Integrable differential equations for the KPZ fixed point with narrow-wedge initial condition

Jinho Baik
University of Michigan

May 2022
PIICQ Workshop @ SISSA

1. Baik, Liu, and Silva, On limiting one-point distributions of the periodic TASEP, Annales de I'Institut Henri Poincaré 2021
2. Baik, Prokhorov, and Silva, Integrable systems governing KPZ fixed points, in preparation

Plan

1. KPZ fixed point and known integrable differential equations
2. Multi-time distributions
3. Results: Integrable DEs for cubic admissible functions
4. Discussions

Part 1. KPZ fixed point and known integrable differential equations

KPZ fixed point

The KPZ fixed point is a 2 d random field

$$
\mathcal{H}(\gamma, \tau) \quad \text { for }(\gamma, \tau) \in \mathbb{R} \times \mathbb{R}_{+}
$$

that is the conjectured universal limit of the height fluctuations for the KPZ universality class (random growth, directed polymers, interacting particle systems, ...). It was constructed by Matetski-Quastel-Remenik 2021

Consider three things:

- One-point distributions
- Equal-time, multi-position distributions
- Multi-time, multi-position distributions

Narrow-wedge initial condition

- Assume narrow-wedge initial condition
- $\epsilon^{-1} \mathcal{H}\left(\epsilon^{2} \gamma, \epsilon^{3} \tau\right) \stackrel{d}{=} \mathcal{H}(\gamma, \tau)$ for all $\epsilon>0$
- One-point marginal

$$
\mathcal{H}(0,1) \stackrel{d}{=} \mathrm{TW}
$$

$\beta=2$ Tracy-Widom distribution.

- Equal-time process

$$
\mathcal{H}(\gamma, 1)+\gamma^{2} \stackrel{d}{=} \mathcal{A}_{2}(\gamma)
$$

Airy ${ }_{2}$ process by Prähofer \& Spohn in 2002.

- Multi-time distributions were computed by Johansson \& Rahman 2021, and Liu 2022 (formula later)
- Fredholm determinant formulas

Known integrable DEs

The one-point distribution $F(\tau, \gamma, h)=\mathbb{P}(\mathcal{H}(\gamma, \tau) \leq h)$ has 3 variables, but due to the invariance,

$$
\mathbb{P}(\mathcal{H}(\gamma, \tau) \leq h)=\mathbb{P}(\mathcal{H}(0,1) \leq \xi)=F_{\mathrm{TW}}(\xi) \quad \text { with } \quad \xi=\frac{h}{\tau^{1 / 3}}+\frac{\gamma^{2}}{\gamma^{4 / 3}}
$$

From the formula of the Tracy-Widom distribution,

$$
\frac{\partial^{2}}{\partial \xi^{2}} \log \mathbb{P}(\mathcal{H}(0,1) \leq \xi)=-u(\xi)^{2}
$$

where u solves the Painlevé II equation $u^{\prime \prime}=\xi u+2 u^{3}$

The equal-time, multi-position distribution function

$$
\mathbb{P}\left(\bigcap_{i=1}^{m}\left\{\mathcal{H}\left(\gamma_{i}, 1\right)+\gamma_{i}^{2} \leq h_{i}\right\}\right)=\mathbb{P}\left(\bigcap_{i=1}^{m}\left\{\mathcal{A}_{2}\left(\gamma_{i}\right) \leq h_{i}\right\}\right)
$$

depends on $2 m$ variables, $\gamma_{1}, \cdots, \gamma_{m}$ (positions), h_{1}, \cdots, h_{m} (heights).

