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The general picture

Probabilistic side

Determinantal point
processes defined through

integrable kernels

Gap probability
· Airy

Integrable Systems’ side

Integrable PDEs
· KdV

l

Painlevé type equations
· PII

Aim
Consider Janossy densities (instead of gap probabilities) of a suitable modification of
the Airy DPP on the probabilistic side and see how the connection with integrable
systems is realized.
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The Airy kernel

We consider the integral operator KAi on L2(R) acting through the Airy kernel

K Ai(x , y) :=
Ai(x)Ai′(y)− Ai′(x)Ai(y)

x − y
=

∫ +∞

0
Ai(x + t)Ai(y + t)dt ,

where Ai(·) stands for the classical Airy function, i.e. a rapidly decaying at +∞ real
solution of the Airy equation f ′′(x) = xf (x).

[Soshnikov, 2000] Hermitian locally trace class operator K on L2(R) defines a
determinantal point process on R if and only if 0 ≤ K ≤ 1. If the corresponding point
process exists it is unique.

The Airy point process defined through KAi has largely been studied, with particular
focus on the probability distribution function of the largest particle of the process,
described by

F (s) := det(1−KAi|(s,+∞))
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Some applications

* Random Matrix Theory
[Forrester 1993, Tracy - Widom, 1994] F (s) = FGUE (s), is the edge scaling limit
of the probability distribution of the largest eigenvalue in the Gaussian Unitary
Ensemble.

* Random Permutations
[Baik - Deift - Johansson, 1999] F (s) describes certain scaling limit of the
probability distribution of the longest increasing subsequence of random
permutations with uniform distribution.

* Fermionic Systems
[Eisler, 2013 (and others)] F (s) describes certain scaling limits of the probability
distribution of the largest position and momentum of a system of free fermions in
harmonic potential at zero temperature.
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A well-known characterization

[Tracy - Widom, 1994] The Fredholm determinant F (s) satisfies

d2

ds2 ln F (s) = −u2(s)

where u is the Hastings-McLeod solution of the Painlevé II equation, i.e.

u′′(s) = su(s) + 2u3(s)

with u(s) ∼ Ai(s) for s → +∞.

Remark
(1) Tracy and Widom proof consists in the application to the Tracy-Widom criteria to

the specific case of the Airy kernel on a semi-infinite interval.

(2) Since the Airy kernel also enjoy the integrable structure of IIKS type, an alternative
proof as been given through a Riemann–Hilbert approach (e.g.
[Kapaev - Hubert, 1999]).
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And a recent generalization
Consider s ∈ R and KAi

s the operator with s-shifted Airy kernel

K Ai
s (x , y) := K Ai(x + s, y + s.)

[Amir - Corwin - Quastel, 2011] Generalization of this formula, for some function
σ : R→ [0, 1] and Fσ(s) = det(1− σKAi

s ), then

d2

ds2 ln Fσ(s) = −
∫
R
ϕ2(r ; s)σ′(r)dr

where ϕ solves the integro-differential Painlevé II equation

∂2

∂s2ϕ(z; s) =

(
z + s + 2

∫
R
ϕ2(r ; s)σ′(r)dr

)
ϕ(z; s),

with ϕ(z; s) ∼ Ai(z + s) for s → +∞.
Remark
(1) The interest in Fσ(s) came from its appearence in relation with the KPZ equation

and fermionic systems at finite temperature.
(2) Several authors (re)proved this result, either by generalizing the Tracy-Widom

method [Krajenbrink, 2020] or through a Riemann-Hilbert approach in a
matrix-valued setting [Cafasso - Claeys - Ruzza, 2021] and in an operator-valued
one [Bothner, 2021].
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What are Janossy densities?

Let K be an integral operator with kernel K defining a DPP on R, I an interval of R s.t.
KI is trace-class and take m ∈ N and V = {v1, . . . , vm} ⊂ I.

[Soshnikov, 2000] The m-th Janossy density is defined as the density (w.r.t. the
Lebesgue measure) of the probability distribution function of m particles {vi}m

i=1 in I. It
is given by

JI(v1, . . . , vm) = det(1−KI) det
1≤k,h≤m

(LI(vk , vh)) ,

where LI is the kernel of the operator defined by

LI := KI(1−KI)
−1.

