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Fredholm determinants and the [IKS method

Fredholm determinant

The Fredholm determinant of a trace-class operator K on L2(R, ) with integral kernel
K is given by

det(1 — K Z - / det (K (z;,a;)); ;_; d;.

Integrable kernels

A kernel is k-integrable (in the sense of ITs-1zercIN-KoREPIN-SLavNov '93) if it is of the form

]?—1 i(T)h; ;
2.5- a]::y) ) with ij(:c)h](a:) =

K(z,y) =
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Fredholm determinants and the [IKS method

I IKS method (ITs-1zERGIN-KOREPIN-SLAVNOY ‘93, DEIFT-1TS-ZHoU '9/, BERTOLA-CAFASSO '12)

The IIKS method characterizes Fredholm determinants of integrable operators in
terms of a k X k Riemann-Hilbert problem:

v by Jacobi's identity,
05 logdet(1 — My, K) = —Tr (9, Mg, K(1 — My, K) ),
v the kernel of the resolvent operator
(1-MgK) !t —1=MyK (1—-MyK)*

s characterized by a k X k Riemann-Hilbert problem,

v for a suitable s-dependence, this gives explicit identities for
05 logdet(1 — My K) in terms of the Riemann-Hilbert solution.
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Fredholm determinants and the [IKS method

Riemann-Hilbert problem
The kernel R(z,y) of the resolvent operator My K(1 — Mg K) ™! is also k-integrabile,

0, kR .
Aoy = MO gy,

where Y solves the Riemann-Hilbert problem:

v Y :C\R — C** is analytic,
vV Y, (2) =Y_(2) (Ix — 2mib,(2) f(2)h(2)1) for z € R,
v asz— 00, Y(z) = I.

(Care must be taken for the precise sense of the boundary values and the asymptotic
condition!)

Tom Claeys Marking and conditioning of determinantal point processes




Gap probabilities and multiplicative statistics

Model Riemann-Hilbert problems

IIKS method and Riemann-Hilbert characterization are in particular effective if the kernel
K itself is also characterized by a model Riemann-Hilbert problem.

Dressing procedure then allows to transform the [IKS Riemann-Hilbert problem to a
oroblem suitable for asymptotic analysis and for deriving integrable differential
equations.

Determinantal point processes

Many of the modern applications of the [IKS method are connected to kernels K of
determinantal point processes.

|s there a point process interpretation of the method and of the Riemann-
Hilbert problem?
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Determinantal point processes

Determinantal point processes on R

A DPP on R is a random point process on R such that

1. Correlation functions are determinants:
pm (T, .o, Tm) = det (K(zi,25)); ;-
2. Average multiplicative statistics are Fredholm determinants:
E]J(1-¢(z)) = det(1 — MyK).

In particular, the gap probability

P (no points in A) = det (1 — 14K).

(See e.g. MaccH 75, SosHNIKov ‘00, Lyons 'O 3, SHIRAI-T AKAHASHI 'O 3, JoHANSSON 'O 6, HOUGH-
KRISHNAPUR-PERES-VIRAG 'O6, BORODIN '11.)

Tom Claeys Marking and conditioning of determinantal point processes




DPPs with 2-integrable kernels

Orthogonal Polynomial Ensembles

N points with symmetric joint probability distribution

LT o) [[uteies

N 1<i<j<N =1

Correlation kernel expressed in terms of orthonormal polynomials with respect to w:

N 1

_ ol S py @, ) = e futeyuly) PP 0 Py Wpi )

J=0 *Y

Multiplicative statistics are ratios of Hankel determinants:

Hy((1 - ¢)w)
HN(’UJ) .

det(l — M¢K) —
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DPPs with 2-integrable kernels

DPPs induced by orthogonal projections

Correlation kernel K for which the associated integral operator

Kf(z) = / K(z,9)(y)duy)

is an orthogonal projection (of finite or infinite rank).

Particular cases: OPEs (finite rank) and scaling limits of OPEs (infinite rank):

, KAi(a:,y) _ Al(:D)All(y) :All(w)AI(y) ,
m(z —y) z—y

sinm(x — y)

Ksin (CB, y) _

Bessel kernels, Painlevé kernels, ...

