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Part 1. KPZ fixed point and known integrable differential
equations
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KPZ fixed point

The KPZ fixed point is a 2d random field

H(γ, τ) for (γ, τ) ∈ R× R+

that is the conjectured universal limit of the height fluctuations for the KPZ

universality class (random growth, directed polymers, interacting particle

systems, ...). It was constructed by Matetski-Quastel-Remenik 2021

Consider three things:

• One-point distributions

• Equal-time, multi-position distributions

• Multi-time, multi-position distributions
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Narrow-wedge initial condition

I Assume narrow-wedge initial condition

I ε−1H(ε2γ, ε3τ)
d
= H(γ, τ) for all ε > 0

I One-point marginal

H(0, 1)
d
= TW

β = 2 Tracy-Widom distribution.

I Equal-time process

H(γ, 1) + γ2 d
= A2(γ)

Airy2 process by Prähofer & Spohn in 2002.

I Multi-time distributions were computed by Johansson & Rahman 2021,

and Liu 2022 (formula later)

I Fredholm determinant formulas
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Known integrable DEs

The one-point distribution F (τ, γ, h) = P (H(γ, τ) ≤ h) has 3 variables, but

due to the invariance,

P (H(γ, τ) ≤ h) = P (H(0, 1) ≤ ξ) = FTW(ξ) with ξ =
h

τ1/3
+

γ2

γ4/3

From the formula of the Tracy-Widom distribution,

∂2

∂ξ2
log P (H(0, 1) ≤ ξ) = −u(ξ)2

where u solves the Painlevé II equation u′′ = ξu + 2u3
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The equal-time, multi-position distribution function

P

(
m⋂
i=1

{H(γi , 1) + γ2
i ≤ hi}

)
= P

(
m⋂
i=1

{A2(γi ) ≤ hi}
)

depends on 2m variables, γ1, · · · , γm (positions), h1, · · · , hm (heights).

• Tracy & Widom 2005 obtained a matrix ODE system with respect to

∂ = ∂h1
+ · · ·+ ∂hm (formula later)

• Adler & van Moerbeke 2005 considered m = 2 case and obtained a PDE

in 3 variables h1, h2, and γ = γ2 (with γ1 = 0.) (formula later)

• Wang 2009 extended the result of Adler-van Moerbeke to general m.

Bertola & Cafasso 2012 RHP for Airy process
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Consider the equal-time, multi-location distribution and include the time

variable (i.e. time-scaled Airy process)

F (τ , γ1, · · · , γm, h1, · · · , hm) := P

(
m⋂
i=1

{H(γi , τ) ≤ hi}
)

is a function of 2m + 1 variables. Quastel & Remenik 2022 obtained the

matrix Kadomtsev-Petviashvili (KP) equation. (formula later)

• When m = 1, it becomes a scalar equation in 3 variables τ, γ1, h1. A

self-similar solution in the variable ξ = h
τ1/3 + γ2

γ4/3 turns the scalar KP to

the Painlevé II equation.

• For m > 1, it is not clear if the KP reduces to Tracy-Widom ODE system

or Adler-van Moerbeke PDE if we scale out τ .

• Quastel-Remenik obtained KP for general initial conditions
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This talk is about

extending the differential equations for the equal-time distributions,

1) Tracy-Widom ODE system

2) Adler-van Moerbeke PDE

3) KP equation of Qastel-Remenik

to multi-time cases.
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Part 2. Multi-time distributions of the KPZ fixed point
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Multi-point distribution functions

Liu 2022 obtained

P

(
m⋂
i=1

{H(γi , τi ) ≤ hi}
)

=

∮
· · ·
∮

det(1− K)

m−1∏
i=1

dζi

2πi(1− ζi )ζi

with an explicit operator K acting on a union of contours. The kernel of K is a

bit complicated and the first result is that we can change it to a somewhat

algebraically simpler formula.

Theorem
For every ζ, the 3m-variable function D(τ, γ, h|ζ) = det(1− K) is (strongly)

cubic admissible whose definition is given in the next slide with the parameters

ti = −
τi

3
, yi = γi , xi = hi
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Cubic admissible functions

I Consider 3m real parameters “times”, “positions”, “heights”

t = (t1, · · · , tm), y = (y1, · · · , ym), x = (x1, · · · , xm)

Define (m + 1)× (m + 1) matrix

∆t,y,x (z) = ∆(z) = diag(et1z
3+y1z

2+x1z , · · · , etmz3+ymz2+xmz , 1)

Let H = L2(Ω) where Ω is a union of “nice” contours.