Heuristically, it is intended as the infinitesimal probability

JI(v1, . . . , vm) = Prob (having exactly m particles in I each one in [vi , vi + dvi ]) .

Properly, it is defined as the density of the so called Janossy measures.

Remark The degenerate case V = ∅ goes back to the gap probability, i.e.

JI(∅) = det(1−KI).
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Few facts on Janossy densities

[Fuji - Kanamori - Nishigaki, 2019] The following formula holds

det(1−KI) det
1≤k,h≤m

(LI(vk , vh)) = det
1≤k,h≤m

(KI(vk , vh)) det(1−KI,V )

where KI,V is the integral operator with kernel KI,V obtained through a finite rank
deformation of KI

KI,V (x , y) :=

det

(
KI(x , y) KI(x , ~v)
KI(~v , y) KI(~v , ~v)

)
det
(
KI(~v , ~v)

) .

[Nishigaki, 2021] Application of the Tracy - Widom method to Janossy densities for
DPP defined by kernels K satysfing the Tracy-Widom criteria =⇒ expression of
this type of Janossy densities (and not only of the gap probability) in terms of
solutions of closed systems of differential equations.
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Thinning the Airy point process

Let σ : R→ [0, 1] a non-decreasing smooth function.

If K defines a DPP P and we consider a function σ so that σK defines the thinned
process Pσ, constructed as follows.

For every random configuration ξ in P, a configuration ξσ in Pσ is built by independently
eliminating a particle ξj in the configuration ξ with probability 1− σ(ξj ) and by keeping it
with probability σ(ξj ):

x

σ(x)

1

ξ

ξσ

Remark If σKAi
s is trace-class then PAis ;σ has a. s. # particles <∞.
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Janossy densities of the thinned Airy DPP

We can then define Janossy densities of the thinned shifted Airy point process

Jσ(V ; s) ≡ Jσ(v1, . . . , vm; s) = det(1− σKAi
s ) det

1≤k,h≤m
(LAi
σ,s(vk , vh))

where LAi
σ,s is the kernel of the operator LAi

σ,s defined as

LAi
σ,s := KAi

s

(
1− σKAi

s

)−1
.

[Claeys - Glesner, 2021] (Remember Tom Claeys’ talk.) The kernel of this operator
defines (on (R, (1− σ(x))dx)) the DPP Pσ|∅ obtained by

1. first, σ-marking with 0 and 1 the (shifted) Airy kernel dpp;

2. then, conditioning on empty 1-configuration the marked point process.

Remark Also in this case we have two representations

det(1− σKAi
s ) det

1≤k,h≤m
(LAi
σ,s(vk , vh)) = det

1≤k,h≤m
(K Ai

s (vk , vh)) det(1− σKAi
s,V ).
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Statement 1

Theorem
We have

Jσ(V ; s) = det (Lσs (vi , vj ))m
i,j=1 Fσ(s),

where

Lσs (λ, µ) =

∫ +∞

s
ϕ(λ; s′)ϕ(µ; s′) ds′ =

ϕ(λ; s)ϕ′(µ; s)− ϕ′(λ; s)ϕ(µ; s)

λ− µ ,

and

Fσ(s) = exp

(
−
∫ +∞

s
(s′ − s)

(∫
R
ϕ(λ; s′)2dσ(λ)

)
ds′
)
.

Here ϕ(z; s, ∅) solves the Schrödinger equation[
∂2

s + 2u(s, ∅)
]
ϕ(z; s) = zϕ(z; s),

with potential u(s, ∅) = −
∫
R ϕ

2(r , s)σ′(r)dr − s
2 and with asymptotic behavior for

z →∞ in terms of the Airy function.
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Statment 2

Theorem
We have

d2

ds2 ln Jσ(V ; s) = u(s,V )+
s
2

= −
∫
R
ϕ2(r ; s,V )σ′(r)dr + 4π

∑
v∈V

lim
r→v

ϕ(r ; s,V )ϕ̃(r ; s,V ).

