Perturbative connection formulas for Heun equations

Oleg Lisovyy
Institut Denis Poisson, Université de Tours, France
in collaboration with Andrii Naidiuk

- We are going to consider linear ODEs of the form

$$
\psi^{\prime \prime}(z)=V(z) \psi(z) \quad \text { w/ rational } V(z)
$$

- Simplest model cases correspond to ODEs for classical special functions (hypergeometric, Bessel, Airy, ...).
- Next-to-simplest cases correspond to Heun's equation and its degenerations (Mathieu equation, cubic and quartic quantum oscillator, ...)
- Heun accessory parameters were conjecturally related to quasiclassical limit of Virasoro conformal blocks [Zamolodchikov, '86]
- Recently, Heun connection problem was also conjecturally solved in terms of quasiclassical conformal blocks [Bonelli, lossa, Lichtig, Tanzini, '21]

Goal: understand how the perturbative expansions following from the Trieste formula can be computed without CFT

Outline

(1) Heun equations
(2) CFT heuristics and Trieste formula
(3) Darboux-Polya method and Schäfke-Schmidt formula
(4) Perturbative solution of the (reduced confluent) Heun connection problem

Hypergeometric equation

Consider $\psi^{\prime \prime}(z)=V(z) \psi(z)$, with

$$
V(z)=\frac{\theta_{0}^{2}-\frac{1}{4}}{z^{2}}+\frac{\theta_{1}^{2}-\frac{1}{4}}{(z-1)^{2}}+\frac{\theta_{\infty}^{2}-\theta_{0}^{2}-\theta_{1}^{2}+\frac{1}{4}}{z(z-1)}
$$

Three regular singular points:

$$
V(z) \sim \begin{cases}\frac{\theta_{0}^{2}-\frac{1}{4}}{z^{2}} & \text { as } z \rightarrow 0 \\ \frac{\theta_{1}^{2}-\frac{1}{4}}{z^{2}} & \text { as } z \rightarrow 1, \\ \frac{\theta_{\infty}^{2}-\frac{1}{4}}{z^{2}} & \text { as } z \rightarrow \infty\end{cases}
$$

- local coordinate near ∞ is $\xi=\frac{1}{z}$
- three 2 nd order poles of the quadratic differential $V(z) d z^{2}$ on $\mathbb{C P}^{1}$
- two 2 nd order poles at $0, \infty$ correspond to $V(z)=\frac{\theta^{2}-\frac{1}{4}}{z^{2}}$ (Euler's equation)

Frobenius solutions provide eigenbases of the operator of analytic continuation around singular points $z=0,1, \infty$. Their asymptotics is determined by the exponents $\theta_{0,1, \infty}$ of local monodromy, e.g.

$$
\begin{aligned}
\psi_{0, \pm}(z) & =z^{\frac{1}{2} \mp \theta_{0}}(1-z)^{\frac{1}{2}-\theta_{1}}{ }_{2} F_{1}\left[\begin{array}{c}
\left.\frac{1}{2} \mp \theta_{0}-\theta_{1}-\sigma_{\infty}, \frac{1}{2} \mp \theta_{0}-\theta_{1}+\sigma_{\infty} ; z\right] \\
1 \mp 2 \theta_{0}
\end{array}\right. \\
& =z^{\frac{1}{2} \mp \theta_{0}}[1+O(z)] \quad \text { as } z \rightarrow 0,
\end{aligned} \quad \begin{aligned}
\psi_{1, \pm}(z) & =(1-z)^{\frac{1}{2} \mp \theta_{1}} z^{\frac{1}{2}-\theta_{0}}{ }_{2} F_{1}\left[\begin{array}{c}
\left.\frac{1}{2}-\theta_{0} \mp \theta_{1}-\sigma_{\infty}, \frac{1}{2}-\theta_{0} \mp \theta_{1}+\sigma_{\infty} ; 1-z\right] \\
1 \mp 2 \theta_{1}
\end{array}\right. \\
& =(1-z)^{\frac{1}{2} \mp \theta_{1}}[1+O(1-z)] \text { as } z \rightarrow 1 .
\end{aligned}
$$