I Definition We call D : O ⊂ R3m → C cubic admissible on O if

D(t, y , x) = det(1− K)H

where

K(u, v) =
f (u)T g(v)

u − v
with

{
f (u) = ∆(u)t,y,xU(u)

g(v) = ∆(v)−1
t,y,xV (v)

for u 6= v and K(u, u) = 0 for u, v ∈ Ω. Here, U(u) and V (v) are

(m + 1)-dim column vectors that do not depend on t, y , x , and satisfy

Ui (u)Vi (u) = 0 for all i = 1, · · · ,m + 1.

I For the KPZ fixed point, D is strongly cubic admissible in the sense that

U and V are constants on each component of Ω.
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K(u, v) = f (u)T g(v)
u−v

is an IIKS integrable operator introduced by Its, Izergin,

Korepin and Slavnov 1990. If 1− K is invertible,

Y (z) = I −
∫

Ω

((1− K)−1f )(u)g(u)T

u − z
du

solves the normalized RHP Y+ = Y−J on Ω with

J(z) = I − 2πif (z)g(z)T = ∆(z)J0(z)∆(z)−1

where J0(z) = I − 2πiU(z)V (z)T does not depend on t, y , x

• For example, when m = 1, J(z) =

[
a bet1z

3+y1z
2+x1z

ce−t1z
3−y1z

2−x1z d

]

W := Y∆ satisfies W+ = W−J0. Then, ∂tW+ = (∂tW−)J0. Thus,

(∂tW )W−1 is entire. By Liouville’s theorem, we get a Lax equation

∂tW (z) = P(z)W (z)

for a polynomial P(z) whose coefficients are given in terms of Y1,Y2, · · · .
Similarly, ∂xW (z) = Q(z)W (z). From ∂t∂xW = ∂x∂tW , we obtain a zero

curvature equation

∂xP + PQ = ∂tQ + QP
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Features of the RHP

(i) J0(z) is a general complex matrix with no symmetry

(ii) (m + 1)× (m + 1)

(iii) The contours are unions of multiple contours

If D is strongly cubic admissible, J0(z) is, furthermore, a constant on each

component of Ω ⇒ additional Lax equation for ∂z
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Part 3. Results: 5 differential equations for cubic admissible
functions
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The variables (t, y , x) ∈ R3m. Write the following (m + 1)× (m + 1) complex

matrix as a block form

Y1(t, y , x) =

∫
Ω

((1− K)−1f )(u)g(u)Tdu =

[
q p

r s

]

where q is m ×m. Let

∂t =
m∑
i=1

∂ti , ∂y =
m∑
i=1

∂yi , ∂x =
m∑
i=1

∂xi

Then,

∂x log det(1− K) = −Tr(q) = s

and ∂xq = −pr and ∂xs = rp.
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Note: p and r are m × 1 and 1×m complex matrices

(a) (x and y) Coupled matrix nonlinear Schrödinger (NLS) with complex

time y 7→ iy

∂yp = ∂2
x p + 2prp

∂yr = −∂2
x r − 2rpr

(scalar NLS is iφt = − 1
2
φxx ± |φ|2φ) Also appeared in Krajenbrink & le

Doussal 2021 in their study of weak noise theory of the KPZ equation

(b) (x and t) Coupled matrix modified KdV (mKdV) equations

∂tp = ∂3
x p + 3(∂xp)rp + 3pr(∂xp)

∂tr = ∂3
x r + 3(∂xr)pr + 3rp(∂xr)

(scalar mKdV is ut + uxxx − 6u2ux = 0)
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(c) (x , y , and t) The m ×m matrix

u := pr

satisfies the matrix Kadomtsev-Petviashvili (KP) equation

−4∂tu + ∂3
x u + 6∂x(u2)− 3∂2

y q + 6[u, ∂yq] = 0

with ∂xq = −u.

Scalar KP also holds for v := rp with ∂xs = v.