- Tracy \& Widom 2005 obtained a matrix ODE system with respect to $\partial=\partial_{h_{1}}+\cdots+\partial_{h_{m}}$ (formula later)
- Adler \& van Moerbeke 2005 considered $m=2$ case and obtained a PDE in 3 variables h_{1}, h_{2}, and $\gamma=\gamma_{2}$ (with $\gamma_{1}=0$.) (formula later)
- Wang 2009 extended the result of Adler-van Moerbeke to general m. Bertola \& Cafasso 2012 RHP for Airy process

Consider the equal-time, multi-location distribution and include the time variable (i.e. time-scaled Airy process)

$$
F\left(\tau, \gamma_{1}, \cdots, \gamma_{m}, h_{1}, \cdots, h_{m}\right):=\mathbb{P}\left(\bigcap_{i=1}^{m}\left\{\mathcal{H}\left(\gamma_{i}, \tau\right) \leq h_{i}\right\}\right)
$$

is a function of $2 m+1$ variables. Quastel \& Remenik 2022 obtained the matrix Kadomtsev-Petviashvili (KP) equation. (formula later)

- When $m=1$, it becomes a scalar equation in 3 variables τ, γ_{1}, h_{1}. A self-similar solution in the variable $\xi=\frac{h}{\tau^{1 / 3}}+\frac{\gamma^{2}}{\gamma^{4 / 3}}$ turns the scalar KP to the Painlevé II equation.
- For $m>1$, it is not clear if the KP reduces to Tracy-Widom ODE system or Adler-van Moerbeke PDE if we scale out τ.
- Quastel-Remenik obtained KP for general initial conditions

This talk is about

extending the differential equations for the equal-time distributions,

1) Tracy-Widom ODE system
2) Adler-van Moerbeke PDE
3) KP equation of Qastel-Remenik
to multi-time cases.

Part 2. Multi-time distributions of the KPZ fixed point

Multi-point distribution functions

Liu 2022 obtained

$$
\mathbb{P}\left(\bigcap_{i=1}^{m}\left\{\mathcal{H}\left(\gamma_{i}, \tau_{i}\right) \leq \mathrm{h}_{i}\right\}\right)=\oint \cdots \oint \operatorname{det}(1-\mathrm{K}) \prod_{i=1}^{m-1} \frac{\mathrm{~d} \zeta_{i}}{2 \pi \mathrm{i}\left(1-\zeta_{i}\right) \zeta_{i}}
$$

with an explicit operator K acting on a union of contours. The kernel of K is a bit complicated and the first result is that we can change it to a somewhat algebraically simpler formula.

Theorem
For every ζ, the $3 m$-variable function $D(\tau, \gamma, h \mid \zeta)=\operatorname{det}(1-\mathrm{K})$ is (strongly) cubic admissible whose definition is given in the next slide with the parameters

$$
t_{i}=-\frac{\tau_{i}}{3}, \quad y_{i}=\gamma_{i}, \quad x_{i}=h_{i}
$$

Cubic admissible functions

- Consider 3m real parameters "times", "positions", "heights"

$$
t=\left(t_{1}, \cdots, t_{m}\right), \quad y=\left(y_{1}, \cdots, y_{m}\right), \quad x=\left(x_{1}, \cdots, x_{m}\right)
$$

Define $(m+1) \times(m+1)$ matrix

$$
\Delta_{t, y, x}(z)=\Delta(z)=\operatorname{diag}\left(e^{t_{1} z^{3}+y_{1} z^{2}+x_{1} z}, \cdots, e^{t_{m} z^{3}+y_{m} z^{2}+x_{m} z}, 1\right)
$$

Let $\mathcal{H}=L^{2}(\Omega)$ where Ω is a union of "nice" contours.

Cubic admissible functions

- Consider $3 m$ real parameters "times", "positions", "heights"

$$
t=\left(t_{1}, \cdots, t_{m}\right), \quad y=\left(y_{1}, \cdots, y_{m}\right), \quad x=\left(x_{1}, \cdots, x_{m}\right)
$$

Define $(m+1) \times(m+1)$ matrix

$$
\Delta_{t, y, x}(z)=\Delta(z)=\operatorname{diag}\left(e^{t_{1} z^{3}+y_{1} z^{2}+x_{1} z}, \cdots, e^{t_{m} z^{3}+y_{m} z^{2}+x_{m} z}, 1\right)
$$

Let $\mathcal{H}=L^{2}(\Omega)$ where Ω is a union of "nice" contours.