General property (SosHnikov '00): Total number of points in a random configuration
s a.s. equal to rank(K).
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Thinning, marking and conditioning of DPPs
Thinning

Given a point process P on R and 6 : R — [0,1], we define O-thinning of P by removing
each point € in the configuration independently with probability 1 — 9(:13)

Q(X)A y

,__/_\\/\¢

— K Ko -

Property

A A

= X

If P is the DPP with kernel K(x,y) and reference measure , then so is its 8-thinning, but
now with reference measure

(1= 0)(z)du(z).

Thinning preserves integrable kernel DPPs, but not orthogonal projection DPPs.
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Thinning, marking and conditioning of DPPs
Marked point process

Given a point process Pon R and 6 : R — [0,1], we define a marked point process P°
on R x {0,1} by assigning to each point  independently mark 1 with probability 8(z) and
mark 0 with probability 1 — 6(z).

AOG)
E — —0— “2$X54; o HWkA

W j;—‘ K Xj@i %’-M@)FkO

Property

If P is the DPP with kernel K(z,y) and reference measure pu, then so is P?, but with
reference measure

dpl (z,b) = 0(z)dp(z)ddg—1y + (1 — 0)(z)du(z)ddg_gy on R x {0,1}.

Marking preserves integrable kernel DPPs and orthogonal projection DPPs.
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Thinning, marking and conditioning of DPPs
Conditioning on presence of a point
Given a point process P on R, the local reduced Palm measure of a point v P,

represents the point process [P conditioned on v being a point in the configuration, and
then removing v.

Property (SHIRAI-TAKAHASHI 'O 3)

If P is the DPP with kernel K(x,y) and reference measure u, then P, is the DPP with kernel

1 (K@) K@)
Bol@9) = g0y 9 (K<v, W) K, v>) '

Palm transformation preserves OPEs, integrable kernel DPPs and orthogonal
projection DPPs.
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Thinning, marking and conditioning of DPPs

Conditioning on absence of points

Given a point process P on R, define the conditional ensemble P4 by conditioning [P on

N

configurations without points in A C R.

Property

If P is the DPP with kernel K(x,y) and reference measure p and if det(1 — 14K) £ 0, then
P4 is the DPP with kernel of the operator

1,4 K(1—1,4K) .

Conditioning on a gap preserves OPEs, integrable kernel DPPs, but not orthogonal
projection DPPs.
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Conditioning on marked point process

Given a configuration € and a marking function 8 : R — [0, 1], we write £; for the

configuration of mark 7 @ @ s>m the marked point process 12

/\T\ ! ,
— S S e &

The probability to have no mark 1 particles is

PY(& = 0) = det(1 — MyK).

If this is non-zero, we can define the conditional ensemble IP’?Q (on R) by conditioning

P° on the event & = 0.

Conditional ensemble (cf. Buretov 12, BureTov-Qlu-SHamov '21)

If P is the DPP with kernel K of the operator K, then PIQ) is the DPP with kernel of the

operator
M;_oK(1 — MgK) ' on L*(R,dpu), or

K(1 —MyK) ™ on L2(R, (1 — 6)dpu).
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Finite number of observed particles

60

v which represents the conditioning of P

We want to define a conditional ensemble P

on particles at vy,...,vg, and on no other mark 1 particles.

Conditional ensemble

Let P be a DPP with kernel K of the operator K, and suppose that Pe(#fl =k) > 0. For

PY-qe. k-point mark 1 configuration v ={wvq,...,v;},
IP”HV s the DPP with kernel of the operator

Ky (1 — MgKy) ™t on L2(R, (1 — 0)du).

Compare this to the Poisson process P with intensity p on (R, du): then IP"H@ s the
Poisson point process with intensity p on (R, (1 — 8)du), which is the same as the

unconditioned distribution of mark 0 points.
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Orthogonal polynomial ensembles

Conditional ensembles of OPEs

If P is an N-point OPE with density ZL H1<i<j<N(xj — z;)? vazl w(x;)dz;, then IP)‘OV s an
n = (N — k)-point OPE with density

n k
% H (z; — )’ H (H(%’j — W)Z) (1 -0)(z;)w(z;)dz;.

