The Maxwell-Bloch System in the Sharp-Line Limit

Peter D. Miller
Department of Mathematics
University of Michigan

May 24, 2022
PIICQ Workshop on Excursions in Integrability

$$
\circ \circ \circ
$$

Joint work with Sitai Li (Xiamen)

Introduction

The Maxwell-Bloch system: quantum interaction of light and matter

Maxwell equation: $q_{z}=-\int_{\mathbb{R}} P g(\lambda) \mathrm{d} \lambda$.
Describes the evolution of an optical pulse $q(t, z) \in \mathbb{C}$ along an active-medium fiber with spatial coordinate z. The optical field is driven by the medium polarization $P(t, z ; \lambda) \in \mathbb{C}$ with frequency detuning λ.

Bloch subsystem: $P_{t}-2 \mathrm{i} \lambda P=-2 q D$ and $D_{t}=2 \operatorname{Re}\left(q^{*} P\right)$.
Describes the (retarded, $t=t_{\mathrm{lab}}-z / c$) time variation of the medium polarization and population inversion $D(t, z ; \lambda) \in \mathbb{R}$. These are driven by the optical field.
$g(\lambda)$ is a probability density describing the distribution of atoms with different frequency detunings λ, for instance if the atoms are in a gas, there is a Doppler shift in their frequencies due to relative motion.

Introduction

The Maxwell-Bloch system: Cauchy problem

To study the injection of an optical pulse into the end of a half-line optical medium $(z \geq 0)$ that is prepared in some asymptotic state in the distant past $(t \rightarrow-\infty)$ we take the Maxwell-Bloch system

$$
\begin{aligned}
& \frac{\partial q}{\partial z}(t, z)=-\int_{\mathbb{R}} P(t, z ; \lambda) g(\lambda) \mathrm{d} \lambda \\
& \frac{\partial P}{\partial t}(t, z ; \lambda)-2 \mathrm{i} \lambda P(t, z ; \lambda)=-2 q(t, z) D(t, z ; \lambda) \\
& \frac{\partial D}{\partial t}(t, z)=2 \operatorname{Re}\left(q(t, z)^{*} P(t, z ; \lambda)\right)
\end{aligned}
$$

with a (mathematical) initial condition

$$
q(t, 0)=q_{0}(t) \quad \text { (the incident pulse) }
$$

and (mathematical) boundary conditions

$$
\lim _{t \rightarrow-\infty} q(t, z)=0, \quad D_{-}:=\lim _{t \rightarrow-\infty} D(t, z ; \lambda)= \pm 1, \quad P_{-}:=\lim _{t \rightarrow-\infty} P(t, z ; \lambda)=0
$$

Introduction

The Maxwell-Bloch system: the sharp-line limit

If the atoms are in a crystal instead of a gas, minimal Doppler shift $\Longrightarrow g(\lambda)=\delta_{0}$. Then it is only necessary to track the polarization $P(t, z ; \lambda)$ and population inversion $D(t, z ; \lambda)$ for detuning $\lambda=0$, so with $P(t, z):=P(t, z ; 0)$ and $D(t, z):=D(t, z ; 0)$ we obtain the sharp-line limit:

$$
\begin{aligned}
& q_{z}=-P, \quad q(t, 0)=q_{0}(t), \quad \lim _{t \rightarrow-\infty} q(t, z)=0 \\
& P_{t}=-2 q D, \quad \lim _{t \rightarrow-\infty} P(t, z)=0 \\
& D_{t}=2 \operatorname{Re}\left(q^{*} P\right), \quad \lim _{t \rightarrow-\infty} D(t, z)=D_{-}= \pm 1
\end{aligned}
$$

The Bloch subsystem and BCs imply that $|P(t, z)|^{2}+D(t, z)^{2}=1$. If furthermore $q_{0}(t) \in \mathbb{R}$, then $q(t, z)$ and $P(t, z)$ are both real, and

$$
P=\sin (\Theta), \quad D=\cos (\Theta), \quad q=-\frac{1}{2} \Theta_{t} \Longrightarrow \Theta_{t z}=2 \sin (\Theta)
$$

the sine-Gordon equation in characteristic/light-cone coordinates.

Introduction

The Maxwell-Bloch system: the sharp-line limit

The sine-Gordon equation has been studied by
Cheng-Venakides-Zhou and Chen-Liu-Lu in the long-time limit for the (non-characteristic) Cauchy problem in laboratory coordinates:

$$
\Theta_{\tau \tau}-\Theta_{\chi \chi}+\sin (\Theta)=0, \quad \Theta(\chi, 0)=F(\chi), \quad \Theta_{\tau}(\chi, 0)=G(\chi)
$$

Some important observations:

- For this problem, the reflection coefficient $r(\lambda)$ comes from the Faddeev-Takhtajan scattering problem which automatically yields $r(0)=0$. But for the characteristic Cauchy problem r comes instead from the Zakharov-Shabat problem, and $r(0) \neq 0$ in general.
- For this hyperbolic problem, the solution is asymptotically confined to the light cone $|\chi / \tau|<1$, and $r(0)=0$ implies that $\Theta \rightarrow 0$ as $|\chi / \tau| \rightarrow 1$. For Maxwell-Bloch we may expect something different if $r(0) \neq 0$ in the sine-Gordon reduction, or if the reduction is not possible...