Here ϕ(z; s,V ), ϕ̃(z; s,V ) solve both the Schrödinger equation[
∂2

s + 2u(s,V )
](ϕ(z; s,V )

ϕ̃(z; s,V )

)
= z

(
ϕ(z; s,V )
ϕ̃(z; s,V )

)
,

with asymptotic behavior for z →∞ in terms of the Airy function.

Remark
We have that ϕ(z; s) = ϕ(z; s, ∅).
Moreover, ϕ(z; s,V ) and ϕ̃(z; s,V ) are obtained from a Backlund transformation
of ϕ(z; s, ∅) and its analogue ϕ̃(z; s, ∅).
The blue term can also be computed in terms of ϕ(z; s, ∅), ∂zϕ(z; s,V ) evaluated
at z = v ∈ V .
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RH problem for Ψ

(a) Ψ(·; s,V ) : C \ R→ C2×2 is analytic for all s ∈ R and all finite V ⊂ R.

(b) The continuous boundary values of Ψ(·; s,V ) are related by

Ψ+(z; s,V ) = Ψ−(z; s,V )

(
1 1− σ(z)
0 1

)
, z ∈ R \ V .

(c) For all v ∈ V , as z → v away from the real axis we have

Ψ(z; s,V )(z − v)−σ3 = O(1).

(d) As z →∞, we have

Ψ(z; s,V ) =

(
I +

1
z

(
q(s,V ) ir(s,V )
ip(s,V ) −q(s,V )

)
+ O(z−2)

)
z

1
4σ3 A−1e

(
− 2

3 z
3
2−sz1/2

)
σ3 Cδ

for any δ ∈ (0, π2 ), where

σ3 =

(
1 0
0 −1

)
, A =

1√
2

(
1 i
i 1

)
, Cδ :=


I, | arg z| < π − δ,(

1 0
∓1 1

)
, π − δ < ± arg z < π.
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Few remarks

When V = ∅ then Ψ(z, s; ∅) is obtained as

Ψ(z, s; ∅) =

(
1 is2

4
0 1

)
Y (z; s)ΦAi(z + s),

where Y (z; s) is the solution of the classical RH problem associated to the
integrable IIKS kernel σKAi

s and ΦAi(z + s) is the (shifted) solution to the model
Airy RH problem.

The kernel of the operator LAi
σ,s can be written as

LAi
σ,s(v ,w ; s) =



(
Ψ−1(w ; s, ∅)Ψ(v ; s, ∅)

)
2,1

2πi(v − w)
, v 6= w ,

(
Ψ−1(v ; s, ∅)Ψ′(v ; s, ∅)

)
2,1

2πi
, v = w .

Finally, the relation between Ψ(z; s,V ) and Ψ(z; s, ∅) is expressed through an
explicit Darboux-Schlesinger transformation that can be seen as a particular case
of the ones studied in general in [Bertola - Cafasso, 2014] in relation with DPP.
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The Darboux-Schlesinger transformation

For all finite V = {v1, . . . , vm} ⊂ R, we denote by L(s,V ) the square matrix of size m
with entries

Lk,h(s,V ) := LAi
σ,s(vk , vh; s), 1 ≤ k , h ≤ m.

We also denote by L−1
j,i (s,V ) be the j, i-entry of the inverse matrix of L(s,V ).

Lemma
We have

Ψ(z; s,V ) = R(z; s,V )Ψ(z; s, ∅)

where R(z; s,V ) is a rational function of z with poles at z ∈ V only, explicitly given by

R(z; s,V ) = I − 1
2πi

m∑
i,j=1

L−1
j,i (s; V )

z − vj
Ψ(vi ; s, ∅)

(
0 1
0 0

)
Ψ−1(vj ; s, ∅).

Remark In particular we have that p(s,V ) and p(s, ∅) are related by

p(s,V )− p(s, ∅) =
m∑

i,j=1

L−1
j,i (s,V )ϕ(vi ; s, ∅)ϕ(vj ; s, ∅).
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Derivation of the Schrödinger equation

Let

Θ(z; s,V ) :=

(
1 p(s,V )
0 1

)
e

iπ
4 σ3 Ψ(z; s,V )e−

iπ
4 σ3 .