- Definition We call $D: \mathcal{O} \subset \mathbb{R}^{3 m} \rightarrow \mathbb{C}$ cubic admissible on \mathcal{O} if

$$
D(t, y, x)=\operatorname{det}(1-K)_{\mathcal{H}}
$$

where

$$
K(u, v)=\frac{f(u)^{T} g(v)}{u-v} \text { with }\left\{\begin{array}{l}
f(u)=\Delta(u)_{t, y, x} U(u) \\
g(v)=\Delta(v)_{t, y, x}^{-1} V(v)
\end{array}\right.
$$

for $u \neq v$ and $K(u, u)=0$ for $u, v \in \Omega$. Here, $U(u)$ and $V(v)$ are ($m+1$)-dim column vectors that do not depend on t, y, x, and satisfy $U_{i}(u) V_{i}(u)=0$ for all $i=1, \cdots, m+1$.

Cubic admissible functions

- Consider $3 m$ real parameters "times", "positions", "heights"

$$
t=\left(t_{1}, \cdots, t_{m}\right), \quad y=\left(y_{1}, \cdots, y_{m}\right), \quad x=\left(x_{1}, \cdots, x_{m}\right)
$$

Define $(m+1) \times(m+1)$ matrix

$$
\Delta_{t, y, x}(z)=\Delta(z)=\operatorname{diag}\left(e^{t_{1} z^{3}+y_{1} z^{2}+x_{1} z}, \cdots, e^{t_{m} z^{3}+y_{m} z^{2}+x_{m} z}, 1\right)
$$

Let $\mathcal{H}=L^{2}(\Omega)$ where Ω is a union of "nice" contours.

- Definition We call $D: \mathcal{O} \subset \mathbb{R}^{3 m} \rightarrow \mathbb{C}$ cubic admissible on \mathcal{O} if

$$
D(t, y, x)=\operatorname{det}(1-K)_{\mathcal{H}}
$$

where

$$
K(u, v)=\frac{f(u)^{T} g(v)}{u-v} \text { with }\left\{\begin{array}{l}
f(u)=\Delta(u)_{t, y, x} U(u) \\
g(v)=\Delta(v)_{t, y, x}^{-1} V(v)
\end{array}\right.
$$

for $u \neq v$ and $K(u, u)=0$ for $u, v \in \Omega$. Here, $U(u)$ and $V(v)$ are ($m+1$)-dim column vectors that do not depend on t, y, x, and satisfy $U_{i}(u) V_{i}(u)=0$ for all $i=1, \cdots, m+1$.

- For the KPZ fixed point, D is strongly cubic admissible in the sense that U and V are constants on each component of Ω.
$K(u, v)=\frac{f(u)^{T} g(v)}{u-v}$ is an IIKS integrable operator introduced by Its, Izergin, Korepin and Slavnov 1990. If $1-K$ is invertible,

$$
Y(z)=I-\int_{\Omega} \frac{\left((1-K)^{-1} f\right)(u) g(u)^{T}}{u-z} \mathrm{~d} u
$$

solves the normalized RHP $Y_{+}=Y_{-} J$ on Ω with

$$
J(z)=I-2 \pi \mathrm{i} f(z) g(z)^{T}=\Delta(z) J_{0}(z) \Delta(z)^{-1}
$$

where $J_{0}(z)=I-2 \pi \mathrm{i} U(z) V(z)^{T}$ does not depend on t, y, x

- For example, when $m=1, J(z)=\left[\begin{array}{cc}a & b e^{t_{1} z^{3}+y_{1} z^{2}+x_{1} z} \\ c e^{-t_{1} z^{3}-y_{1} z^{2}-x_{1} z} & d\end{array}\right]$
$K(u, v)=\frac{f(u)^{T} g(v)}{u-v}$ is an IIKS integrable operator introduced by Its, Izergin, Korepin and Slavnov 1990. If $1-K$ is invertible,