Introduction

Results

We study the characteristic Cauchy problem for the sharp-line Maxwell-Bloch system near the light cone edge: $z / t \rightarrow 0$ as $t \rightarrow+\infty$:

- We find a boundary-layer phenomenon: the pulse undergoes a sudden transition upon entering the medium. The transition is described by a specific 1-parameter family of solutions of the Painlevé-III equation recently seen in large-amplitude limits for the focusing nonlinear Schrödinger equation:
- Nongeneric focusing of waves in the semiclassical limit (Suleimanov, Buckingham-Jenkins-M).
- Near-field high-order limits of iterated Bäcklund transformations (rogue waves of infinite order: Bilman-Ling-M; high-order solitons: Bilman-Buckingham; general backgrounds: Bilman-M).
- Further implications: the optical pulse fails to be in $L^{1}(\mathbb{R})$ for all $z>0$ even if it has compact support at $z=0$; most pulses, but not all, switch the medium into its ground state as $t \rightarrow+\infty$.
Similar results without full justification were reported by Gabitov-Zakharov-Mikhailov. Fokas-Menyuk gave a more rigorous analysis of a similar problem, with different results.

Self-similar solutions of the Maxwell-Bloch system

Painlevé-III equation

For $z \geq 0$ and $t \geq 0$, set $x=\sqrt{2 t z}$ (similarity variable). Try
$q(t, z)=t^{-1} y(X), \quad P(t, z)=2 X^{-1} s(X), \quad D(t, z)=1-2 X^{-1} U(X), \quad X=x$.
Then the sharp-line Maxwell-Bloch equations for real q and P imply

$$
\begin{aligned}
y^{\prime}(X) & =-2 s(X) \\
X s^{\prime}(X) & =s(X)-2 X y(X)+4 y(X) U(X) \\
X U^{\prime}(X) & =U(X)-4 y(X) s(X)
\end{aligned}
$$

A related system replaces the third ODE with

$$
X U^{\prime}(X)=U(X)-4 X s(X)^{-1} y(X) U(X)+4 s(X)^{-1} y(X) U(X)^{2}
$$

The modified system implies that $u(X):=-s(X)^{-1} y(X)$ satisfies

$$
u^{\prime \prime}(X)=\frac{u^{\prime}(X)^{2}}{u(X)}-\frac{u^{\prime}(X)}{X}+\frac{4}{X}+4 u(X)^{3}-\frac{4}{u(X)}, \quad \text { (Painlevé-III) }
$$

and it has a first integral $J:=s(X)^{-2} U(X)(U(X)-X)$. When $J=-1$ we recover the original ODE for $U(X)$.

Causality

Our Cauchy problem is characteristic (data given on the light cone).

Definition (Causal solutions)

A solution of the Cauchy problem for a given incident pulse $q_{0}(t)$ is called causal if $q(z, t)=0$ holds for all $t<0$ and $z \geq 0$.

Obviously a causal solution can only be generated from an incident pulse $q_{0}(t)$ vanishing identically for $t<0$. From the boundary conditions at $t=-\infty$, the Bloch subsystem implies that for causal solutions, $D(z, t)=D_{-}$and $P(z, t)=0$ for all $t<0$ and $z \geq 0$.

Theorem

If $q_{0}(t)=0$ for all $t<0$, there can exist at most one causal solution of the Maxwell-Bloch Cauchy problem.

Generally, there exist multiple non-causal solutions for the same Cauchy data. Note that causality is fundamentally connected with the reflection coefficient; reflectionless solutions (solitons) are non-causal.

Lax pair

Jost solutions for $z=0$

The Lax pair for the Maxwell-Bloch system reads

$$
\begin{aligned}
& \boldsymbol{\phi}_{t}=\left(\mathrm{i} \lambda \sigma_{3}+\mathbf{Q}\right) \boldsymbol{\phi}, \quad \mathbf{Q}:=\left(\begin{array}{cc}
0 & q(t, z) \\
-q(t, z)^{*} & 0
\end{array}\right) \\
& \boldsymbol{\phi}_{z}=\frac{1}{2 \mathrm{i} \lambda} \boldsymbol{\rho} \boldsymbol{\phi}, \quad \boldsymbol{\rho}:=\left(\begin{array}{cc}
D(t, z) & P(t, z) \\
P(t, z)^{*} & -D(t, z)
\end{array}\right)
\end{aligned}
$$

Thus, the spectral problem that can be analyzed when $z=0$ is the nonselfadjoint Zakharov-Shabat equation. The inverse-scattering transform should be based on that problem, with the z-equation supplying (mathematical) time-evolution of scattering data.

Taking $z=0$ and $q(t, 0)=q_{0}(t) \in L^{1}(\mathbb{R})$ with support on $t \geq 0$ (for causality), Jost matrices are defined for $\lambda \in \mathbb{R}$ by the asymptotic behavior $\boldsymbol{\phi}_{ \pm}(t ; \lambda)=\mathrm{e}^{\mathrm{i} \lambda t \sigma_{3}}+o(1)$ as $t \rightarrow \pm \infty$.