Lemma
Let us denote u(s,V ) := −∂sp(s,V ). Then we have

u(s,V ) = p(s,V )2 + 2q(s,V )

and
∂Θ(z; s,V )

∂s
=

(
0 z − 2u(s,V )
1 0

)
Θ(z; s,V ).

It follows that

Θ(z; s,V ) =
√

2π
(
∂sϕ(z; s,V ) ∂sϕ̃(z; s,V )
ϕ(z; s,V ) ϕ̃(z; s,V )

)
,

where [
∂2

s + 2u(s,V )
](ϕ(z; s,V )

ϕ̃(z; s,V )

)
= z

(
ϕ(z; s,V )
ϕ̃(z; s,V )

)
,

and ϕ, ϕ̃ have asymptotics in terms of the Airy function.
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Relation between the potential and the eigenfunctions

Lemma
We have

−
∫
R
ϕ2(r ; s,V )σ′(r)dr + 4π

∑
v∈V

lim
r→v

ϕ(r ; s,V )ϕ̃(r ; s,V ) =
s
2

+ u(s,V ) .

Remarks
1 The blue term disappears in the case V = ∅ and we recover the result from

[Amir - Corwin - Quastel 2011, Cafasso - Claeys - Ruzza, 2021] that gave rise to
the integro-differential Painlevé II equation.

2 Since for all v ∈ V ,

ϕ(z; s,V ) = O(z − v), ϕ̃(z; s,V ) = O
(

1
z − v

)
, z → v ,

the summation term is well defined. Moreover, we can actually compute it as

−
∫
R
ϕ2(r ; s,V )σ′(r)dr+2

m∑
i,j=1

L−1
j,i (s,V )ϕ(vi ; s, ∅)∂zϕ(z; s,V )|{z=vj} =

s
2

+u(s,V ).

3 Similar formula was previously found in [Deift - Trubowitz, 1979] in the study of
classical inverse scattering for the Schrödinger equation.
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Integro-differential equations

Plugging in the Schrödinger equation the formula obtained for the potential u(s,V ),
one finds either this system

∂2ϕ(z; s,V )

∂s2
=

z + s + 2

∫
R
ϕ(r ; s,V )2 σ′(r)dr − 4π

∑
v∈V

lim
r→v

ϕ(r ; s,V )ϕ̃(r ; s,V )

ϕ(z; s,V ),

∂2ϕ̃(z; s,V )

∂s2
=

z + s + 2

∫
R
ϕ(r ; s,V )2 σ′(r)dr − 4π

∑
v∈V

lim
r→v

ϕ(r ; s,V )ϕ̃(r ; s,V )

 ϕ̃(z; s,V ).

Remark The system does not seem to be reducible to a single equation. However, by
using the alternative formulation for u(s,V ) we can consider only the equation for
ϕ(z; s,V ) in the form

∂2ϕ(z; s,V )

∂s2
=

z + s + 2
∫
R
ϕ(r ; s,V )2 σ′(r)dr − 4

m∑
i,j=1

L−1
j,i ϕ(vi ; s, ∅)ϕ′(vj ; s,V )

ϕ(z; s,V ),

recalling that L−1
j,i is written in terms of ϕ(v ; s, ∅), v ∈ V only and that ϕ(z; s, ∅) solves

the classical integro-differential PII.
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Proof of the first characterization of Jσ(s,V )

Lemma
We have

d
ds

Lσs (v ,w) = −ϕ(v ; s, ∅)ϕ(w ; s, ∅).

Moreover, from the asymptotic analysis for s → +∞, we can conclude

Lσs (v ,w) =

∫ +∞

s
ϕ(v ; r , ∅)ϕ(w ; r , ∅)dr .

This is enough to prove the first characterization of Jσ(s,V ).

1. Recall that Jσ(V ; s) = Fσ(s)det1≤k,h≤m(LAi
σ,s(vk , vh)).

2. The characterization of Fσ(s) = det(1− σKAi
s ) comes from IIKS theory through

−p(s; ∅) +
s2

4
=

d
ds

ln det(1− σKAi
s ).

thus one more derivative gives

u(s, ∅) +
s
2

=
d2

ds2 ln det(1− σKAi
s ), with u(s, ∅) = −

∫
R
ϕ2(r , s; ∅)dr .
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Proof of the second characterization of Jσ(s,V )

Proposition
We have

−p(s; V ) +
s2

4
=

d
ds

ln Jσ(V ; s).

