed in terms of the Jost matrices as

ρ(t, 0) = (D(t, 0) P(t, 0)
P(t, 0)∗ −D(t, 0)) = D−ϕ−(t; 0)σ3ϕ−(t; 0)−1, t > 0.

This satisfies the enforced boundary condition ρ(t, 0)→ D−σ3 as
t→ −∞, and using the scattering matrix and a trace identity,

lim
t→+∞

P(t, 0) = −D−
2∣r0∣e−iℵ0

1+ ∣r0∣2
and lim

t→+∞
D(t, 0) = D−

1− ∣r0∣2

1+ ∣r0∣2
.

Physically, one expects D(t, z)→ −1 as t→ +∞. Obviously not true at
z = 0 unless r0 = 0 and D− = −1. .
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Selection of self-similar solutions
For each given ω ∈ C, there is a unique odd analytic solution
u = u(X; ω) = −u(−X; ω) of Painlevé-III (α = 0, β = γ = −δ = 4)

u′′(X) = u′(X)2

u(X)
− u′(X)

X
+ 4

X
+ 4u(X)3 − 4

u(X)
, u′′′(X) = ω.

Taking ω ∈ (−3, 3) and enforcing the consistent constraint J = −1 gives a
solution (y(X), s(X), U(X)) of the self-similar Maxwell-Bloch system
with Taylor expansions

y(X; ω) = 1
2

√
1− ω2

9
X2 − ω

12

√
1− ω2

9
X4 +O(X6)

s(X; ω) = −1
2

√
1− ω2

9
X + ω

6

√
1− ω2

9
X3 +O(X5)

U(X; ω) = (ω

6
+ 1

2
)X +O(X3), X → 0.

These functions are exactly the ones that describe infinite-order
solitons and rogue waves in the focusing NLS at time t = 0
(Bilman-Buckingham and Bilman-Ling-M). .
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Selection of self-similar solutions

The functions y(X; ω), s(X; ω), and U(X; ω) are analytic on the real
and imaginary axes of the X-plane.

Definition (Particular self-similar solutions of Maxwell-Bloch)

Given ω ∈ (−3, 3) and ξ = eiκ, κ ∈ R, with x =
√

2tz ≥ 0, two real-valued
self-similar solutions of the Maxwell-Bloch system are

q(t, z) = qu(t, z; ω, ξ) ∶= t−1ξy(x; ω)
P(t, z) = Pu(t, z; ω, ξ) ∶= 2ξx−1s(x; ω)
D(t, z) = Du(t, x; ω) ∶= 1− 2x−1U(x; ω)

and

q(t, z) = qs(t, z; ω, ξ) ∶= t−1ξy(−ix; ω)
P(t, z) = Ps(t, z; ω, ξ) ∶= −2iξx−1s(−ix; ω)
D(t, z) = Ds(t, x; ω) ∶= −1+ 2ix−1U(−ix; ω).
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Plots of the particular self-similar solutions: ξ = 1
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Asymptotic regimes within the light cone

Definition (Asymptotic regimes)

Let C > 0 be a fixed constant. The three
asymptotic regimes within the light cone
z ≥ 0, t ≥ 0 are defined as follows.

The medium-edge regime corresponds
to t→ +∞with z = Ctα and α < −1.
The transition regime corresponds to
t→ +∞with z = Ctα and α = −1.
The medium-bulk regime corresponds
to t→ +∞with z = Ctα and ∣α∣ < 1.
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Main theorem

Theorem (Global asymptotics — generic case)

Suppose that the incident pulse satisfies q0(t) ∈S (R) and q0(t) = 0 for t < 0,
and q0 generates no discrete eigenvalues or spectral singularities. If M = 0
(i.e., r0 = r(0) ≠ 0), then with

ω ∶= 3
∣r0∣2 − 1
∣r0∣2 + 1

∈ (−3, 3),

as t→ +∞ with z ≥ 0 and z = o(t), the causal solution of the Maxwell-Bloch
Cauchy problem

q(t, z) = qm(t, z; ω, e−iℵ0)+O(z/t)+O(t−∞)

P(t, z) = Pm(t, z; ω, e−iℵ0)+O((z/t)1/2)+O(t−∞)

D(t, z) = Dm(t, z; ω)+O((z/t)1/2)+O(t−∞),

where m = s for propagation in an initially-stable medium (D− = −1) and
m = u for propagation in an initially-unstable medium (D− = 1)..
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Corollaries
Medium-edge asymptotics — generic case.

