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Integrable systems

Consider a Poisson manifold (M, {, }), such that {, } is non-degenerate.
Let x = (x1,...,xon) be coordinates on M. The evolution x(0) — x(t)
according to Hamilton equations with Hamiltonian H(x)

dxj . )
T;ZXI:{)Q’H}’J:1”2N

is integrable if there are Hy = H, H», ... Hy independent conserved quantities
(Hk = 0) that Poisson commute: {H;, Hc} = 0. (Liouville)
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Lax Pair

The integrable Hamilton equations
xi={xj,H}, j=1,...,2N

admits a Lax pair formulation if there exist two square matrices L = L(x) and
A = A(x) such that

L=[A L] :=LA— AL+ x = {x;,H}, j=1,...,2N

d
Then, TrL¥, k integer, are constant of motions: ETrLk =0
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Gibbs measure

Consider the Gibbs measure

_ 1 omvae;  og—
'LL_Z(V)e g, = m(x)dxy,...dxoyn,

here V is a continuous function, and ji is invariant for the dynamics, thus also u
is invariant.
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Gibbs measure

Consider the Gibbs measure

_ 1 omvae;  og—
,u—Z(V)e g, = m(x)dxy,...dxoyn,

here V is a continuous function, and ji is invariant for the dynamics, thus also u
is invariant.

w—L

thus L becomes a Random Matrix.

» Does L can be reduced to a known family of random matrices? Which is
the spectrum of L when N — oo (density of states) ?

» How do the correlation functions looks like
S, t) = E(xj(t)xe(0)) — E(x;(t))E(x,(0)) behave when N — oo and
t — o0o?



Correlation functions — Transport properties



Why:

Correlation functions — Transport properties

Specific 1D phenomenon: conductivity diverges as the length of the chain grows
(Anomalous transport).
Surprisingly, this is measured experimentally:

| Nature Na notechnoloii 2021 '



Why:
Correlation functions — Transport properties

For a general dynamical system, the computation of a general correlation
function S(j, t) as t, N — oo is “utterly out of reach” (Spohn). Rigorous
mathematical results in dimension bigger or equal to 3 (Lukkarinen-Spohn
2011).
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Correlation functions — Transport properties

For a general dynamical system, the computation of a general correlation
function S(j, t) as t, N — oo is “utterly out of reach” (Spohn). Rigorous
mathematical results in dimension bigger or equal to 3 (Lukkarinen-Spohn
2011).  Numerical simulations show that:

. 1 j— vt
S(J,t):mf( VS > .

> Non integrable systems, such as DNLS, FPUT, etc, v = 4§ = % and
f=Fry.

» Non linear integrable systems, such as Toda, AL, vy =6 =1 and
f=e

» Short range harmonic chain, we can perfectly describe the behaviour of
the correlation functions (Mazur;..., M - Grava - McLaughlin -

Kriecherbauer).The behaviour can be “wild”, for different position-time
scales the behaviour is described by Airy, Pearcy integral,. ..



Recent Breakthrough

» H. Spohn was able to characterize the density of states for the GGE of the
Toda lattice with polynomial potential in terms of the equilibrium measure
of the Gaussian 3 ensemble at high temperature.
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Recent Breakthrough

» H. Spohn was able to characterize the density of states for the GGE of the
Toda lattice with polynomial potential in terms of the equilibrium measure
of the Gaussian 3 ensemble at high temperature.

Applying the theory of Generalized Hydrodynamic, he argued that the decay
of correlation functions is ballistic. (6 =~y =1)
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Recent Breakthrough
» H. Spohn was able to characterize the density of states for the GGE of the
Toda lattice with polynomial potential in terms of the equilibrium measure
of the Gaussian 3 ensemble at high temperature.
Applying the theory of Generalized Hydrodynamic, he argued that the decay
of correlation functions is ballistic. (6 =~y =1)

» A. Guionnet, and R. Memin generalized Spohn results, obtaining a Large
deviations principle for the empirical measures with continuous potential.