The exponents are encoded into the Riemann scheme

0	1	∞
$\frac{1}{2}-\theta_{0}$	$\frac{1}{2}-\theta_{1}$	$\frac{1}{2}-\theta_{\infty}$
$\frac{1}{2}+\theta_{0}$	$\frac{1}{2}+\theta_{1}$	$\frac{1}{2}+\theta_{\infty}$

(normal form)

0	1	∞
0	0	a
$1-c$	$c-a-b$	b

(canonical form)

Eigenbases of Frobenius solutions are related by

$$
\binom{\psi_{0,+}(z)}{\psi_{0,-}(z)}=\mathrm{Q}\binom{\psi_{1,+}(z)}{\psi_{1,-}(z)}
$$

where the connection matrix is given by

$$
Q=\left(\begin{array}{cc}
\frac{\Gamma\left(1-2 \theta_{0}\right) \Gamma\left(2 \theta_{\mathbf{1}}\right)}{\Gamma\left(\frac{1}{2}-\theta_{\mathbf{0}}+\theta_{\mathbf{1}}+\theta_{\infty}\right) \Gamma\left(\frac{1}{2}-\theta_{\mathbf{0}}+\theta_{\mathbf{1}}-\theta_{\infty}\right)} & \frac{\Gamma\left(1-2 \theta_{\mathbf{0}}\right) \Gamma\left(-2 \theta_{\mathbf{1}}\right)}{\Gamma\left(\frac{1}{2}-\theta_{\mathbf{0}}-\theta_{\mathbf{1}}+\theta_{\infty}\right) \Gamma\left(\frac{1}{2}-\theta_{\mathbf{0}}-\theta_{\mathbf{1}}-\theta_{\infty}\right)} \\
\frac{\Gamma\left(1+2 \theta_{0}\right) \Gamma\left(2 \theta_{\mathbf{1}}\right)}{\Gamma\left(\frac{1}{2}+\theta_{\mathbf{0}}+\theta_{\mathbf{1}}+\theta_{\infty}\right) \Gamma\left(\frac{1}{2}+\theta_{\mathbf{0}}+\theta_{\mathbf{1}}-\theta_{\infty}\right)} & \frac{\Gamma\left(1+2 \theta_{\mathbf{0}}\right) \Gamma\left(-2 \theta_{\mathbf{1}}\right)}{\Gamma\left(\frac{1}{2}+\theta_{\mathbf{0}}-\theta_{\mathbf{1}}+\theta_{\infty}\right) \Gamma\left(\frac{1}{2}+\theta_{\mathbf{0}}-\theta_{\mathbf{1}}-\theta_{\infty}\right)}
\end{array}\right)
$$

Remark: it suffices to compute one of the 4 coefficients of Q, the others can be obtained it by symmetries - sign flips of θ_{0}, θ_{1}. (This holds in a much greater generality!)

Three problems:
(1) Reconstruction of the equation with prescribed monodromy
trivial in the hypergeometric case, parameters $\theta_{0,1, \infty}$ are directly related to the local monodromy exponents
(2) Constructing explicit bases of solutions
series/integral representations for ${ }_{2} F_{1}$'s
(3) Connection problem
solved in terms of gamma functions

Hypergeometric degeneration scheme

- \sharp (cusps) $+2=$ order of the pole of $V(z) d z^{2}$
- colliding two holes increases \sharp (cusps) by 2

Heun equation

Potential:

$$
V(z)=\frac{\theta_{0}^{2}-\frac{1}{4}}{z^{2}}+\frac{\theta_{1}^{2}-\frac{1}{4}}{(z-1)^{2}}+\frac{\theta_{t}^{2}-\frac{1}{4}}{(z-t)^{2}}+\frac{\theta_{\infty}^{2}-\theta_{0}^{2}-\theta_{1}^{2}-\theta_{t}^{2}+\frac{1}{2}}{z(z-1)}+\frac{(1-t) \mathcal{E}}{z(z-1)(z-t)}
$$