Lax pair

Reflection coefficient for $z=0$

The scattering matrix is defined by $\mathbf{S}(\lambda):=\boldsymbol{\phi}_{-}(t ; \lambda)^{-1} \boldsymbol{\phi}_{+}(t ; \lambda)$ and is independent of t. The assumption that $q_{0}(t)=0$ for $t<0$ means that $\phi_{-}(t ; \lambda)=\mathrm{e}^{\mathrm{i} \lambda t \sigma_{3}}$ holds exactly for all $t \leq 0$, so $\mathbf{S}(\lambda)=\boldsymbol{\phi}_{+}(0 ; \lambda)$. The reflection coefficient $r(\lambda)$ is defined by

$$
r(\lambda):=\frac{S_{21}(\lambda)}{S_{11}(\lambda)}=\frac{\phi_{+, 21}(0 ; \lambda)}{\phi_{+, 11}(0 ; \lambda)} .
$$

Lemma

Suppose that $q_{0}(t) \in \mathscr{S}(\mathbb{R})$, that $q_{0}(t)=0$ for $t<0$, and that $S_{11}(\lambda) \neq 0$ for $\operatorname{Im}(\lambda) \geq 0$. Then $r(\lambda) \in \mathscr{S}(\mathbb{R})$ admits analytic continuation to $\operatorname{Im}(\lambda)>0$.

Evolution of the reflection coefficient in $z>0$ is difficult to justify; nonetheless we can formulate a Riemann-Hilbert problem that produces the unique causal solution of the Cauchy problem.

Riemann-Hilbert problem

Let $\Sigma_{\mathbf{M}}$ be the contour shown and take $r(\lambda) \in \mathscr{S}(\mathbb{R})$ analytic for $\operatorname{Im}(\lambda)>0$. For given $D_{-}:= \pm 1$ and coordinates $(t, z) \in \mathbb{R}^{2}$, seek $\mathbf{M}(\lambda)=\mathbf{M}(\lambda ; t, z), 2 \times 2$, analytic for $\lambda \in \mathbb{C} \backslash \Sigma_{\mathrm{M}}$ with $\mathbf{M} \rightarrow \mathbb{I}$ as $\lambda \rightarrow \infty$, and with the indicated jumps, where

$$
\mathbf{W}(\lambda):=\left(\begin{array}{cc}
1 & 0 \\
r(\lambda) \mathrm{e}^{-2 i \theta(\lambda)} & 1
\end{array}\right), \quad \theta(\lambda):=\lambda t-\frac{D_{-} z}{2 \lambda}
$$

and where $\mathbf{W}^{\dagger}(\lambda):=\mathbf{W}\left(\lambda^{*}\right)^{\dagger}$. A dressing argument proves:

Theorem

Let $q_{0}(t) \in \mathscr{S}(\mathbb{R})$ with $q_{0}(t)=0$ for $t<0$ generate no discrete eigenvalues or spectral singularities and have reflection coefficient $r(\lambda)$. Then the RHP is uniquely solvable for all $(t, z) \in \mathbb{R}^{2}$ and the unique causal solution to the Maxwell-Bloch Cauchy problem is

$$
q(t, z)=-2 i \lim _{\lambda \rightarrow \infty} \lambda M_{12}(\lambda ; t, z) \quad \text { and } \quad \rho(t, z)=D_{-} \mathbf{M}(0 ; t, z) \sigma_{3} \mathbf{M}(0 ; t, z)^{-1}
$$

Key quantities obtained from the reflection coefficient

Denote $r_{0}^{(m)}:=r^{(m)}(0)$, write r_{0} for $r_{0}^{(0)}$, and let M be the index m of the first nonzero $r_{0}^{(m)}$. Also, set

$$
\aleph:=\frac{1}{\pi} f_{\mathbb{R}} \ln \left(1+|r(\lambda)|^{2}\right) \frac{\mathrm{d} \lambda}{\lambda} ; \quad \aleph_{M}:=\arg \left(r_{0}^{(M)}\right)+\aleph .
$$

At $z=0, \rho(t, 0)$ can be expressed in terms of the Jost matrices as

$$
\rho(t, 0)=\left(\begin{array}{cc}
D(t, 0) & P(t, 0) \\
P(t, 0)^{*} & -D(t, 0)
\end{array}\right)=D_{-} \boldsymbol{\phi}_{-}(t ; 0) \sigma_{3} \boldsymbol{\phi}_{-}(t ; 0)^{-1}, \quad t>0 .
$$

This satisfies the enforced boundary condition $\rho(t, 0) \rightarrow D_{-} \sigma_{3}$ as $t \rightarrow-\infty$, and using the scattering matrix and a trace identity,

$$
\lim _{t \rightarrow+\infty} P(t, 0)=-D_{-} \frac{2\left|r_{0}\right| \mathrm{e}^{-\mathrm{i} \aleph_{0}}}{1+\left|r_{0}\right|^{2}} \quad \text { and } \quad \lim _{t \rightarrow+\infty} D(t, 0)=D_{-} \frac{1-\left|r_{0}\right|^{2}}{1+\left|r_{0}\right|^{2}}
$$

Physically, one expects $D(t, z) \rightarrow-1$ as $t \rightarrow+\infty$. Obviously not true at $z=0$ unless $r_{0}=0$ and $D_{-}=-1$.