Toda, <egj(t)en(0) >

— t:150
— t:200
~—— GHD

o B N w
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Toda lattice

Gaussian : .
(Spohn; Guionnet-Memin)
Circular Defocusing Ablowitz-Ladik lattice
(Spohn, Grava-M.; Memin-M.)
Laguerre Exponential Toda lattice
& (Gisonni-Grava-Gubbiotti-M.)
Jacobi Defocusing Schur flow

(Spohn; Memin-M. )
Volterra lattice
(Gisonni-Grava-Gubbiotti-M.)

Antisymmetric Gaussian

High temperature regime means that we are considering 8 = 2W0‘ for some
o€ R+.



[-ensemble at high temperature Integrable System
Toda lattice

Gaussian _ .
(Spohn; Guionnet-Memin)
Circular Defocusing Ablowitz-Ladik lattice
(Spohn, Grava-M.; Memin-M.)
Laguerre Exponential Toda lattice
& (Gisonni-Grava-Gubbiotti-M.)
Jacobi Defocusing Schur flow

(Spohn; Memin-M. )
Volterra lattice
(Gisonni-Grava-Gubbiotti-M.)

Antisymmetric Gaussian

. . . . _ 2a
High temperature regime means that we are considering 3 = 5 for some
o€ R+.



The Ablowitz-Ladik lattice

i3 = (23— aj-1 — aj41) +|aj|*(aj-1 + aj+1), j=1,...,N

where aj € C, and we consider periodic boundary condition, thus aj y = a;.
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The Ablowitz-Ladik lattice

iaj = (2aj — aj_1 — aj41) + |aj[*(aj-1 + aj41), j=1,...,N

where aj € C, and we consider periodic boundary condition, thus aj y = a;.

e The Ablowitz-Ladik (1973-74) system is the integrable discretization of the
defocussing cubic NLS:

00 (x,£) = 5 0R(x, 1) + [0 D ).

its integrability was discovered by Ablowitz and Ladik (1974) by making
spatial discretization of the Zakharov-Shabat Lax pair for NLS;
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The Ablowitz-Ladik lattice

.. 2 .
iaj = (23 — a1 — ajp1) +1gjl* (g1 + 1), J=1,...,N
where aj € C, and we consider periodic boundary condition, thus aj y = a;.

e The Ablowitz-Ladik (1973-74) system is the integrable discretization of the
defocussing cubic NLS:

00 (x,£) = 5 0R(x, 1) + [0 D ).

its integrability was discovered by Ablowitz and Ladik (1974) by making
spatial discretization of the Zakharov-Shabat Lax pair for NLS;

e For periodic boundary conditions. Finite-gap integration developed by P.
Miller, N. Ercolani, I. Krichever and D. Levermore;
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The Ablowitz-Ladik lattice

.. 2 .
iaj = (23 — a1 — ajp1) +1gjl* (g1 + 1), J=1,...,N
where aj € C, and we consider periodic boundary condition, thus aj y = a;.

e The Ablowitz-Ladik (1973-74) system is the integrable discretization of the
defocussing cubic NLS:

. 1

i0(x, t) = —Eaiw(x, t) + [ (x, 1) 29 (x; t).
its integrability was discovered by Ablowitz and Ladik (1974) by making
spatial discretization of the Zakharov-Shabat Lax pair for NLS;

e For periodic boundary conditions. Finite-gap integration developed by P.
Miller, N. Ercolani, I. Krichever and D. Levermore;

e The DNLS is another discretization, but it is not integrable.
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Hamiltonian Structure
There are two conserved quantities:

N N
KO=T[@-1aP), KD :==> am.
=t

Jj=1

Since K(9) is conserved, this implies that if |a;(0)] < 1V}, then |a;(t)| < 1Vt.
Thus we can consider DV as phase space, D = {z € C | |z| < 1}.
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Hamiltonian Structure
There are two conserved quantities:

N

N
KO=T[@-13), KY:==> a3z

Jj=1 Jj=1

Since K(©) is conserved, this implies that if |a;(0)] < 1V, then |a;(t)] < 1V t.
Thus we can consider DV as phase space, D = {z € C | |z| < 1}.