N 1<i<i<n j=1 \/=1

For w(x) = e N k=01- O(z) = e YW@ for W >0, IP’|0V is the OPE with confining

potential 2 replaced by z? + W(zx). So any unitary invariant ensemble with
confining potential > z? is a conditional ensemble of the GUE.
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Conditional ensembles in the [IKS method

Theorem (C-GLESNER '21)

The lIKS Riemann-Hilbert problem

v Y :C\R — C"F is analytic,
v Y, (2) =Y_(2) (I — 2mi0(z) f(2)h(z)") for z € R,
v oasz— o0, Y(z2) = I,

characterizes the kernel of the conditional ensemble K‘%:

k
. Fi(x)H;(y
L —Y

6

v but then the kernel is connected to @

A similar characterization holds for P

Darboux-Schlesinger transformation of the Riemann-Hilbert problem and to
Janossy densities (see Soria TARRICONE's talk).
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Conditional ensembles in the [IKS method

Point process interpretation of the [IKS method

We can re-write Jacobi's identity as

0505 (z;)
— 1 — 03 (ZUJ) ’

J

0s1ogE | [(1 - 0,(xy)) = ~Ej
J

relating a average multiplicative statistic of the DPP to an average additive
statistic in the conditional ensemble.

The [IKS RH problem does not only characterize logarithmic derivatives of average
multiplicative statistics, but it characterizes also the kernel of the conditional

ensemble IP’%.
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Conditional ensembles in the [IKS method
Asymptotic analysis and g-functions

This point process interpretation of the [IKS method is not just a different viewpoint, it also
helps to analyze the Riemann-Hilbert problem asymptotically.

A crucial step in the DeiFT-ZHoU steepest descent method is to construct a suitable g-

function, related to an equilibrium measure. This equilibrium measure should be the
limiting one-point function in the conditional ensemble ]P)\H(Z)' Constructing the g-function

purely on analytic grounds is often hard, the point process interpretation helps to guess
the form of the equilibrium measure.

Cf. pushed Coulomb gas interpretation to describe tails of det(1 — MgK™) and of the
KPZ equation (CorwiIN-GHOSAL-KRAJENBRINK-LE DoussaL-Tsal 18 ), and asymptotic analysis of

the associated Riemann-Hilbert problem (Carasso-C, Carasso-C-Ruzza, CHARLIER-C-Ruzza "19-
'21).
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Number rigidity
Definition (GHosH "16, GHOSH-PERES '17/)

A point process is number rigid if for any bounded set B C R, the configuration of
points outside B almost surely determines the number of points in B.

B

+4%é/\4“%

o ]

]
J

Properties

DPPs induced by finite rank projections are trivially number rigid, since number of

points is a.s. equal to the rank of the projection.

DPPs can only be number rigid if they are induced by a projection operator (GHOSH-
KRISHNAPUR '15).

What about DPPs induced by infinite rank projections?
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Number rigidity
Theorem (BureTtov '16)

DPPs induced by orthogonal projections with sufficiently regular 2-integrable kernels

fi(z)g1(y) + fa(x)g2(y)

K(z,y) = —,

are number rigid (e.g., Sine, Airy, Bessel).

Question

Under which conditions does the mark 1 configuration in the marked point

process PY determine the number of points with mark 07

(For @ = 1g¢, this is the same as asking under which condition the point process is number
rigid.)

m ; & - e ga)
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Rigidity
Definition

A point process P is marking rigid if for any measurable § : R — [0,1] and for P?-o.e.
mark 1 configuration v, there exists £, € NU {0, 00} such that

P\Hv(#ﬁo — ev) = 1.

(Note that marking rigidity implies number rigidity, by setting 8 = 15¢.)

Theorem (C-GLESNER '21)

DPPs induced by orthogonal projections with sufficiently regular 2-integrable kernels

(including Sine, Airy, Bessel point processes) are marking rigid.
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Conclusion

Conditional DPPs

The transformation P — IP’?V s a well-behaving transformation of point processes, which

preserves DPPs and important subclasses like OPEs, projection DPPs, and integrable kernel
DPPs.

This transformation already appeared implicitly in:

v IIKS method to study Fredholm determinants,
v/ unitary invariant random matrix ensembles,
v study of number rigiditu.
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Conclusion

wWhy study conditional DPPs

Why study conditional ensembles?

v/ Natural in view of the search for error-correcting codes/spectrum
completion codes,

v useful in asymptotic analysis of Fredholm determinants of the
form det(1 — MyK) via the IIKS method, where it helps to guess o
convenient g-function,

N

allows to study refined notion of number rigidity,

N

allows to give a probabilistic interpretation to Jacobi's identity for
Fredholm determinants, Darboux-Schlesinger-Backlund
transformations for integrable systems (work in progress C-GLESNER-
Ruzza-TARRICONE) ...
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The end

Thank you for your attention!
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