Selection of self-similar solutions

For each given $\omega \in \mathbb{C}$, there is a unique odd analytic solution $u=u(X ; \omega)=-u(-X ; \omega)$ of Painlevé-III $(\alpha=0, \beta=\gamma=-\delta=4)$

$$
u^{\prime \prime}(X)=\frac{u^{\prime}(X)^{2}}{u(X)}-\frac{u^{\prime}(X)}{X}+\frac{4}{X}+4 u(X)^{3}-\frac{4}{u(X)}, \quad u^{\prime \prime \prime}(X)=\omega
$$

Taking $\omega \in(-3,3)$ and enforcing the consistent constraint $J=-1$ gives a solution $(y(X), s(X), U(X))$ of the self-similar Maxwell-Bloch system with Taylor expansions

$$
\begin{aligned}
& y(X ; \omega)=\frac{1}{2} \sqrt{1-\frac{\omega^{2}}{9}} X^{2}-\frac{\omega}{12} \sqrt{1-\frac{\omega^{2}}{9}} X^{4}+\mathcal{O}\left(X^{6}\right) \\
& s(X ; \omega)=-\frac{1}{2} \sqrt{1-\frac{\omega^{2}}{9}} X+\frac{\omega}{6} \sqrt{1-\frac{\omega^{2}}{9}} X^{3}+\mathcal{O}\left(X^{5}\right) \\
& U(X ; \omega)=\left(\frac{\omega}{6}+\frac{1}{2}\right) X+\mathcal{O}\left(X^{3}\right), \quad X \rightarrow 0
\end{aligned}
$$

These functions are exactly the ones that describe infinite-order solitons and rogue waves in the focusing NLS at time $t=0$ (Bilman-Buckingham and Bilman-Ling-M).

Selection of self-similar solutions

The functions $y(X ; \omega), s(X ; \omega)$, and $U(X ; \omega)$ are analytic on the real and imaginary axes of the X-plane.

Definition (Particular self-similar solutions of Maxwell-Bloch)
Given $\omega \in(-3,3)$ and $\xi=\mathrm{e}^{\mathrm{i} \kappa}, \kappa \in \mathbb{R}$, with $x=\sqrt{2 t z} \geq 0$, two real-valued self-similar solutions of the Maxwell-Bloch system are

$$
\begin{aligned}
q(t, z) & =q_{\mathrm{u}}(t, z ; \omega, \xi):=t^{-1} \xi y(x ; \omega) \\
P(t, z) & =P_{\mathrm{u}}(t, z ; \omega, \xi):=2 \xi x^{-1} s(x ; \omega) \\
D(t, z) & =D_{\mathrm{u}}(t, x ; \omega):=1-2 x^{-1} U(x ; \omega)
\end{aligned}
$$

and

$$
\begin{aligned}
& q(t, z)=q_{\mathrm{s}}(t, z ; \omega, \xi):=t^{-1} \xi y(-\mathrm{i} x ; \omega) \\
& P(t, z)=P_{\mathrm{s}}(t, z ; \omega, \xi):=-2 \mathrm{i} \xi x^{-1} s(-\mathrm{i} x ; \omega) \\
& D(t, z)=D_{\mathrm{s}}(t, x ; \omega):=-1+2 \mathrm{i} x^{-1} U(-\mathrm{i} x ; \omega)
\end{aligned}
$$

Plots of the particular self-similar solutions: $\xi=1$

Asymptotic regimes within the light cone

Definition (Asymptotic regimes)
Let $C>0$ be a fixed constant. The three asymptotic regimes within the light cone $z \geq 0, t \geq 0$ are defined as follows.

- The medium-edge regime corresponds to $t \rightarrow+\infty$ with $z=C t^{\alpha}$ and $\alpha<-1$.
- The transition regime corresponds to
 $t \rightarrow+\infty$ with $z=C t^{\alpha}$ and $\alpha=-1$.
- The medium-bulk regime corresponds to $t \rightarrow+\infty$ with $z=C t^{\alpha}$ and $|\alpha|<1$.

