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A family of anharmonic oscillators

−Ψ′′(x) +

(
x2α +

`(`+ 1)

x2
− E

)
Ψ(x) = 0, α > 1, ` ≥ 0,E ∈ C.

E is said an eigenvalue if ∃Ψ 6= 0 such that

lim
x→0+

Ψ(x) = lim
x→+∞

Ψ(x) = 0.

The spectrum is discrete, simple and positive, En(`), n ∈ N:

En(`) ∼

(
2Γ
(

2α+1
2α

)
√
πΓ
(

3α+1
2α

)) 2α
α+1

(4n + 2`+ 3)
2α
α+1 , n→ +∞.

Spectral determinant D`(E ) is an entire function of order 1+α
2α .
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The Dorey-Tateo discovery

Dorey and Tateo, J.Phys A, (1998) noticed that D`(E )
satisfies the following countable collection of identities:

e−iπ
4`+2
α+1

D`
(
e−

2πi
α+1En

)
D`
(
e

2πi
α+1En

) = −1, ∀n ≥ 0

These are the Bethe Ansatz Equations (BAE) of an Integrable
Quantum Field Theory known Quantum KdV model!
(CFT with c < 1 ≈ 6 Vertex model with −1 < ∆ < 1)

The spectral determinant D`(E ) should correspond to the
ground state of the model.
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The ODE/IM Conjecture for Quantum KdV

Bethe States
of

Quantum KdV

$$

//
Anharmonic osc.

with
Monster potential

oo

yy

solutions of BAE
zeroes are almost all

real and positive
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Topological classification of solutions

Problem: Classify solutions of the BAE, Q(E ), whose zeros
are all real, positive and are asymptotics to En(`) as n→ +∞.

Use as “topological index” the sequence of root numbers.

Roots and Root-Numbers

Let Q(E ) be a solution and {xk} be the increasing sequence of
those positive real numbers such that

e−iπ
4l+2
α+1

Q
(
e−i

2π
α+1 xk

)
Q
(
e i

2π
α+1 xk

) = −1.

We say that k ∈ Z is a root-number if Q(xk) = 0.
Root-numbers {kn}n∈N form an increasing sequence of integers.
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Fixing Ambiguities

Numbering ambiguity: xk → xk+m1 with m1 ∈ Z
Fix the numbering by imposing: kn = n for n large enough .

Phase/Momentum ambiguity

e−iπ
4l+2
α+1 = e−4ip, p → p +

m2

2

Fix the momentum by imposing: 2p − 1
2 ≤ kmin < 2p + 1

2 ,
kmin = −mink{xk ≥ 0}
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Roots and integer partitions

Root-numbers are sequences that stabilizes: kn = n, if n� 0.

⇓

Root-numbers sequences are classified by integer partitions {kλn }.
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The ODE/IM Conjecture for Quantum KdV

Bazhanov-Lukyanov-Zamolodchikov, Adv. Theor. Math. Phys.,
(2003) made the following conjecture:

1 Let N ∈ N and 2p ≥ N + 1
2 . For every λ ` N, the BAE admit

a unique (normalised) solution Qλ
p (E ) whose sequence of

root-numbers coincide with {kλn }n∈N.

2 Any solution of the BAE coincides with the spectral
determinant of a certain anharmonic oscillator.
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Our results. 1. Well-posedness of BAE

(1) Theorem, M. - Conti 2022

Fix α > 1, (N, λ ` N). If p is sufficiently large:

The BAE admit a unique solution Qλ
p (E ) whose sequence of

root-numbers coincide with {kλn }n∈N.

+ Uniform asymptotics of roots/holes positions.

Earlier results:

Well-posedness for α > 1, p = 1
2α+2 and λ = ∅ by A. Avila in

Comm. Math. Phys. (2004) - after Voros.

Well-posedness for 2α integer and λ = ∅ by Hilfiker and
Runke, Ann. Henri Poincaré (2020), using TBA.
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Idea beyond the proof

Introducing the counting function,

z(x) = −2p +
1

2πi
log

Q
(
e−i

2π
α+1 x

)
Q
(
e i

2π
α+1 x

) , x ≥ 0,

The BAE becomes (cfr. Spohn’s talk)

z(xkn) = kn +
1

2
, n ∈ N

Transform the logarithmic BAE into a Free-Boundary
Nonlinear Integral Equation (known as Destri-De Vega).

Do mathematics!
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Destri-De Vega Integral Equation

Given λ ` N, call H = −k0 (k0 is the lowest root number).
The unknown is a tuple (ω, h1, . . . , hH , z)

[ω,+∞[, ω > 0, is the integration interval.

h1 < · · · < hH are the holes greater than the lowest root.

z : C 1([ω,∞[), strictly monotone, z(x) ∼ x
1+α
2α , x → +∞.

The Destri-De Vega (DDV) equation is
1. z(x)=−2p+

∫∞
ω Kα(x/y)dz(y)− 1

2e dyy +H Fα( x
ω )−

∑H
k=1 Fα

(
x
hk

)
,

Kα(x):=
sin( 2π

1+α)
π

x

1+x2−2x cos( 2π
1+α)

=xF ′α(x)

2. dz(ω)− 1
2e=−H

3. z(hk )=σ(k)+ 1
2
, k=1...N, σ(k)=hole number of hk
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Linearisation Vs WKB (large ` ODE/IM)

lω,p(x) = −2p +

∫ ∞
ω

Kα(x/y)lω,p(y)
dy

y
, lω,p(x) ∼ x

α+1
2α , x →∞.