- 4 regular singular points $0,1, \infty, t \Rightarrow 4$ exponents θ_{k}
- 1 accessory parameter \mathcal{E} : not fixed by local monodromy

Degeneration scheme for Heun equations

Space of monodromy data:

$$
\mathcal{M}=\left\{M_{0,1, \infty, t} \in \mathrm{SL}(2, \mathbb{C}): M_{\infty} M_{1} M_{t} M_{0}=1, \operatorname{Tr} M_{k}=-2 \cos 2 \pi \theta_{k}\right\} / \sim
$$

- $\operatorname{dim} \mathcal{M}=2 ;(\mathcal{E}, t)$ can be seen as a pair of local coordinates on \mathcal{M}
- another possibility is to use trace functions such as

$$
\operatorname{Tr} M_{0} M_{t}=2 \cos 2 \pi \sigma, \quad \operatorname{Tr} M_{1} M_{t}=2 \cos 2 \pi \sigma^{\prime}
$$

- any choice of a coordinate σ on \mathcal{M} makes \mathcal{E} a function of t depending on σ
"Intermediate" problem:

$$
\text { find } \mathcal{E}(t \mid \sigma)=\begin{aligned}
& \text { reconstruct Heun equation from prescribed } \\
& \text { monodromy }(\sigma) \text { and singularity position }(t)
\end{aligned}
$$

Solved in terms of quasiclassical conformal blocks by Zamolodchikov conjecture
2. Conformal block heuristics

Virasoro conformal blocks

Fix $n \geq 4$ distinct points t_{0}, \ldots, t_{n-1} on $\mathbb{C P}^{1}$, using projective invariance to choose

$$
t_{0}=0, \quad t_{n-2}=1, \quad t_{n-1}=\infty
$$

and assuming that $0<\left|t_{1}\right|<\left|t_{2}\right|<\ldots<\left|t_{n-3}\right|<1$. Conformal block is a multivariate series assigned to a trivalent graph with n external edges, such as

$$
\begin{gathered}
\infty \frac{\left.\right|_{n-2} ^{t_{n-2}} \Delta^{\Delta_{n-1}}}{\Delta_{n}} \cdots \frac{\left.\left.\left.\right|_{3} ^{t_{3}}\right|_{\Delta_{2}} ^{t_{2}}\right|_{\Delta_{1}} ^{t_{1}} \Delta_{1}}{\widetilde{\Delta}_{2}} \widetilde{\Delta}_{1} \Delta_{0} \\
\mathcal{Z}(\mathbf{t}, \boldsymbol{\Delta}, \tilde{\Delta})=\prod_{\ell=1}^{n-3} t_{\ell}^{\tilde{\Delta}_{\ell}-\tilde{\Delta}_{\ell-1}-\Delta_{\ell}} \sum_{\mathbf{k} \in \mathbb{N}^{n-3}} \mathcal{Z}_{\mathbf{k}}(\boldsymbol{\Delta}, \tilde{\Delta})\left(\frac{t_{1}}{t_{2}}\right)^{k_{1}}\left(\frac{t_{2}}{t_{3}}\right)^{k_{2}} \cdots\left(\frac{t_{n-3}}{t_{n-2}}\right)^{k_{n-3}}
\end{gathered}
$$

Remarks:

- to every edge is assigned a weight $\Delta \in \mathbb{C}$
- coefs $\mathcal{Z}_{\mathrm{k}}(\boldsymbol{\Delta}, \tilde{\boldsymbol{\Delta}})$ are fixed by the Virasoro commutation relations \Longrightarrow rational functions of weights and central charge c.
- thanks to the AGT relation, there is an explicit combinatorial representation of \mathcal{Z} in terms of a sum over tuples of partitions.
- the series is convergent and analytic properties of \mathcal{Z} in each variable can be described using elementary braiding and fusion transformations.