Main theorem

Theorem (Global asymptotics - generic case)

Suppose that the incident pulse satisfies $q_{0}(t) \in \mathscr{S}(\mathbb{R})$ and $q_{0}(t)=0$ for $t<0$, and q_{0} generates no discrete eigenvalues or spectral singularities. If $M=0$ (i.e., $r_{0}=r(0) \neq 0$), then with

$$
\omega:=3 \frac{\left|r_{0}\right|^{2}-1}{\left|r_{0}\right|^{2}+1} \in(-3,3)
$$

as $t \rightarrow+\infty$ with $z \geq 0$ and $z=o(t)$, the causal solution of the Maxwell-Bloch Cauchy problem

$$
\begin{aligned}
& q(t, z)=q_{\mathrm{m}}\left(t, z ; \omega, \mathrm{e}^{-\mathrm{i} \aleph_{0}}\right)+\mathcal{O}(z / t)+\mathcal{O}\left(t^{-\infty}\right) \\
& P(t, z)=P_{\mathrm{m}}\left(t, z ; \omega, \mathrm{e}^{-\mathrm{i} \aleph_{0}}\right)+\mathcal{O}\left((z / t)^{1 / 2}\right)+\mathcal{O}\left(t^{-\infty}\right) \\
& D(t, z)=D_{\mathrm{m}}(t, z ; \omega)+\mathcal{O}\left((z / t)^{1 / 2}\right)+\mathcal{O}\left(t^{-\infty}\right)
\end{aligned}
$$

where $\mathrm{m}=\mathrm{s}$ for propagation in an initially-stable medium $\left(D_{-}=-1\right)$ and $\mathrm{m}=\mathrm{u}$ for propagation in an initially-unstable medium $\left(\mathrm{D}_{-}=1\right)$.

Corollaries

asymptotics - generic case.

The following is proved by Taylor expansion of the functions $y(X ; \omega)$, $s(X ; \omega)$, and $U(X ; \omega)$.

Corollary

Under the same assumptions on $q_{0}(t)$, as $t \rightarrow+\infty$ with $z=C t^{\alpha}$ and $\alpha<-1$,

$$
\begin{aligned}
& q(t, z)=D_{-} \frac{2\left|r_{0}\right| \mathrm{e}^{-\mathrm{i} \aleph_{0}}}{1+\left|r_{0}\right|^{2}} z+\mathcal{O}\left(t^{2 \alpha+1}\right)+\mathcal{O}\left(t^{\alpha-1}\right) \\
& P(t, z)=-D_{-} \frac{2\left|r_{0}\right| \mathrm{e}^{-\mathrm{i} \aleph_{0}}}{1+\left|r_{0}\right|^{2}}+\mathcal{O}\left(t^{\alpha+1}\right)+\mathcal{O}\left(t^{\frac{1}{2}(\alpha-1)}\right) \\
& D(t, z)=D_{-} \frac{1-\left|r_{0}\right|^{2}}{1+\left|r_{0}\right|^{2}}+\mathcal{O}\left(t^{\alpha+1}\right)+\mathcal{O}\left(t^{\frac{1}{2}(\alpha-1)}\right)
\end{aligned}
$$

regardless of whether $D_{-}=-1$ or $D_{-}=1$.
This corollary shows that the solution in the medium-edge regime is very close to the exact solution for $z=0$.

Corollaries

Medium-bulk asymptotics - generic case.

Corollary

Under the same assumptions on $q_{0}(t)$, let

$$
\varepsilon:=\frac{1}{2 \pi} \ln \left(1+\left|r_{0}\right|^{-2 D_{-}}\right)>0, A:=\sqrt{\frac{2}{\pi}} \frac{|\Gamma(1+\mathrm{i} \varepsilon)|}{\left|r_{0}\right|^{\frac{1}{2} D_{-}}\left(1+\left|r_{0}\right|^{2 D_{-}}\right)^{\frac{1}{4}}}>0
$$

and for $x>0$ define $\varphi(x):=2 x-\varepsilon \ln (8 x)-\frac{1}{4} \pi+\arg (\Gamma(1+\mathrm{i} \varepsilon))$. Then as $t \rightarrow+\infty$ with $z=C t^{\alpha}$ and $\alpha \in(-1,1)$, in both cases $D_{-}= \pm 1$,

$$
\begin{aligned}
& q(t, z)=D_{-} \mathrm{e}^{-\mathrm{i} \aleph_{0}} \frac{1}{t}\left(\frac{t z}{2}\right)^{\frac{1}{4}} A \sin (\varphi(\sqrt{2 t z}))+\mathcal{O}\left(t^{-\frac{1}{4}(\alpha+5)}\right)+\mathcal{O}\left(t^{\alpha-1}\right) \\
& P(t, z)=-D_{-} \mathrm{e}^{-\mathrm{i} \aleph_{0}}\left(\frac{t z}{2}\right)^{-\frac{1}{4}} A \cos (\varphi(\sqrt{2 t z}))+\mathcal{O}\left(t^{-\frac{3}{4}(\alpha+1)}\right)+\mathcal{O}\left(t^{\frac{1}{2}(\alpha-1)}\right) \\
& D(t, z)=-1+\frac{1}{2}\left(\frac{t z}{2}\right)^{-\frac{1}{2}} A^{2} \cos ^{2}(\varphi(\sqrt{2 t z}))+\mathcal{O}\left(t^{-(\alpha+1)}\right)+\mathcal{O}\left(t^{\frac{1}{2}(\alpha-1)}\right)
\end{aligned}
$$

Corollaries

The previous result allows for $\alpha=0$. It shows that, unlike the situation near the edge of the medium $z=0$, for each fixed $z>0$, the active medium decays as $t \rightarrow+\infty$ to the stable pure state $(P=0$ and $D=-1)$ regardless of whether the initial state was stable $\left(D_{-}=-1\right)$ or unstable ($D_{-}=1$). The decay is quite slow however:

Corollary

Under the same assumptions on $q_{0}(t)$, for every $z>0$ the optical pulse function $t \mapsto q(t, z)$ does not lie in $L^{1}(\mathbb{R})$.