{fg}—lz 1—laf?)

j=1

of og  0g Of
0a; 0a;  0a; Oa;

(Ercolani, Lozano)

4 =4 a5, —2log (K(O)) 1 2R(KD)

g
‘=HaL
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Integrability (N even)

Nenciu, and Simon proved that the AL equations of motion are equivalent to the

Lax pair:
E=il A€

where & = LM, such that

—a1 P1 =

=3 - =,
M — 9 E == 9
=N-1 ' =y

p1 a -
here =; = (ZJ pé) and pj = /1 — |aj|%.

j T4
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Structure of periodic CMV matrix

*
* X X X
R R

* X X X
* X X X
* X K K

*

> Periodic CMV (Cantero Moral Velazquez) Matrix:
* unitary \; = e'%, 0, € T
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Generalized Gibbs Ensemble

In view of the Lax pair: _
E=IilEAE)],

then
K(@:Tr<5f), (=1,...,N—1

are conserved.
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Generalized Gibbs Ensemble

In view of the Lax pair: _
E=IilEAE)],
then
KO :Tr<5f) L =1, N-1

are conserved.
So we can define the Generalized Gibbs Ensemble as

N

! (1= |2P)% L exp(~Tr(V(€)))2a, a; €D

T Z{HV.8)

HAL

here V(z) is a continuous function, V(z) : D — R.
The —1 comes from the Poisson bracket (volume form)
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Integrability and Random matrix

par — &

thus £ becomes a Random Matrix.
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Integrability and Random matrix

par — €

thus £ becomes a Random Matrix.
Define the empirical measure as

1 N
,U/N(g) = N Zéeief N
j=1

where e'’is are the eigenvalues of £ .

Study the weak limit of up(E), or density of states
un(E) — vy

The eigenvalues are the fundamental ingredient of the finite-gap integration.
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Circular 8 Ensemble

N
dP¢ (01, ...,0n) = (ZE(V, B)) 7 A(e?)) exp( Zv %) )del...de,\,,

where A(e'?) = [Trsj(e e'li — &), 9; € [-m,7), and ZE(V,B) is the partition
function.
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Circular 8 Ensemble

N
dPc (01.....0n) = (Z5(V. 5)HA(e?))7 exp Zv “) ) doy...dow,

where A(e'?) = [Trsj(e e'li — &), 9; € [-m,7), and ZE(V,B) is the partition
function.

Physical Interpretation: charged particles constrained on the unit circle,
subjected to an external potential V(z) at temperature 37}




Matrix Representation - Killip, and Nenciu

15 /31



Matrix Representation - Killip, and Nenciu

Definition
We said that a complex random variable X with values on the unit disk D is
©,-distributed (v > 1) if:

E[f(X)] = Vz;l/Df(z)(l—|z|2)"2_3d2z.

if v =1 let ©1 denote the uniform distribution on the unit circle.

Remark: let v € N, if u is chosen at random according to the surface measure
on the unit sphere S” in R¥*1, then uy + ius is ©,—distributed.
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Theorem (Killip, Nenciu)
Let aj ~ Oz y_jyi10 Pi = V1— |aj|?, and define =; as

= _ (Ej Pj ) )
T\ g

for 1 <j < N—1 while =g = (1) and =y = (an) are 1 x 1 matrices. From these
define the N x N block diagonal matrices as:

L:diag(El,Eg,E5,...) and M:diag(Eo,Ez,E4,...) o

The eigenvalues of the two CMV matrices E = LM and E = ML are distributed
according to the Circular Beta Ensemble:

dPc (61,...,0n) = (ZE(0, B))2|A(e®)|Pdby .. .don, 6 € [-7,7).
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Structure of CMV matrix

* X X X
* K K X

» Pentadiagonal
> Unitary

> finite rank perturbation of £
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dPc (61, ....0n) = (ZE(0, B)) Y A(e®)Pd; .. .doy, 6 € [-m,7),

N 2—1
dPa(ay,.. ., an) = (zNomlH — |a[2)PN

j=1

dajdaN
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dPc (61, ....0n) = (ZE(0, B)) Y A(e®)Pd; .. .doy, 6 € [-m,7),

dPy(ay, .- )(zNw)lH a2y N2

j=1

da jdaN .