1 Recall that in the case V = ∅, we already have
−p(s; ∅) + s2

4 = d
ds log det(1− σKAi

s ).
2 Recall the relation

p(s,V )− p(s, ∅) =
m∑

i,j=1

L−1
j,i (s,V )ϕ(vi ; s, ∅)ϕ(vj ; s, ∅).

3 And finally use that

∂s log det L(s,V ) =
m∑

i,j=1

L−1
j,i (s,V )∂sLj,i (s; V ) = −

m∑
i,j=1

L−1
j,i (s,V )ϕ(vi ; s, ∅)ϕ(vj ; s, ∅).

since we have ∂sLj,i (s; V ) = −ϕ(vj ; s, ∅)ϕ(vi ; s, ∅).
4 Thus one more derivative gives

d2

ds2 ln Jσ(V ; s) = u(s,V ) +
s
2
.
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The introduction of parameters X ,T and (c)Kdv
Now we define KAi

X ,T the integral operator acting with kernel (depending on X ∈ R and
T > 0)

K Ai
X ,T (λ, µ) := T−1/3K Ai

(
T−1/3(λ+ X ),T−1/3(µ+ X )

)
,

and we consider as before

Jσ(V ; X ,T ) = det
(
LσX ,T (vi , vj )

)m
i,j=1 det(1− σKAi

X ,T .)

Theorem

The function U = Uσ(X ,T ; V ) := ∂2

∂X2 Jσ(V ; X ,T ) solves the cKdV equation

∂U
∂T

+
1

12
∂3U
∂X 3 + U

∂U
∂X

+
U
2T

= 0.

Remark
KdV and cKdV are algebraically equivalent.

In case V = ∅ this recovers the result from [Cafasso - Claeys - Ruzza, 2021].

In case σ ≡ 0 these solutions should be compared to the class of soliton-type
solutions of cKdV found in [Nakamura, 1980].
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With X ,T parameters

We can characterize them through the solution of a RH problem analogue to the
previous one Ψ̃(ζ,X ,T ; V ) now depending on both parameters X ,T . In particular, by
defining as before

Θ̃(ζ,X ,T ; V ) :=

(
1 p(X ,T ,V )
0 1

)
e

iπ
4 σ3 Ψ̃(ζ; X ,T ,V )e−

iπ
4 σ3 =⇒

∂X Θ̃ = BΘ̃,

∂T Θ̃ = CΘ̃︸ ︷︷ ︸
cKdV Lax pair

∂2
X Jσ(V ; X ,T ) = U(X ,T ; V ) solves the cKdV equation coming from the Lax pair.

DPP (c)KdV

gap probability solution U(X , T ; ∅)
↓ ↓

Janossy density Darboux-Backlünd transformed one U(X , T ; V )
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Asymptotics

Recall that

Jσ(v1, . . . , vm; s) = det(1− σKAi
s ) det

1≤k,h≤m
(LAi
σ,s(vk , vh)) = Fσ(s)ρσm,s(v1, . . . , vm).

For the parameter s → ±∞ we have decorrelation, in the sense that

ρσm,s(v1, . . . , vm) ∼ ρσ1,s(v1) . . . ρσ1,s(vm).

To be further investigated:

How to combine the (known) asymptotics for the Fredholm determinant and the
(unknown) asymptotics for the 1-point correlation function.

Various X ,T asymptotic regimes for the Janossy densities Jσ(V ; X ,T ) and for the
solution of the (c)KdV equation U(X ,T ; V ).

Which type of (c)KdV solutions are the ones given by U(X ,T ; V )? We should
compare them to the ones found in the case V = ∅ already in
[Cafasso - Claeys - Ruzza, 2021]? Also, compare to the ones previously studied
in [Its - Sukhanov, 2020].

How the decorrelation phenomenon reflects on the behavior of the (c)KdV
solutions?
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Thank you!
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