The following is proved by Taylor expansion of the functions y(X; ω),
s(X; ω), and U(X; ω).

Corollary

Under the same assumptions on q0(t), as t→ +∞ with z = Ctα and α < −1,

q(t, z) = D−
2∣r0∣e−iℵ0

1+ ∣r0∣2
z+O(t2α+1)+O(tα−1)

P(t, z) = −D−
2∣r0∣e−iℵ0

1+ ∣r0∣2
+O(tα+1)+O(t

1
2 (α−1))

D(t, z) = D−
1− ∣r0∣2

1+ ∣r0∣2
+O(tα+1)+O(t

1
2 (α−1)),

regardless of whether D− = −1 or D− = 1.

This corollary shows that the solution in the medium-edge regime is
very close to the exact solution for z = 0. .
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Corollaries
Medium-bulk asymptotics — generic case.

Corollary

Under the same assumptions on q0(t), let

ε ∶= 1
2π

ln(1+ ∣r0∣−2D−) > 0, A ∶=
√

2
π

∣Γ(1+ iε)∣
∣r0∣

1
2 D−(1+ ∣r0∣2D−)

1
4

> 0

and for x > 0 define φ(x) ∶= 2x− ε ln(8x)− 1
4 π + arg(Γ(1+ iε)). Then as

t→ +∞ with z = Ctα and α ∈ (−1, 1), in both cases D− = ±1,

q(t, z) = D−e−iℵ0
1
t
( tz

2
)

1
4

A sin(φ(
√

2tz))+O(t−
1
4 (α+5))+O(tα−1)

P(t, z) = −D−e−iℵ0 ( tz
2
)
− 1

4
A cos(φ(

√
2tz))+O(t−

3
4 (α+1))+O(t

1
2 (α−1))

D(t, z) = −1+ 1
2
( tz

2
)
− 1

2
A2 cos2(φ(

√
2tz))+O(t−(α+1))+O(t

1
2 (α−1)).
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Corollaries
Lack of absolute integrability of the optical pulse.

The previous result allows for α = 0. It shows that, unlike the situation
near the edge of the medium z = 0, for each fixed z > 0, the active medium
decays as t→ +∞ to the stable pure state (P = 0 and D = −1) regardless of
whether the initial state was stable (D− = −1) or unstable (D− = 1). The
decay is quite slow however:

Corollary

Under the same assumptions on q0(t), for every z > 0 the optical pulse
function t↦ q(t, z) does not lie in L1(R).

This is important to observe, because q(⋅, z) ∈ L1(R) is the fundamental
assumption of scattering theory for the Zakharov-Shabat system. Jost
solutions are not guaranteed to exist for all λ ∈ R as soon as z > 0.

However, this is not an obstruction to using the Riemann-Hilbert
problem to capture the unique causal solution because existence and
uniqueness are proved by independent means.
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Corollaries
Ill-posedness of the Cauchy problem for an initially-unstable medium.

Using an elementary symmetry S ∶ (q(t, z), P(t, z), D(t, z))↦
(Sq(t, z),SP(t, z),SD(t, z)) ∶= (q(T − t, z), P(T − t, z),−D(T − t, z))we
can use the t→ +∞ decay of causal solutions to the stable pure state to
prove the following.

Corollary

There exist incident pulses q0(t) satisfying the same assumptions as above for
which the Maxwell-Bloch Cauchy problem for an initially-unstable medium
(D− = 1) has (other) solutions that are not causal and that decay to both stable
and unstable pure states as t→ +∞.