Simplest nontrivial case: 4-point conformal block

$$
\mathcal{Z}(t)=\underbrace{\left.\left.\Delta_{\Delta_{\infty}}\right|_{\Delta_{\sigma}} ^{\Delta_{\Delta_{0}}}\right|^{\Delta_{t}}}_{\infty}=t^{\Delta_{\sigma}-\Delta_{t}-\Delta_{0}} \sum_{k=0}^{\infty} \mathcal{Z}_{k} t^{k}
$$

- depends on 5 conformal weights Δ_{k} and the central charge c
- a generalization of the Gauss ${ }_{2} F_{1}$ with 3 more parameters

Quasiclassical limit

Liouville parameterization:

$$
c=1+6\left(b+b^{-1}\right)^{2}, \quad \Delta=\alpha\left(b+b^{-1}-\alpha\right)
$$

We trade the central charge c and conformal weights Δ 's for b and α 's and consider the scaling limit

$$
\alpha \rightarrow \infty, \quad b \rightarrow 0, \quad \alpha b \rightarrow \frac{1}{2}+\theta
$$

Zamolodchikov conjecture

(1) Conformal blocks have WKB type asymptotics

$$
\mathcal{Z}\left(\mathbf{t} ;\left\{\alpha_{k}\right\}\right) \sim \exp b^{-2} \mathcal{F}\left(\mathbf{t} ;\left\{\theta_{k}\right\}\right)
$$

The series $\mathcal{F}\left(\mathbf{t} ;\left\{\theta_{k}\right\}\right)$ is called quasiclassical conformal block.
(2) The 4-point spherical quasiclassical conformal block is related to Heun accessory parameter function $\mathcal{E}(t \mid \sigma)$ by

$$
\mathcal{E}=t \frac{\partial \mathcal{F}}{\partial t}
$$

where external θ_{k} 's are Heun monodromy exponents and σ is similarly related to rescaled intermediate momentum.

Degenerate fields

- Special fusion relations:

$\epsilon, \epsilon^{\prime}= \pm$.
- BPZ (Belavin-Polyakov-Zamolodhikov) constraints:

- a linear PDE in position of fields
- 2nd order in z, 1st order in positions of other fields
- 3+1 points: hypergeometric equation in z

"Explanations" of Zamolodchikov conjecture and Trieste formula

Plugging the WKB ansatz for the asymptotics of $4+1$ conformal blocks

into the BPZ constraint, the corresponding PDE becomes Heun's ODE for the amplitude $\psi(z)$, with the accessory parameter given by $t \partial_{t} \mathcal{F}$.

NB: The connection formulas for ψ follow from the exact fusion transformations

They involve the limit of the hypergeometric connection coefficients $F_{\epsilon \epsilon^{\prime}}$ (\Rightarrow gamma functions) and derivatives of quasiclassical conformal blocks $\partial_{\theta_{\mathbf{0}}} \mathcal{F}, \partial_{\theta_{\mathbf{1}}} \mathcal{F}$ with respect to external momenta, just as in [Bonelli, lossa, Lichtig, Tanzini, '21].
3. Darboux-Polya method and Schäfke-Schmidt formula

Example. Consider the Taylor expansion of $u(z)=(1-z)^{-\theta}$ around $z=0$:

$$
u(z)=\sum_{k=0}^{\infty} u_{k} z^{k}, \quad u_{k}=\frac{(\theta)_{k}}{k!}=\frac{\Gamma(k+\theta)}{\Gamma(\theta) \Gamma(k+1)}
$$

The coefficients have the large k behavior

$$
a_{k}=\frac{k^{\theta-1}}{\Gamma(\theta)}\left[1+O\left(k^{-1}\right)\right] \quad \text { as } k \rightarrow \infty
$$

It depends on the exponent θ which hints that such asymptotics can capture the critical behavior of $u(z)$ at the branch point $z=1$.