$$
Y(z)=I-\int_{\Omega} \frac{\left((1-K)^{-1} f\right)(u) g(u)^{T}}{u-z} \mathrm{~d} u
$$

solves the normalized RHP $Y_{+}=Y_{-} J$ on Ω with

$$
J(z)=I-2 \pi \mathrm{i} f(z) g(z)^{T}=\Delta(z) J_{0}(z) \Delta(z)^{-1}
$$

where $J_{0}(z)=I-2 \pi \mathrm{i} U(z) V(z)^{T}$ does not depend on t, y, x

- For example, when $m=1, J(z)=\left[\begin{array}{cc}a & b e^{t_{1} z^{3}+y_{1} z^{2}+x_{1} z} \\ c e^{-t_{1} z^{3}-y_{1} z^{2}-x_{1} z} & d\end{array}\right]$
$W:=Y \Delta$ satisfies $W_{+}=W_{-} J_{0}$. Then, $\partial_{t} W_{+}=\left(\partial_{t} W_{-}\right) J_{0}$. Thus, $\left(\partial_{t} W\right) W^{-1}$ is entire. By Liouville's theorem, we get a Lax equation

$$
\partial_{t} W(z)=P(z) W(z)
$$

for a polynomial $P(z)$ whose coefficients are given in terms of Y_{1}, Y_{2}, \cdots. Similarly, $\partial_{x} W(z)=Q(z) W(z)$. From $\partial_{t} \partial_{x} W=\partial_{x} \partial_{t} W$, we obtain a zero curvature equation

$$
\partial_{x} P+P Q=\partial_{t} Q+Q P
$$

Features of the RHP

(i) $J_{0}(z)$ is a general complex matrix with no symmetry
(ii) $(m+1) \times(m+1)$
(iii) The contours are unions of multiple contours

If D is strongly cubic admissible, $J_{0}(z)$ is, furthermore, a constant on each component of $\Omega \Rightarrow$ additional Lax equation for ∂_{z}

Part 3. Results: 5 differential equations for cubic admissible functions

The variables $(t, y, x) \in \mathbb{R}^{3 m}$. Write the following $(m+1) \times(m+1)$ complex matrix as a block form

$$
Y_{1}(t, y, x)=\int_{\Omega}\left((1-K)^{-1} f\right)(u) g(u)^{T} \mathrm{~d} u=\left[\begin{array}{ll}
\mathrm{q} & \mathrm{p} \\
\mathrm{r} & \mathrm{~s}
\end{array}\right]
$$

where q is $m \times m$. Let

$$
\partial_{\mathrm{t}}=\sum_{i=1}^{m} \partial_{\mathrm{t}_{i}}, \quad \partial_{\mathrm{y}}=\sum_{i=1}^{m} \partial_{\mathrm{y}_{i}}, \quad \partial_{\mathrm{x}}=\sum_{i=1}^{m} \partial_{x_{i}}
$$

Then,

$$
\partial_{x} \log \operatorname{det}(1-K)=-\operatorname{Tr}(q)=s
$$

and $\partial_{\times} q=-p r$ and $\partial_{\times} s=r p$.

Note: p and r are $m \times 1$ and $1 \times m$ complex matrices
(a) (x and y) Coupled matrix nonlinear Schrödinger (NLS) with complex time $y \mapsto \mathrm{i} y$

$$
\begin{aligned}
& \partial_{y} \mathrm{p}=\partial_{x}^{2} \mathrm{p}+2 \mathrm{prp} \\
& \partial_{\mathrm{y}} \mathrm{r}=-\partial_{x}^{2} \mathrm{r}-2 \mathrm{rpr}
\end{aligned}
$$