This proves rigorously that without the imposition of causality, the Cauchy
problem on an initially-unstable medium is ill-posed.
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The nongeneric case — initially-stable medium

Theorem
Suppose that the incident pulse satisfies q0(t) ∈S (R) and q0(t) = 0 for t < 0,
and q0 generates no discrete eigenvalues or spectral singularities. If
r0 = r(0) = 0, so that the index M of the first nonzero value r(m)0 for m =M is
positive, then the causal solution of the Maxwell-Bloch Cauchy problem on an
initially-stable medium (D− = −1) satisfies

q(t, z) = −2
iM

M!
∣r(M)0 ∣e−iℵM ( z

2t
)

1
2 (M+1)

JM+1(2
√

2tz)+O((z/t)
1
2 (M+2))

P(t, z) = 2
iM

M!
∣r(M)0 ∣e−iℵM ( z

2t
)

1
2 M

JM(2
√

2tz)+O((z/t)
1
2 (M+1))

D(t, z) = −1+ 2
∣r(M)0 ∣2

(M!)2
( z

2t
)

M
JM(2

√
2tz)2 +O((z/t)

1
2 (M+1)),

as t→ +∞ with z ≥ 0 and z = o(t).
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The nongeneric case — initially-stable medium

This result admits corollaries obtained by restriction to the
medium-edge regime with the help of

Jn(2x) = xn

n!
(1+O(x2)), x→ 0

and by restriction to the medium-bulk regime with the help of

Jn(2x) = 1√
πx
(cos(2x− 1

2
nπ − 1

4
π)+O(x−1)) , x→ +∞.

In the latter case, we can obtain asymptotics as t→ +∞with z > 0 fixed
and obtain that q(t, z) = O(t−1− 1

2 M), so as M = 1, 2, 3, . . . , absolute
integrability of t↦ q(t, z) is recovered. Also D(t, z)→ −1 as t→ +∞, so
the medium returns to the stable state in this limit, even for a
nongeneric incident pulse.
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The nongeneric case — initially-unstable medium

Theorem
Suppose that the incident pulse satisfies q0(t) ∈S (R) and q0(t) = 0 for t < 0,
and q0 generates no discrete eigenvalues or spectral singularities. If
r0 = r(0) = 0, so that the index M of the first nonzero value r(m)0 for m =M is
positive, then the causal solution of the Maxwell-Bloch Cauchy problem on an
initially-unstable medium (D− = 1) satisfies

q(t, z) = 2
i(−1)M+1

M!
∣r(M)0 ∣e−iℵM ( z

2t
)

1
2 (M+1)

JM+1(2i
√

2tz)+O(t−
1
2 (M+2)(1−α))

P(t, z) = 2
(−1)M+1

M!
∣r(M)0 ∣e−iℵM ( z

2t
)

1
2 M

JM(2i
√

2tz)+O(t−
1
2 (M+1)(1−α))

D(t, z) = 1+ 2(−1)M+1 ∣r
(M)
0 ∣2

(M!)2
( z

2t
)

M
JM(2i

√
2tz)2 +O(t−

1
2 (M+1)(1−α)),

as t→ +∞ with z = Ctα and α ≤ −1 (medium-edge and transition regimes
only).
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The nongeneric case — initially-unstable medium

Because this result for a nongeneric pulse incident on an
initially-unstable medium is not (provably) valid in the medium-bulk
regime that includes t→ +∞with z > 0 fixed, we cannot tell whether a
nongeneric pulse can trigger the decay of the medium to the stable pure state
as t→ +∞.

Indeed, the simplest example of a nongeneric incident pulse is
q0(t) ≡ 0, for which the unique causal solution is exactly

q(t, z) ≡ 0, P(t, z) ≡ 0, D(t, z) ≡ 1.

On the other hand, we know that a generic pulse results in D(t, z)→ −1
as t→ +∞ for each z > 0.
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Numerical experiments
A generic pulse incident on an initially-stable medium

Here we take q0(t) = 0.5eite−(1/t+1/(3.5−t))/10χ[0,3.5](t) and consider
propagation with D− = −1.