N
dPc (61,...,0n) = (ZR(V, B)) M A(e")] em( > V(e )dﬂ -don
j=1

dPo(ar, ..., an) = (ZE(V, B))! H 2)BN-D/2-1 (T (V(E))) daydan.
j=1
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dPc (01, ...,0n) = (ZE(0, B)) HA(e?)Pd0y ... A0y, 6, € [-m,7),

AP, (a1, ..., an) = (Z5(0,8))" H — ;%)

=1

BN-D21 4 day .

N
dPc (61,...,0n) = (ZR(V, B)) "} A(e") eXP( >V )d91 -don

j=1

B(N—j)/2—1
APy (a1, ..., an) = (ZE(V, B)) H —1a;2) "2 ep (—Tr(V(E))) dajdan.
j=1
The last one looks similar to
paL =2 1H 1—|aj[?)" P exp(~Tr(V(€)))d’a, aj €D,
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High temperature regime - 3 = 2

- 1—j/N)-1
1P (a . ) Hszll (]_ — |aj|2)5( J/N) exp(—Tr(V(E))) dajdaN
a\dly.-.,dN) — . .
zE (V. %)
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- 5(1—j/N)—1
. (a , ) HjN:11 (]_ — |aj|2)/ (1—j/N) exp (—TI‘( V(E))) dajdaN
o 1y.--5,dN) — .

Theorem (Hardy, and Lambert)
Let >0, and V : T — R continuous. Then

> the sequence py(E) = &
in particular

0 o; satisfies a large deviation principle, and

a.s.

pn(E) 22

> u‘ﬁ/ € P(T), and it is the unique minimizer of the functional

1V8)(p) = / (6)p(6)d60 — 5 / /T logsin (|e* — €] p(6)p(6)0ds
+ /T log (p(8)) p(8)dd + log(2r) .




Recap

N
pae = (ZRH(V.5) [ = [a?)7 exp(~Tx(V(€)))da.
J=1

ap, = (zE(v.?) 17 1=i/N)=1 V(E)))da;d
o= | 2N N IT @ Iajl exp (—Tr(V(E)))da;dan,

=1

.

pn(E) == g

u}j/ € P(T), and it is the unique minimizer of /(V:5)(p).
The structure of E, & is similar.
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Recap

N
par = (ZRHV )T = Jay?) exp(—Te(V(€)))d%a.
j=1
dP, = <z (v 25)) llﬁl —1a2) "M exp (—Tr(V(E))) dajda
@ N N i 1 p jdapy ,

pn(E) == g

u}j/ € P(T), and it is the unique minimizer of /(V:5)(p).
The structure of E, & is similar.

Question

Can we recover, or at least characterize, the density of states Vg/, in terms of
1%
Hg 4
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First result

Theorem G.M., and T. Grava

Let 8 >0,V : T — R a Laurent polynomial. Then the mean density of states
of the Ablowitz-Ladik lattice ug/ can be computed explicitly as

vy = 0s(Buy),

where N};/ is the unique minimizer of the functional

1VA)(p) = /T V(0)p(6)d6 — 5 / /T logsin (17 = &1) p(O)(6)d0ds

+ / log (p(6)) p(0)d0 + log(27) .
T

> Independently, Spohn obtained the same result.
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Generalization

Theorem G.M., and R. Memin
Let >0, V : T — R a continuous and bounded function. Then the mean
density of states of the Ablowitz-Ladik lattice I//;)/ can be computed explicitly as

vy = 9s(Bpg)

where ,ug is the unique minimizer of the functional

10 (p) = /T V(6)p(6)d8 — 5 / /T logsin (1 = &1) p(0)(s)d0ds

4 / log (p(6)) p(6)d6 + log(2r)
T
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M-Grava M-Memin
Transfer operator technique || Large deviations principles
Moment method
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M-Grava M-Memin
Transfer operator technique || Large deviations principles
Moment method
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LDP

Definition
A sequence of measure p. on a topological vector space (X', B) satisfy a large
deviations principle with rate function / : X — [0,00) if V[ € B