(scalar NLS is i $\phi_{t}=-\frac{1}{2} \phi_{x x} \pm|\phi|^{2} \phi$) Also appeared in Krajenbrink \& le Doussal 2021 in their study of weak noise theory of the KPZ equation
(b) (x and t) Coupled matrix modified $\mathrm{KdV}(m K d V)$ equations

$$
\begin{aligned}
& \partial_{\mathrm{t}} \mathrm{p}=\partial_{\times}^{3} \mathrm{p}+3\left(\partial_{\times} \mathrm{p}\right) \mathrm{rp}+3 \operatorname{pr}\left(\partial_{\times} \mathrm{p}\right) \\
& \partial_{\mathrm{t}} \mathrm{r}=\partial_{\times}^{3} \mathrm{r}+3\left(\partial_{\times} \mathrm{r}\right) \mathrm{pr}+3 \mathrm{rp}\left(\partial_{\times} \mathrm{r}\right)
\end{aligned}
$$

(scalar mKdV is $u_{t}+u_{x x x}-6 u^{2} u_{x}=0$)
(c) $(x, y$, and $t)$ The $m \times m$ matrix

$$
\mathrm{u}:=\mathrm{pr}
$$

satisfies the matrix Kadomtsev-Petviashvili (KP) equation

$$
-4 \partial_{\mathrm{t}} u+\partial_{x}^{3} u+6 \partial_{x}\left(u^{2}\right)-3 \partial_{y}^{2} q+6\left[u, \partial_{y} q\right]=0
$$

with $\partial_{\times} \mathbf{q}=-\mathbf{u}$.
Scalar KP also holds for $\mathrm{v}:=\mathrm{rp}$ with $\partial_{\mathrm{x}} \mathrm{s}=\mathrm{v}$.

When $t_{1}=\cdots=t_{m}$, this is the same matrix KP equation obtained by Quastel \& Remenik for the equal-time KPZ fixed point.
(d) (matrix ODE system) Suppose that D is strongly cubic admissible. Define the differential

$$
\mathrm{f}^{\prime}:=\sum_{i=1}^{m} \mathrm{t}_{i} \partial_{\mathrm{x}_{i}} \mathrm{f}=\frac{\mathrm{d}}{\mathrm{~d} \xi} \mathrm{f}\left(\mathrm{x}_{1}+\mathrm{t}_{1} \xi, \cdots, \mathrm{x}_{m}+\mathrm{t}_{m} \xi\right)
$$

Then,

$$
3 Y_{1}^{\prime \prime}=2\left[Y_{1}^{\prime}, \mathrm{y}\right]+\left[\left[Y_{1}, \mathrm{t}\right], 3 Y_{1}^{\prime}-2\left[Y_{1}, \mathrm{y}\right]-\mathrm{x}\right]
$$

where $\mathrm{t}=\operatorname{diag}\left(t_{1}, \cdots, t_{m}, 0\right)$ and so on.

For the equal-time case $\mathrm{t}_{1}=\cdots=\mathrm{t}_{\mathrm{m}}=-1 / 3$, it becomes

$$
\begin{aligned}
& q^{\prime}+p r=0 \\
& p^{\prime \prime}-2 y p^{\prime}+2 p r p+2[y, q] p-x p=0, \\
& r^{\prime \prime}+2 r^{\prime} y+2 r p r+2 r[y, q]-r x=0
\end{aligned}
$$

where $f^{\prime}=\sum_{i=1}^{m} \partial_{x_{i}} f$. This is the same ODE system obtained by Tracy \& Widom for the Airy ${ }_{2}$ process
(e) (Adler-van Moerbeke PDE) When $m=2$, a strongly cubic admissible function $D(\mathrm{t}, \mathrm{y}, \mathrm{x})=\operatorname{det}(1-\mathrm{K})$ depends on 6 parameters, $\mathrm{t}_{1}, \mathrm{t}_{2}, \mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{x}_{1}, \mathrm{x}_{2}$. Consider

$$
t_{1}=t_{2}=-1 / 3, \quad y_{1}=0
$$

Then, $\operatorname{det}(1-K)$ depends on 3 parameters E, W, y where

$$
\mathrm{x}_{1}=\frac{E+W}{2}, \quad \mathrm{x}_{2}=\frac{E-W}{2}-y_{2}^{2}, \quad \mathrm{y}_{2}=y .
$$