This is important to observe, because $q(\cdot, z) \in L^{1}(\mathbb{R})$ is the fundamental assumption of scattering theory for the Zakharov-Shabat system. Jost solutions are not guaranteed to exist for all $\lambda \in \mathbb{R}$ as soon as $z>0$.
However, this is not an obstruction to using the Riemann-Hilbert problem to capture the unique causal solution because existence and uniqueness are proved by independent means.

Corollaries

Ill-posedness of the Cauchy problem for an initially-unstable medium.

Using an elementary symmetry $\mathcal{S}:(q(t, z), P(t, z), D(t, z)) \mapsto$
$(\mathcal{S} q(t, z), \mathcal{S} P(t, z), \mathcal{S} D(t, z)):=(q(T-t, z), P(T-t, z),-D(T-t, z))$ we can use the $t \rightarrow+\infty$ decay of causal solutions to the stable pure state to prove the following.

Corollary

There exist incident pulses $q_{0}(t)$ satisfying the same assumptions as above for which the Maxwell-Bloch Cauchy problem for an initially-unstable medium ($D_{-}=1$) has (other) solutions that are not causal and that decay to both stable and unstable pure states as $t \rightarrow+\infty$.

This proves rigorously that without the imposition of causality, the Cauchy problem on an initially-unstable medium is ill-posed.

The nongeneric case - initially-stable medium

Theorem

Suppose that the incident pulse satisfies $q_{0}(t) \in \mathscr{S}(\mathbb{R})$ and $q_{0}(t)=0$ for $t<0$, and q_{0} generates no discrete eigenvalues or spectral singularities. If $r_{0}=r(0)=0$, so that the index M of the first nonzero value $r_{0}^{(m)}$ for $m=M$ is positive, then the causal solution of the Maxwell-Bloch Cauchy problem on an initially-stable medium ($D_{-}=-1$) satisfies

$$
\begin{aligned}
& q(t, z)=-2 \frac{\mathrm{i}^{M}}{M!}\left|r_{0}^{(M)}\right| \mathrm{e}^{-\mathrm{i} \aleph_{M}}\left(\frac{z}{2 t}\right)^{\frac{1}{2}(M+1)} J_{M+1}(2 \sqrt{2 t z})+\mathcal{O}\left((z / t)^{\frac{1}{2}(M+2)}\right) \\
& P(t, z)=2 \frac{\mathrm{i}^{M}}{M!}\left|r_{0}^{(M)}\right| \mathrm{e}^{-\mathrm{i} \aleph_{M}}\left(\frac{z}{2 t}\right)^{\frac{1}{2} M} J_{M}(2 \sqrt{2 t z})+\mathcal{O}\left((z / t)^{\frac{1}{2}(M+1)}\right) \\
& D(t, z)=-1+2 \frac{\left|r_{0}^{(M)}\right|^{2}}{(M!)^{2}}\left(\frac{z}{2 t}\right)^{M} J_{M}(2 \sqrt{2 t z})^{2}+\mathcal{O}\left((z / t)^{\frac{1}{2}(M+1)}\right),
\end{aligned}
$$

as $t \rightarrow+\infty$ with $z \geq 0$ and $z=o(t)$.

The nongeneric case - initially-stable medium

This result admits corollaries obtained by restriction to the medium-edge regime with the help of

$$
J_{n}(2 x)=\frac{x^{n}}{n!}\left(1+\mathcal{O}\left(x^{2}\right)\right), \quad x \rightarrow 0
$$

and by restriction to the medium-bulk regime with the help of

$$
J_{n}(2 x)=\frac{1}{\sqrt{\pi x}}\left(\cos \left(2 x-\frac{1}{2} n \pi-\frac{1}{4} \pi\right)+\mathcal{O}\left(x^{-1}\right)\right), \quad x \rightarrow+\infty .
$$

In the latter case, we can obtain asymptotics as $t \rightarrow+\infty$ with $z>0$ fixed and obtain that $q(t, z)=\mathcal{O}\left(t^{-1-\frac{1}{2} M}\right)$, so as $M=1,2,3, \ldots$, absolute integrability of $t \mapsto q(t, z)$ is recovered. Also $D(t, z) \rightarrow-1$ as $t \rightarrow+\infty$, so the medium returns to the stable state in this limit, even for a nongeneric incident pulse.