)l(r;]lc_l(x) < I|m |nf£|n (re(N)) < I|m supeln (ne(N)) < —)|(r€1frl( X)
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LDP

Definition
A sequence of measure p. on a topological vector space (X', B) satisfy a large
deviations principle with rate function / : X — [0,00) if V[ € B

)l(r;]lc_l(x) < I|m |nf£|n(,u5( ) < I|m supeln (ne(N)) < —)|(r€\frl( X)

Remarks:
» Since p:(X) =1, then infyex I(x) = 0.
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LDP

Definition
A sequence of measure p. on a topological vector space (X', B) satisfy a large
deviations principle with rate function / : X — [0,00) if V[ € B

)l(r;]lc_l(x) < I|m |nf£|n (ne(N)) < I|m supsln (ne(N)) < —)|(r€\frl( X)

Remarks:
» Since p:(X) =1, then infyex I(x) = 0.

» Assume that /(x) has a global minimum xp, let xp € U then there exists an
a > 0 such that
pe(US) < e”=

meaning that all the probability is concentrating around xg.
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Example of LDP

Consider the sequence of atomic measures

N
1
BN =quj£:5x,, Aj€Q
j=1
If this sequence satisfies an LDP, it means that there exists
I P(Q2) — [0,00)

such that VI' € B (topology of weak convergence)

1
—inf I(p) <lim infl In(P(un €T)) <limsup—In(P(un €T)) < —inf I(p)
pel N—oo N N— oo N pel
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Example of LDP

Consider the sequence of atomic measures

N
1
KN ==7v:§::5xj, A eQ
j=1
If this sequence satisfies an LDP, it means that there exists
I P(Q2) — [0,00)
such that VI' € B (topology of weak convergence)

1 1
—inf I(p) <liminf —In(P(un €T)) <limsup — In(P(un €T)) < —inf I(p)
pel N—oo N N—oo N pel

Assuming that / has a unique minimizer pg, the existence of an LDP implies that

N—oo
BN — Po
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Back to the Theorem

Theorem G.M., and R. Memin
Let >0, V : T — R a continuous and bounded function. Then the mean
density of states of the Ablowitz-Ladik lattice I/g/ can be computed explicitly as

vy = 9s(Bpg)

where ,ug is the unique minimizer of the functional

10 (p) = /T V(6)p(6)d8 — 5 / /T logsin (1 = &1) p(0)(s)d0ds

4 / log (p(6)) p(6)d6 + log(2r)
T
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|deas of the proof M.-Memin
We proved a large deviation principle for the family of empirical measures
un(€) = % J-Nzl 8 io;, implying that

“N(g) —_— VV )
N—oo

and V[\g/ is the unique minimizer of the functional

JVB) - p(T) = [0;00) .

27/31



|deas of the proof M.-Memin

We proved a large deviation principle for the family of empirical measures
un(€) = % J-Nzl d _is;, implying that

i
e

&) —— vy
HN()N—mo 8

and Vg)/ is the unique minimizer of the functional

JVB) - P(T) = [0;00).
How:

» We applied a subadditivity argument to prove an LDP for the Gibbs
measure p1a, = Zyt(0,8)71 Hjl-vzl(l — |aj|?)P~1d%a

> We exploited Varadhan's lemma to generalize the LDP to continuous
potential.
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|deas of the proof M.-Memin
We proved a large deviation principle for the family of empirical measures
un(€) = % J-Nzl d _is;, implying that

i
e

&) —— vy
HN()N—mo 8

and Vg)/ is the unique minimizer of the functional
JVB) - P(T) = [0;00).

Moreover, we proved that we can rewrite the functional of Lambert, and Hardy
1(V:8) (which is minimized by ,u/‘g/) as

1 o ,
1B (1) = lim lim inf inf =N JWViBla) .y, ,
(1) i qZ (Yig/q)

0—0 g—oo VB/qrVB
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|deas of the proof M.-Memin

We proved a large deviation principle for the family of empirical measures

un(€) = % J-Nzl d _is;, implying that

i
e

&) —— vy
HN()N—mo 8

and Vg)/ is the unique minimizer of the functional

JVB) - P(T) = [0;00).

