Large Genus Asymptotics for Intersection Numbers

Amol Aggarwal

Institute of Advanced Study / Columbia University

May 25, 2022

Flat Surfaces

- Consider a finite family of polygons in $\mathbb{R}^{2} \simeq \mathbb{C}$
- Form a flat surface X from them by gluing (anti-)parallel sides of equal lengths using translations $(z \mapsto c+z)$ and / or reflections $(z \mapsto c-z)$

Figure by A. Zorich.

Figure by E. Duryev.

Alternative interpretation: Meromorphic quadratic differentials

- Gluing $d z \otimes d z$ on each polygon yields meromorphic quadratic differential on X
- Quadratic differential taken to ensure gluing is consistent along reflections
- Locally of the form $f(z) \cdot d z \otimes d z$, and has at most simple poles
- Can be reversed: Every such differential comes from gluing polygons

Question

How does a "random" flat surface of large genus "look?"

- To make sense of this question, we discretize

Square-Tiled Surfaces

Square-tiled surface: Connected flat surface X produced from gluing squares

- Finite collection of $\frac{1}{2} \times \frac{1}{2}$ squares
- Glue pairs of vertical / horizontal sides by translations or reflections

Figure by E. Duryev.
Conical singularities: Points on X that do not have total angle 2π

- Also defined on general flat surface
- Will either have total angle π or $2 \pi(m+1)$ for some integer $m \geq 1$
- Conical singularities are poles / zeroes of associated differential q
- Simple poles at conical singularities with total angle π
- Zeroes of order m at conical singularities with total angle $2 \pi(m+1)$

Discretization Through Square-Tiled Surfaces

$\mathcal{S}_{N}(g, n)$: Set of square-tiled surfaces with three properties

- At most $4 N$ squares
- Genus g
- n Simple poles (conical singularities with total angle π)

For N large, $\mathcal{S}_{N}(g, n)$ discretizes the set of flat surfaces of genus g with n poles

Question

(1) How many square-tiled surfaces are in $\mathcal{S}_{N}(g, n)$ for large N and g ?
(2) How does a uniformly random surface in $\mathcal{S}_{N}(g, n)$ "look" for large N and g ?

First let N tend to ∞

- Yields a discretization of a flat surface

Then let g tend to ∞

- View n as fixed

Enumeration of Square-Tiled Surfaces

- Fact: For N large, $\# \mathcal{S}_{N}(g, n) \sim N^{6 g+2 n-6} \cdot \operatorname{Vol} \mathcal{Q}_{g, n}$, for some constant $\operatorname{Vol} \mathcal{Q}_{g, n}$ Masur, Veech (1982): The constant $\operatorname{Vol} \mathcal{Q}_{g, n}$ is finite and positive
- Vol $\mathcal{Q}_{g, n}$: Volume of moduli space $\mathcal{Q}_{g, n}$ of meromorphic quadratic differentials
- $\mathcal{Q}_{g, n}$: Set of pairs (X, q), Riemann surface X and differential q on X
- Noncompact orbifold of dimension $6 g+2 n-6$
- Parameterized by periods: Sides of polygons (in $\mathbb{R}^{2} \simeq \mathbb{C}$) that glue to form (X, q)
- Square-tiled surfaces have periods in $\frac{1}{2} \mathbb{Z}[i]$, so can be viewed as lattice points in $\mathcal{Q}_{g, n}$
- Lebesgue measure on these periods pulls back to volume form on $\mathcal{Q}_{g, n}$
- Analogy: Volume of a disk approximately determined by number of lattice points in it Formulas / algorithms to compute $\operatorname{Vol} \mathcal{Q}_{g, n}$
- Eskin-Okounkov (2005): Count branched coverings using representation theory of \mathfrak{S}_{m}
- Mirzakhani (2008): Relate to volumes in hyperbolic geometry
- Delecroix-Goujard-Zograf-Zorich (2019): Relate to ribbon graph counts
- Chen-Möller-Sauvaget (2019), Kazarian (2019), Yang-Zagier-Zhang (2020): Recursions based on intersection theory
- Andersen-Borot-Charbonnier-Delecroix-Giacchetto-Lewański-Wheeler (2019): Topological recursion