When t1 = · · · = tm, this is the same matrix KP equation obtained by Quastel

& Remenik for the equal-time KPZ fixed point.
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(d) (matrix ODE system) Suppose that D is strongly cubic admissible.

Define the differential

f′ :=
m∑
i=1

ti∂xi f =
d

dξ
f(x1 + t1ξ, · · · , xm + tmξ)

Then,

3Y ′′1 = 2[Y ′1 , y] + [[Y1, t], 3Y ′1 − 2[Y1, y]− x]

where t = diag(t1, · · · , tm, 0) and so on.

For the equal-time case t1 = · · · = tm = −1/3, it becomes

q′ + pr = 0,

p′′ − 2yp′ + 2prp + 2[y, q]p− xp = 0,

r′′ + 2r′y + 2rpr + 2r[y, q]− rx = 0.

where f ′ =
∑m

i=1 ∂xi f . This is the same ODE system obtained by Tracy &

Widom for the Airy2 process

23 / 28



(e) (Adler-van Moerbeke PDE) When m = 2, a strongly cubic admissible

function D(t, y, x) = det(1− K) depends on 6 parameters,

t1, t2, y1, y2, x1, x2. Consider

t1 = t2 = −1/3, y1 = 0

Then, det(1− K) depends on 3 parameters E ,W , y where

x1 =
E + W

2
, x2 =

E −W

2
− y2

2 , y2 = y .

Adler-van Moerbeke 2005 showed that for the Airy2 process,

M := log det(1− K) satisfies(
y2(∂2

E∂W − ∂
3
W ) + W (∂E∂

2
W − ∂

3
E ) + 2y∂E∂W ∂y

)
M

+ 8∂E∂WM∂3
EM − 8∂2

EM∂2
E∂WM = 0.

We could derive this PDE from the Lax equations of a 3× 3 RHP with a

help of symbolic computations using Maple.
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Part 4. Discussions
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Curious identities

I For the KPZ fixed point, Liu 2022

P

(
m⋂
i=1

{H(γi , τi ) ≤ hi}
)

=

∮
· · ·
∮

det(1− K)

m−1∏
i=1

dζi

2πi(1− ζi )ζi

I When τ1 = · · · = τm, the LHS is the multi-point distribution Airy2

process for which Tracy-Widom, Adler-van Moerbeke, Quastel-Remenik

obtained DEs. On the other hand, our result obtained DEs for

det(1− K). They solve the same DEs.

I Equating them, we find, for example, that when τ1 = · · · = τm =: τ ,

there are real/complex m ×m matrix KP solutions q(τ, γ, h) and

q(τ, γ, h|ζ) such that

D(τ, γ, h) =

∮
· · ·
∮

D(τ, γ, h|ζ)

m−1∏
i=1

dζi

2πi(1− ζi )ζi

where

D(τ, γ, h|ζ) = exp

[
−

m∑
i=1

∫ ∞
0

Tr qi (τ, γ, h + ξa|ζ)dξ

]
, a = (1, 2, · · · ,m)

with qi being the i × i upper left blocks of q.
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Periodic KPZ fixed point

I Periodic KPZ fixed point is the conjectured limit for KPZ universality

class models on a ring as the ring size and time both tend to infinity in a

critical way

I Interpolates the KPZ fixed point and the Brownian motion - proven for

one point function by Baik, Liu, & Silva 2021. In particular, the

one-point marginal is not TW, and it depends on time.

I The field is not yet constructed, but multi-time distributions were

obtained Baik & Liu 2019.

I Cubic admissible function and a discrete RHP with infinitely many poles

I Result: (a) coupled NLS with complex time (b) coupled mKdV (c) KP

I But, not (d) Tracy-Widom ODE (e) Adler-van Moerbeke PDE

I For one-point distribution, the equations were already obtained in

Baik-Liu-Silva 2021.
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Summary

• (periodic) KPZ fixed point and cubic admissible functions

D(t, y , x) = det(1− K), a function of 3m variables

• 5 integrable DEs

• coupled matrix NLS with complex time

• coupled matrix mKdV

• Tracy-Widom type system of matrix DEs

• matrix KP extending Quastel-Remenik

• Adler-van Moerbeke PDE

• Proof uses IIKS integrable operator and (m + 1)× (m + 1) RHP with

complex jump without symmetry

Thank you for your attention
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