Adler-van Moerbeke 2005 showed that for the Airy2 process, $M:=\log \operatorname{det}(1-K)$ satisfies

$$
\begin{aligned}
& \left(y^{2}\left(\partial_{E}^{2} \partial_{W}-\partial_{W}^{3}\right)+W\left(\partial_{E} \partial_{W}^{2}-\partial_{E}^{3}\right)+2 y \partial_{E} \partial_{W} \partial_{y}\right) M \\
& \quad+8 \partial_{E} \partial_{W} M \partial_{E}^{3} M-8 \partial_{E}^{2} M \partial_{E}^{2} \partial_{W} M=0
\end{aligned}
$$

We could derive this PDE from the Lax equations of a 3×3 RHP with a help of symbolic computations using Maple.

Part 4. Discussions

Curious identities

- For the KPZ fixed point, Liu 2022

$$
\mathbb{P}\left(\bigcap_{i=1}^{m}\left\{\mathcal{H}\left(\gamma_{i}, \tau_{i}\right) \leq \mathrm{h}_{i}\right\}\right)=\oint \cdots \oint \operatorname{det}(1-\mathrm{K}) \prod_{i=1}^{m-1} \frac{\mathrm{~d} \zeta_{i}}{2 \pi \mathrm{i}\left(1-\zeta_{i}\right) \zeta_{i}}
$$

- When $\tau_{1}=\cdots=\tau_{m}$, the LHS is the multi-point distribution Airy 2_{2} process for which Tracy-Widom, Adler-van Moerbeke, Quastel-Remenik obtained DEs. On the other hand, our result obtained DEs for $\operatorname{det}(1-K)$. They solve the same DEs.
- Equating them, we find, for example, that when $\tau_{1}=\cdots=\tau_{m}=: \tau$, there are real/complex $m \times m$ matrix KP solutions $q(\tau, \gamma, h)$ and $q(\tau, \gamma, h \mid \zeta)$ such that

$$
D(\tau, \gamma, h)=\oint \cdots \oint D(\tau, \gamma, h \mid \zeta) \prod_{i=1}^{m-1} \frac{\mathrm{~d} \zeta_{i}}{2 \pi \mathrm{i}\left(1-\zeta_{i}\right) \zeta_{i}}
$$

where
$D(\tau, \gamma, h \mid \zeta)=\exp \left[-\sum_{i=1}^{m} \int_{0}^{\infty} \operatorname{Tr} q_{i}(\tau, \gamma, h+\xi a \mid \zeta) \mathrm{d} \xi\right], \quad a=(1,2, \cdots, m)$
with q_{i} being the $i \times i$ upper left blocks of q.

Periodic KPZ fixed point

- Periodic KPZ fixed point is the conjectured limit for KPZ universality class models on a ring as the ring size and time both tend to infinity in a critical way
- Interpolates the KPZ fixed point and the Brownian motion - proven for one point function by Baik, Liu, \& Silva 2021. In particular, the one-point marginal is not TW, and it depends on time.
- The field is not yet constructed, but multi-time distributions were obtained Baik \& Liu 2019.
- Cubic admissible function and a discrete RHP with infinitely many poles
- Result: (a) coupled NLS with complex time (b) coupled mKdV (c) KP
- But, not (d) Tracy-Widom ODE (e) Adler-van Moerbeke PDE
- For one-point distribution, the equations were already obtained in Baik-Liu-Silva 2021.

Summary

- (periodic) KPZ fixed point and cubic admissible functions $D(t, y, x)=\operatorname{det}(1-K)$, a function of $3 m$ variables
- 5 integrable DEs
- coupled matrix NLS with complex time
- coupled matrix mKdV
- Tracy-Widom type system of matrix DEs
- matrix KP extending Quastel-Remenik
- Adler-van Moerbeke PDE
- Proof uses IIKS integrable operator and $(m+1) \times(m+1)$ RHP with complex jump without symmetry

Thank you for your attention