The nongeneric case - initially-unstable medium

Theorem

Suppose that the incident pulse satisfies $q_{0}(t) \in \mathscr{S}(\mathbb{R})$ and $q_{0}(t)=0$ for $t<0$, and q_{0} generates no discrete eigenvalues or spectral singularities. If
$r_{0}=r(0)=0$, so that the index M of the first nonzero value $r_{0}^{(m)}$ for $m=M$ is positive, then the causal solution of the Maxwell-Bloch Cauchy problem on an initially-unstable medium ($D_{-}=1$) satisfies

$$
\begin{aligned}
& q(t, z)=2 \frac{\mathrm{i}(-1)^{M+1}}{M!}\left|r_{0}^{(M)}\right| \mathrm{e}^{-\mathrm{i} \aleph_{M}}\left(\frac{z}{2 t}\right)^{\frac{1}{2}(M+1)} J_{M+1}(2 \mathrm{i} \sqrt{2 t z})+\mathcal{O}\left(t^{-\frac{1}{2}(M+2)(1-\alpha)}\right) \\
& P(t, z)=2 \frac{(-1)^{M+1}}{M!}\left|r_{0}^{(M)}\right| \mathrm{e}^{-\mathrm{i} \aleph_{M}}\left(\frac{z}{2 t}\right)^{\frac{1}{2} M} J_{M}(2 \mathrm{i} \sqrt{2 t z})+\mathcal{O}\left(t^{-\frac{1}{2}(M+1)(1-\alpha)}\right) \\
& D(t, z)=1+2(-1)^{M+1} \frac{\left|r_{0}^{(M)}\right|^{2}}{(M!)^{2}}\left(\frac{z}{2 t}\right)^{M} J_{M}(2 \mathrm{i} \sqrt{2 t z})^{2}+\mathcal{O}\left(t^{-\frac{1}{2}(M+1)(1-\alpha)}\right),
\end{aligned}
$$ as $t \rightarrow+\infty$ with $z=C t^{\alpha}$ and $\alpha \leq-1$ (medium-edge and transition regimes only).

The nongeneric case - initially-unstable medium

Because this result for a nongeneric pulse incident on an initially-unstable medium is not (provably) valid in the medium-bulk regime that includes $t \rightarrow+\infty$ with $z>0$ fixed, we cannot tell whether a nongeneric pulse can trigger the decay of the medium to the stable pure state as $t \rightarrow+\infty$.

Indeed, the simplest example of a nongeneric incident pulse is $q_{0}(t) \equiv 0$, for which the unique causal solution is exactly

$$
q(t, z) \equiv 0, \quad P(t, z) \equiv 0, \quad D(t, z) \equiv 1 .
$$

On the other hand, we know that a generic pulse results in $D(t, z) \rightarrow-1$ as $t \rightarrow+\infty$ for each $z>0$.

Numerical experiments

A generic pulse incident on an initially-stable medium
Here we take $q_{0}(t)=0.5 \mathrm{e}^{\mathrm{i} t} \mathrm{e}^{-(1 / t+1 /(3.5-t)) / 10} \chi_{[0,3.5]}(t)$ and consider propagation with $D_{-}=-1$.

Here $r_{0}=-0.50723-0.47903 i, \omega=-1.03564$, and $\aleph=1.26584$.

Numerical experiments

A generic pulse incident on an initially-unstable medium
Here we take $q_{0}(t)=0.5 \mathrm{e}^{\mathrm{i} t} \mathrm{e}^{-(1 / t+1 /(3.5-t)) / 10} \chi_{[0,3.5]}(t)$ and consider propagation with $D_{-}=1$.

Here $r_{0}=-0.50723-0.47903 i, \omega=-1.03564$, and $\aleph=1.26584$.

Numerical experiments

A nongeneric pulse incident on an initially-stable medium

Here we take $q_{0}(t)=0.5 \mathrm{e}^{-(1 / t+1 /(6-t)) / 10} \tanh (t-3) \chi_{[0,6]}(t)$ and consider propagation with $D_{-}=-1$.

Here $M=1, r_{0}^{(1)}=4.26238 \mathrm{i}$ and $\aleph=0$.

Numerical experiments

A nongeneric pulse incident on an initially-unstable medium

Here we take $q_{0}(t)=0.5 \mathrm{e}^{-(1 / t+1 /(6-t)) / 10} \tanh (t-3) \chi_{[0,6]}(t)$ and consider propagation with $D_{-}=1$.

Here $M=1, r_{0}^{(1)}=4.26238 \mathrm{i}$ and $\aleph=0$.

Proofs by $\bar{\partial}$ steepest-descent analysis: $D_{-}=-1$

For propagation in an initially-stable medium ($D_{-}=$ $-1)$, the phase in the Riemann-Hilbert problem is $\theta=$ $\theta_{\mathrm{s}}(\lambda ; t, z):=\lambda t+z /(2 \lambda)$, and the sign chart of $\operatorname{Re}\left(i \theta_{\mathrm{s}}\right)$ involves the circle of (small, under our assumptions) radius $\lambda_{0}:=\sqrt{z /(2 t)}$.
We choose this small circle to coincide with that in the RHP. Then, we formulate an equivalent hybrid Riemann-Hilbert- $\bar{\partial}$ problem based on a non-analytic extension to the complex plane of the function $R(\lambda):=r(\lambda) /\left(1+|r(\lambda)|^{2}\right):$

$$
R(\lambda) \rightarrow Q_{N}(u, v):=\sum_{n=0}^{N-2} \frac{(\mathrm{i} v)^{n}}{n!} \frac{\mathrm{d}^{n} R}{\mathrm{~d} u^{n}}(u), \quad(u, v) \in \mathbb{R}^{2}, \quad \lambda=u+\mathrm{i} v .
$$

This can be done for any N, which gives rise to the error terms $\mathcal{O}\left(t^{-\infty}\right)$ in our theorems. The resulting unknown has jumps on and within the small circle only, but is nonanalytic in a strip bisected by \mathbb{R} (excluding the circle).