Here r0 = −0.50723− 0.47903i, ω = −1.03564, and ℵ = 1.26584.
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Numerical experiments
A generic pulse incident on an initially-unstable medium

Here we take q0(t) = 0.5eite−(1/t+1/(3.5−t))/10χ[0,3.5](t) and consider
propagation with D− = 1.

Here r0 = −0.50723− 0.47903i, ω = −1.03564, and ℵ = 1.26584.
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Numerical experiments
A nongeneric pulse incident on an initially-stable medium

Here we take q0(t) = 0.5e−(1/t+1/(6−t))/10 tanh(t− 3)χ[0,6](t) and consider
propagation with D− = −1.

Here M = 1, r(1)0 = 4.26238i and ℵ = 0.
.
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Numerical experiments
A nongeneric pulse incident on an initially-unstable medium

Here we take q0(t) = 0.5e−(1/t+1/(6−t))/10 tanh(t− 3)χ[0,6](t) and consider
propagation with D− = 1.

Here M = 1, r(1)0 = 4.26238i and ℵ = 0.
.

.

.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.
.
.

.

.
.
.

.



Proofs by ∂ steepest-descent analysis: D− = −1

For propagation in an initially-stable medium (D− =
−1), the phase in the Riemann-Hilbert problem is θ =
θs(λ; t, z) ∶= λt + z/(2λ), and the sign chart of Re(iθs)
involves the circle of (small, under our assumptions)
radius λ○ ∶=

√
z/(2t).

We choose this small circle to coincide with that in the RHP. Then, we
formulate an equivalent hybrid Riemann-Hilbert-∂ problem based on
a non-analytic extension to the complex plane of the function
R(λ) ∶= r(λ)/(1+ ∣r(λ)∣2):

R(λ)→ QN(u, v) ∶=
N−2

∑
n=0

(iv)n

n!
dnR
dun (u), (u, v) ∈ R2, λ = u+ iv.

This can be done for any N, which gives rise to the error terms O(t−∞)
in our theorems. The resulting unknown has jumps on and within the
small circle only, but is nonanalytic in a strip bisected by R (excluding
the circle).
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Proofs by ∂ steepest-descent analysis: D− = −1

We then construct a parametrix for the hybrid RH-∂ problem by:
Neglecting the ∂ part;
Approximating the jumps on and within the circle using the
Taylor expansion of r(λ) and the fact that the radius is small.

The parametrix is analytic for ∣k∣ ≠ 1, tends to the identity as k →∞,
and with counterclockwise orientation the jump matrix for ∣k∣ = 1 is

⎛
⎜
⎝

∆M(λ○k)−
1
2

λM
○ ∣aM∣√

∆M(λ○k)
kMeix(k+k−1)

− λM
○ ∣aM∣√

∆M(λ○k)
kMe−ix(k+k−1) ∆M(λ○k)−

1
2

⎞
⎟
⎠

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∶=
√

2tz

λ○ ∶=
√

z/(2t)

aM ∶= r(M)0 /M!

∆M(λ) ∶= 1+ ∣aM∣2λ2M.

When M = 0, this is solved in terms of Painlevé-III. When M > 0, it is a
small-norm problem, and its Neumann-series solution produces Bessel
functions at subleading order.
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Proofs by ∂ steepest-descent analysis: D− = 1

For propagation in an initially-unstable medium
(D− = 1), the phase is instead θ = θu(λ; t, z) = λt −
z/(2λ) and the change in sign on the second term
yields a different sign chart for Re(iθu). The phase
factors e±iθu are now non-oscillatory for ∣λ∣ = λ○.

We can compensate with an explicit “g-function” cut on the whole
circle, the effect of which is:

the “unstable” phase θu(λ; t, z) is replaced with the “stable” phase
θs(λ; t, z);
the phase factors are moved from the off-diagonal jump matrix
elements to the diagonal.

The resulting parametrix is again solved by Painlevé-III (on a rotated
axis) when M = 0. When M > 0, after restoring the unstable phase θu
we have a small-norm problem but only if zt is controlled. It is enough to
assume that zt = O(1) as t→ +∞.
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Thanks for your attention!
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