It is a Wiener-Hopf equation, solutions can be expressed via

τ(ξ)= 1
2πi

∫ δ+i∞
δ−i∞

α
αs

1+α

2
√
π(1+α)s−1

Γ(− 1
2−

αs
1+α)Γ(1− s

1+α)
s2 Γ(−s)

ξ−sds, ξ=x/ω.

We discovered a (much more useful) formula in terms of a WKB
integral

τ(ξ) =
1

π

∫ u+

u−

√
u2ξ − u2α+2 − `(`+ 1)

du

u
,
√
. . .|u=u±

= 0.

This is a first hint of the ODE/IM correspondence.
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Perturbation/Analytical challenges

We need to analyse integrals like

Ap[f , ε] =

∫ ∞
1

Kα

(
x

y

)
〈pf (y) + ε(y)〉 dy

y
, 〈z〉 = z −

⌈
z − 1

2

⌉
Bp[f , ε] =

∫ ∞
1

Kα

(
x

y

)⌈
pf (y) + ε(y)− 1

2

⌉
dy

y

As an example, we showed that if f ∼ x
α+1
2α and ε, ε̃ are bounded (

+ some further hypotheses), then∣∣∣∣‖Bp[f , ε]− Bp[f , ε̃]‖∞ −
α + 1

2α
‖ε− ε̃‖∞

∣∣∣∣ .f
‖ε− ε̃‖∞

p

=⇒ contractiveness of the perturbation operator Bp[l , ·] when p is
large.
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Monster potentials

Monster potentials, BLZ (2003)

1. Let P be a monic polynomial of degree N. The spectral
determinant DP

` (E ) w.r.t the potential

V P = x2α +
`(`+ 1)

x2
−2

d2

dx2
logP(x2α+2)

satisfies the BAE if the monodromy about the additional poles is
trivial for every E .
2. Assuming that the roots of P are distinct, the trivial
monodromy is equivalent to the BLZ system

∑
j 6=k

zk

(
z2
k+(3+α)(1+2α)zk zj+α(1+2α)z2

j

)
(zk−zj )3 − αzk

4(1+α)
+∆(`,α)=0 , k=1,...,N.
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Wronskian of Hermite polynomials

Rational extensions of the harmonic oscillator

A rational extension of degree N is a potential

V U(t) = t2 − 2
d2

dt2
lnU(t),

where U a polynomial of degree N such that all monodromies
of ψ′′(t) = (V U(t)− E )ψ are trivial for every E .

Oblomkov’s theorem (1999)

U ∝ Uλ := Wr [Hλ1+j−1, . . . ,Hλj ], for a λ := (λ1, . . . , λj) ` N.
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Large momentum limit of Monster Potentials

(2) (Conditional) Theorem, M. - Conti 2021/2022

Assume there exists a sequence P` of monster potentials with
`→∞, then – up to subsequences –

zk =
`2

α
+ (2α+2)

3
4

α
vλk `

3
2 + O

(
`
)
, k = 1, . . . ,N

where vλk are the roots of Uλ.

(If a monster potential with a such an asymptotics exists and)
Dλ
` (E ) is the corresponding spectral determinant, then

Dλ
` (E ) = Qλ

p

(
E/η

)
, p= 2`+1

α+1
and η=

(
2
√
π Γ( 3

2 + 1
2α)

Γ(1+ 1
2α)

) 2α
1+α

.
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An unproven identity

Let λ ` N, assume Uλ has N distinct zeroes (see conjecture by
Felder-Hemery-Veselov 2010). Consider the Jacobian

Jλij (t) = δij

1 +
∑
l 6=j

6

(vλi − vλj )4

− (1− δij)
6

(vλi − vλj )4
, i ,j=1,...,N.

The eigenvalues of Jλ are the square numbers µk =
(
ρλk
)2

computed from the Tableau as follows:

Example: λ = (3, 2, 2, 1, 1) yields ρλ = {1, 1, 1, 2, 2, 4, 4, 5, 7}.

5 4 3 2 1

6 5 4

7

−→ 3 2 1

4
−→ 1 −→ ∅.

λ=(N) stated/proven in Ahmed, Bruschi, Calogero, Olshanetsky, and Perelomov (’79).
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This is just the tip of an iceberg!

The Big ODE/IM Conjecture, M. - Raimondo (2020)

Every solution of the BAE of every integrable quantum field theory
is the spectral determinant of a linear differential operator.
→ Bethe Roots are eigenvalues of a (possibly self-adjoint)
differential operator (cf. Hilbert-Pólya Conjecture).

Ongoing work: M - Raimondo after Feigin-Frenkel and M -R- Valeri

ĝ an affine Kac-Moody Lie-algebra and Lĝ the Langlands dual,{
Bethe states of ĝ− quantum KdV

}
L9999K

{
Lĝ− opers on C∗

}
.

MANY THANKS FOR YOUR ATTENTION!
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