Proofs by $\bar{\partial}$ steepest-descent analysis: $D_{-}=-1$

We then construct a parametrix for the hybrid $\mathrm{RH}-\bar{\partial}$ problem by:

- Neglecting the $\bar{\partial}$ part;
- Approximating the jumps on and within the circle using the Taylor expansion of $r(\lambda)$ and the fact that the radius is small. The parametrix is analytic for $|k| \neq 1$, tends to the identity as $k \rightarrow \infty$, and with counterclockwise orientation the jump matrix for $|k|=1$ is

$$
\left(\begin{array}{cc}
\Delta_{M}\left(\lambda_{0} k\right)^{-\frac{1}{2}} & \frac{\lambda_{0}^{M}\left|a_{M}\right|}{\sqrt{\Delta_{M}\left(\lambda_{0}\right)}} k^{M} \mathrm{e}^{\mathrm{i} x\left(k+k^{-1}\right)} \\
-\frac{\lambda_{0}^{M}\left|{ }_{M}\right|}{\sqrt{\Delta_{M}\left(\lambda_{0} k\right)}} k^{M} \mathrm{e}^{-\mathrm{i} x\left(k+k^{-1}\right)} & \Delta_{M}\left(\lambda_{0} k\right)^{-\frac{1}{2}}
\end{array}\right),\left\{\begin{array}{c}
x:=\sqrt{2 t z} \\
\lambda_{0}:=\sqrt{z /(2 t)} \\
a_{M}:=r_{0}^{(M)} / M! \\
\Delta_{M}(\lambda):=1+\left|a_{M}\right|^{2} \lambda^{2 M} .
\end{array}\right.
$$

When $M=0$, this is solved in terms of Painlevé-III. When $M>0$, it is a small-norm problem, and its Neumann-series solution produces Bessel functions at subleading order.

Proofs by $\bar{\partial}$ steepest-descent analysis: $D_{-}=1$

For propagation in an initially-unstable medium ($D_{-}=1$), the phase is instead $\theta=\theta_{\mathrm{u}}(\lambda ; t, z)=\lambda t-$ $z /(2 \lambda)$ and the change in sign on the second term

We can compensate with an explicit " σ-function" cut on the whole circle, the effect of which is:

- the "unstable" phase $\theta_{\mathrm{u}}(\lambda ; t, z)$ is replaced with the "stable" phase $\theta_{\mathrm{s}}(\lambda ; t, z)$;
- the phase factors are moved from the off-diagonal jump matrix elements to the diagonal.
The resulting parametrix is again solved by Painlevé-III (on a rotated axis) when $M=0$. When $M>0$, after restoring the unstable phase θ_{u} we have a small-norm problem but only if zt is controlled. It is enough to assume that $z t=\mathcal{O}(1)$ as $t \rightarrow+\infty$.

Thanks for your attention!

References

[1] D. Bilman and R. Buckingham, "Large-order asymptotics for multiple-pole solitons of the focusing nonlinear Schrödinger equation," J. Nonlinear Sci. 29, 2185-2229, 2019.
[2] D. Bilman, L. Ling, and P. D. Miller, "Extreme superposition: rogue waves of infinite order and the Painlevé-III hierarchy," Duke Math. J. 169, 671-760, 2020.
[3] D. Bilman and P. D. Miller, "Broader universality of rogue waves of infinite order," Physica D 435, 133289 (12 pages), 2022.
[4] R. J. Buckingham, R. M. Jenkins, and P. D. Miller, "Talanov self-focusing and its non-generic character," in preparation.
[5] G. Chen, J. Liu, and B.-Y. Lu, "Long-time asymptotics and stability for the sine-Gordon equation," arXiv: 2009.04260, 2020.
[6] P. J. Cheng, S. Venakides, and X. Zhou, "Long-tiem asymptotics for the pure radiation solution of the sine-Gordon equation," Comm. Partial Diff. Eq. 24, 1195-1262, 1999.
[7] A. S. Fokas and C. R. Menyuk, "Integrability and self-similarity in transient stimulated Raman scattering," J. Nonlinear Sci. 9, 1-31, 1999.
[8] I. P. Gabitov, V. E. Zakharov, and A. V. Mikhailov, "Superfluorescence pulse shape," JETP Lett. 37, 279-282, 1983.
[9] S. Li and P. D. Miller, "On the Maxwell-Bloch system in the sharp-line limit without solitons," arXiv:2105.13293, 2021. To appear in Comm. Pure Appl. Math.
[10] B. Suleimanov, "Effect of a small dispersion on self-focusing in a spatially one-dimensional case," JETP Lett. 106, 400-405, 2017.