Darboux theorem (1878)

Let $u(z)$ be analytic in a neighborhood of $z=0$. Suppose it has exactly one singularity $z=1$ inside a disk $|z|=R>1$. If $u(z)$ can be written in the form

$$
u(z)=v(z)+(1-z)^{-\theta} w(z), \quad \theta \notin \mathbb{Z}
$$

with $v(z), w(z)$ analytic in a neighborhood of $z=1$, then the coefficients of the Taylor expansion $u(z)=\sum_{k=0}^{\infty} u_{k} z^{k}$ at $z=0$ have the asymptotics

$$
u_{k}=\frac{w(1)}{\Gamma(\theta)} k^{\theta-1}\left[1+O\left(k^{-1}\right)\right] \quad \text { as } k \rightarrow \infty
$$

Proof idea:

$$
u_{k}=\frac{1}{2 \pi i} \oint_{C_{R} \cup C_{r}} z^{-k-1} u(z) d z
$$

- the contribution of C_{R} is at most $O\left(R^{-k}\right)$
- plug the expression of $u(z)$ into $\oint_{C_{r}}$
- $\oint_{C_{r}} z^{-k-1} v(z) d z=0$
- it suffices to estimate the asymptotics of

$$
\oint_{C_{r}} z^{-k-1}(1-z)^{-\theta} w(z) d z
$$

Application to connection problem

Consider a linear ODE $\psi^{\prime \prime}(z)=V(z) \psi(z)$ with potential

$$
V(z)=\frac{\theta_{0}^{2}-\frac{1}{4}}{z^{2}}+\frac{\theta_{1}^{2}-\frac{1}{4}}{(z-1)^{2}}+\frac{\tilde{V}(z)}{z(z-1)}
$$

where $\tilde{V}(z)$ is holomorphic inside $|z|=R>1$. Introduce normalized Frobenius solutions

$$
\begin{aligned}
& \hat{\psi}_{0, \pm}(z)=\frac{z^{\frac{1}{2} \mp \theta_{0}}}{\Gamma\left(1 \mp 2 \theta_{0}\right)} \sum_{k=0}^{\infty} \tau_{k}^{0, \pm} z^{k} \\
& \hat{\psi}_{1, \pm}(z)=\frac{(1-z)^{\frac{1}{2} \mp \theta_{1}}}{\Gamma\left(1 \mp 2 \theta_{1}\right)} \sum_{k=0}^{\infty} \tau_{k}^{1, \pm}(1-z)^{k}
\end{aligned}
$$

with $\tau_{0}^{0, \pm}=\tau_{0}^{1, \pm}=1$, and the Wronkians

$$
\mathrm{Q}_{\epsilon \epsilon^{\prime}}=\mathrm{Q}\left(\epsilon \theta_{0}, \epsilon^{\prime} \theta_{1}\right)=-W\left(\hat{\psi}_{0, \epsilon}, \hat{\psi}_{1, \epsilon^{\prime}}\right), \quad \epsilon, \epsilon^{\prime}= \pm
$$

The connection matrix relating the 2 bases is given by

$$
\binom{\hat{\psi}_{0,+}(z)}{\hat{\psi}_{0,-}(z)}=\frac{\pi}{\sin 2 \pi \theta_{1}}\left(\begin{array}{ll}
\mathrm{Q}_{+-} & -\mathrm{Q}_{++} \\
\mathrm{Q}_{--} & -\mathrm{Q}_{-+}
\end{array}\right)\binom{\hat{\psi}_{1,+}(z)}{\hat{\psi}_{1,-}(z)}
$$

Theorem [Schäfke, Schmidt, '80]
Write the solution $\hat{\psi}_{+, 0}$ as

$$
\hat{\psi}_{+, 0}(z)=\frac{z^{\frac{1}{2}-\theta_{0}}(1-z)^{\frac{1}{2}-\theta_{\mathbf{1}}}}{\Gamma\left(1-2 \theta_{0}\right)} u(z), \quad \text { with } u(z)=1+\sum_{k=1}^{\infty} u_{k} z^{k}
$$

Then

$$
\mathrm{Q}\left(\theta_{0}, \theta_{1}\right)=\lim _{k \rightarrow \infty} \frac{\Gamma(k+1)}{\Gamma\left(k-2 \theta_{1}\right)} u_{k}
$$

Proof. Direct corollary of the Darboux theorem, with $v(z)$ and $w(z)$ coming from the Frobenius solutions at $z=1$.