Moreover, we proved that we can rewrite the functional of Lambert, and Hardy
1(V:8) (which is minimized by :“/\3/) as

1 v
V, o . . . V,I
It B)(u)—g'j},';”;gfl oo s {qi ! B/q)(’ffﬁ/q)}a
(%)

which implies that




Explicit density

To obtain explicit expression for the density of the AL lattice and the CSE at
high temperature, we have to minimize

1V (p) = /T V(6)p(6)d8 — 5 / /1r logsin (1" = &1) p(0)(s)d0as

+ / log (p(9)) p(0)dé + log(27) .
T

28/31



Explicit density

To obtain explicit expression for the density of the AL lattice and the CSE at
high temperature, we have to minimize

1V 5) = [ Voo -5 [ [ togsin (e - 1) p0)o(o)aas
+ /11‘ log (p(9)) p(0)dé + log(27) .

» Hardy, and Lambert proved that if V(0) = 0, then u% =t so z/g =L

o
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Explicit density

To obtain explicit expression for the density of the AL lattice and the CSE at
high temperature, we have to minimize

1VA)(p) = /T V(0)p(6)d0 - 3 / /1r logsin (1" = &1) p(0)(s)d0as

4 / log (p(6)) p(6)d6 + log(2r)
T
» Hardy, and Lambert proved that if V(0) = 0, then u% = % so Vg = %

» G.M. and T. Grava focused on the case V/(6) = 2ncos(#), it is important
since it is related to the classical Gibbs ensemble, and generalize the result
of J Baik, P Deift, K Johansson for the Circular 5 ensemble.
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Theorem - G.M., and T. Grava

Fix 3 > 0 and let V(e™) = ncos, where n € R. There exists ¢ > 0 such that
for all n € (—¢,¢), the mean densities of states of the Circular beta ensemble in
the high temperature regime ,u)j/, and the Ablowitz-ladik lattice 1/2}/ read

5050 358 () e =50 (335

where v(z) is the unique analytic solution at 0 of the double confluent Heun
equation

22V"(z) + (-m+z(B+1)+ 7722) Vi(z) +nB(z + A)v(z) =0,

and A is determined as the unique solution of the transcendental equation

£(B,m,A) = 0.
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Open problems

Rigorous computation of the correlation functions. Despite having explicit
solutions via finite-gap integration, and several insights for the GHD theory
(Doyon, Spohn, El), a mathematically rigorous computation of those remains
out of reach.
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Rigorous computation of the correlation functions. Despite having explicit
solutions via finite-gap integration, and several insights for the GHD theory
(Doyon, Spohn, El), a mathematically rigorous computation of those remains
out of reach.

B-ensemble at high temperature Integrable System
Toda lattice
(Spohn; Guionnet-Memin)
Defocusing Ablowitz-Ladik lattice

Gaussian

Circular (Grava-M.; Memin-M.)

Laguerre Exponential Toda lattice
& (Gisonni-Grava-Gubbiotti-M.)

Jacobi Defocusing Schur flow

(Spohn; Memin-M. )
Volterra lattice
(Gisonni-Grava-Gubbiotti-M.)

Antisymmetric Gaussian
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Open problems

Rigorous computation of the correlation functions. Despite having explicit
solutions via finite-gap integration, and several insights for the GHD theory
(Doyon, Spohn, El), a mathematically rigorous computation of those remains
out of reach.

B-ensemble at high temperature Integrable System
Toda lattice
(Spohn; Guionnet-Memin)
Defocusing Ablowitz-Ladik lattice

Gaussian

Circular (Grava-M.; Memin-M.)

Laguerre Exponential Toda lattice
& (Gisonni-Grava-Gubbiotti-M.)

Jacobi Defocusing Schur flow

(Spohn; Memin-M. )
Volterra lattice
(Gisonni-Grava-Gubbiotti-M.)
Focusing Ablowitz-Ladik
and focusing mKdV
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Antisymmetric Gaussian

(??7)2D B ensemble at high temperature




Thank you for the attention!
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