4. Application to reduced confluent Heun equation

Schäfke-Schmidt theorem applies to all Heun equations with two Fuchsian singularities: the usual, confluent, and reduced confluent Heun. In the last case,

$$
V(z)=\frac{\theta_{0}^{2}-\frac{1}{4}}{z^{2}}+\frac{\theta_{1}^{2}-\frac{1}{4}}{(z-1)^{2}}+\frac{\sigma_{\infty}^{2}-\theta_{0}^{2}-\theta_{1}^{2}+\frac{1}{4}-t z}{z(z-1)}
$$

- σ_{∞} is the accessory parameter
- we look for perturbative expansion of the Q-function (connection matrix) in t
- for $t=0$:
- the potential reduces to hypergeometric one with exponents

0	1	∞
$\frac{1}{2} \pm \theta_{0}$	$\frac{1}{2} \pm \theta_{1}$	$\frac{1}{2} \pm \sigma_{\infty}$

- the coefficients u_{k} are given by

$$
u_{k}^{(t=0)}=\frac{\left(\frac{1}{2}-\theta_{0}-\theta_{1}+\sigma_{\infty}\right)_{k}\left(\frac{1}{2}-\theta_{0}-\theta_{1}-\sigma_{\infty}\right)_{k}}{k!\left(1-2 \theta_{0}\right)_{k}}
$$

- the Q-function reads

$$
\mathrm{Q}^{(t=0)}\left(\theta_{0}, \theta_{1}\right)=\left[\Gamma\left(\frac{1}{2}-\theta_{0}-\theta_{1}+\sigma_{\infty}\right) \Gamma\left(\frac{1}{2}-\theta_{0}-\theta_{1}-\sigma_{\infty}\right)\right]^{-1}
$$

Introducing rescaled coefficients $a_{k}=u_{k} / u_{k}^{(t=0)}$, the Schäfke-Schmidt theorem can be reformulated as follows.

Proposition. The Q-function of the reduced confluent Heun equation is given by

$$
\mathrm{Q}\left(\theta_{0}, \theta_{1}, \sigma_{\infty}, t\right)=\frac{a_{\infty}\left(\theta_{0}, \theta_{1}, \sigma_{\infty}, t\right)}{\Gamma\left(\frac{1}{2}-\theta_{0}-\theta_{1}+\sigma_{\infty}\right) \Gamma\left(\frac{1}{2}-\theta_{0}-\theta_{1}-\sigma_{\infty}\right)},
$$

where $\left\{a_{k}\right\}$ satisfy the 3-term recurrence relation

$$
a_{k+1}-a_{k}=-t \beta_{k} a_{k-1}
$$

subject to initial conditions $a_{-1}=0, a_{0}=1$, with

$$
\beta_{k}=-\frac{k\left(k-2 \theta_{0}\right)}{\left(\left(k-\frac{1}{2}-\theta_{0}-\theta_{1}\right)^{2}-\sigma_{\infty}^{2}\right)\left(\left(k+\frac{1}{2}-\theta_{0}-\theta_{1}\right)^{2}-\sigma_{\infty}^{2}\right)}
$$

Formal solution:

$$
a_{\infty}=\operatorname{det}\left(\begin{array}{ccccc}
1 & -1 & & & \\
-t \beta_{1} & 1 & -1 & & \\
& -t \beta_{2} & 1 & -1 & \\
& & -t \beta_{3} & 1 & . \\
& & & . & .
\end{array}\right)=1-t \sum_{k=1}^{\infty} \beta_{k}+t^{2} \sum_{k^{\prime} \geq k+2}^{\infty} \beta_{k} \beta_{k^{\prime}}+\ldots
$$

Exponentiation gives a perturbative series involving only 1-fold sums:

$$
-\ln a_{\infty}=\sum_{n=1}^{\infty} \frac{\operatorname{Tr} A^{2 n}}{2 n} t^{n}, \quad A=\left(\begin{array}{ccccc}
0 & 1 & & & \\
\beta_{1} & 0 & 1 & & \\
& \beta_{2} & 0 & 1 & \\
& & \beta_{3} & 0 & . \\
& & & . & .
\end{array}\right)
$$

We have, for example,

$$
\begin{aligned}
& \operatorname{Tr} A^{2}=\sum_{k=1}^{\infty} 2 \beta_{k}, \quad \operatorname{Tr} A^{4}=\sum_{k=1}^{\infty}\left(4 \beta_{k} \beta_{k+1}+2 \beta_{k}^{2}\right) \\
& \operatorname{Tr} A^{6}=\sum_{k=1}^{\infty}\left(6 \beta_{k} \beta_{k+1} \beta_{k+2}+6 \beta_{k}^{2} \beta_{k+1}+6 \beta_{k} \beta_{k+1}^{2}+2 \beta_{k}^{3}\right),
\end{aligned}
$$

Walks of type (1, 2)

In general, $\operatorname{Tr} A^{2 n}=\sum_{k=1}^{\infty} \sum_{\lambda \vdash n}^{2^{n-1}} \mathcal{N}_{\lambda} \cdot \beta_{k}^{\lambda_{1}} \beta_{k+1}^{\lambda_{2}} \ldots \beta_{k+\ell}^{\lambda_{\ell}}$, where λ runs over all compositions (ordered partitions) of n and \mathcal{N}_{λ} are positive integers counting staircase walks of a certain type λ.

NB: Since β_{k} is rational in k, all sums can be computed in terms of expressions rational in $\theta_{0,1}, \sigma_{\infty}$ and polygamma functions \Longrightarrow we recover the predictions of Trieste formula!

Proposition. We have

$$
\ln a_{\infty}=\sum_{k=1}^{\infty} \ln \left(1-\frac{t \beta_{k}}{1-\frac{t \beta_{k+1}}{1-\frac{t \beta_{k+2}}{1-\ldots}}}\right)
$$

Proof. The determinant

$$
D_{k}=\operatorname{det}\left(\begin{array}{ccccc}
1 & -1 & & & \\
-t \beta_{k} & 1 & -1 & & \\
& -t \beta_{k+1} & 1 & -1 & \\
& & -t \beta_{k+2} & 1 & . \\
& & & \cdot & \cdot
\end{array}\right)
$$

satisfies a linear 3-term recurrence relation $D_{k}-D_{k+1}=-t \beta_{k} D_{k+2}$. It can be transformed into a nonlinear 2-term Riccati equation for D_{k} / D_{k+1}, which is solved by the above infinite fraction. It remains to write

$$
\ln a_{\infty}=\sum_{k=1}^{\infty} \ln \frac{D_{k}}{D_{k+1}}
$$

Remark. This also implies

$$
\mathcal{N}_{\lambda}=\frac{2 n}{\lambda_{1}} \prod_{\ell}\binom{\lambda_{\ell}+\lambda_{\ell+1}-1}{\lambda_{\ell+1}}
$$

Conclusions

- We have developed a systematic approach to perturbative solution of the connection problem for Heun equations between two Fuchsian singularities.
- It confirms Trieste formula expressing the connection coefficients in terms of quasiclassical Virasoro conformal blocks.
- It would be interesting to extend the method to irregular singularities and compare with CFT predictions of [Bonelli, lossa, Lichtig, Tanzini, '21].
- A rigorous proof using extended symplectic structure of [Bertola, Korotkin, '19] ?

THANK YOU!