Large Genus Asymptotics of Volumes

Almost all formulas / algorithms have exponential complexity in genus g

- $\operatorname{Vol} \mathcal{Q}_{2,1}=\frac{29}{840} \pi^{8} ; \quad \operatorname{Vol} \mathcal{Q}_{3,0}=\frac{115}{33264} \pi^{12} ; \quad \operatorname{Vol} \mathcal{Q}_{4,0}=\frac{2106241}{11548293120} \pi^{18}$

Theorem (A., 2020)

Fix $n \geq 0$. As g tends to ∞, we have $\operatorname{Vol} \mathcal{Q}_{g, n} \sim \frac{4}{\pi}\left(\frac{8}{3}\right)^{4 g+n-4} 2^{n}$.

- Based on analysis of formulas from Delecroix-Goujard-Zograf-Zorich (2019) through ribbon graph counts / intersection numbers
- Will count square-tiled surfaces "associated" with a graph Γ, and then sum over all (exponentially many) graphs
- The graph Γ contains geometric information about the surface
- Can be used to analyze statistics of random square-tiled surfaces

Graph Associated With Square-Tiled Surface

Fix a square-tiled surface X

- Horizontal foliation decomposes X into maximal cylinders $\bigcup_{i=1}^{k} C_{i}$
- Each cylinder C_{i} admits a waist curve γ_{i}

Figure by V. Delecroix, É. Goujard, P. Zograf, and A. Zorich.

- Gives rise to a graph Γ
- Vertices: Connected components of $S \backslash \bigcup_{i=1}^{k} \gamma_{i}$
- Edges: Waist curves γ_{i} (alternatively, cylinders C_{i})
- Unpaired half-edges: Singularities of total angle π (poles of quadratic differential)
- Can view Γ as the "skeleton" of the square-tiled surface

Topologies of Surfaces

- Let $\mathcal{S}_{N}^{(\Gamma)}(g, n)$ denote the surfaces in $\mathcal{S}_{N}(g, n)$ associated with Γ Delecroix-Goujard-Zograf-Zorich (2019): $\lim _{N \rightarrow \infty} N^{6-6 g-2 n} \mathcal{S}_{N}^{(\Gamma)}(g, n)=\mathcal{Z}(\Gamma)$ Exists
- Formulas for $\mathcal{Z}(\Gamma)$ through intersection numbers $\left\langle\tau_{d_{1}} \cdots \tau_{d_{n}}\right\rangle$ of ψ-classes
- Summing over Γ implies an analogous formula for $\operatorname{Vol} \mathcal{Q}_{g, n}$

$$
\begin{gathered}
\frac{32 \pi^{8}}{945}\left(\left\langle\tau_{0}^{2} \tau_{3}\right\rangle+3\left\langle\tau_{0} \tau_{1} \tau_{2}\right\rangle+3\left\langle\tau_{1}\right\rangle\left\langle\tau_{0} \tau_{2}\right\rangle\right)+\frac{16 \pi^{8}}{3969}\left(\left\langle\tau_{0}^{4} \tau_{2}\right\rangle+\left\langle\tau_{0}^{3} \tau_{1}^{2}\right\rangle+\right. \\
\text { Vol } \left.\mathcal{Q}_{2,0}=\left\langle\tau_{0} \tau_{2}\right\rangle\left\langle\tau_{0}^{3}\right\rangle+2\left\langle\tau_{0}^{3} \tau_{1}\right\rangle\left\langle\tau_{1}\right\rangle+2\left\langle\tau_{0} \tau_{2}\right\rangle\right)+\frac{2 \pi^{8}}{675}\left(\left\langle\tau_{0}^{3} \tau_{1}^{2}\right\rangle+2\left\langle\tau_{0}^{3} \tau_{1}\right\rangle\left\langle\tau_{1}\right\rangle+\left\langle\tau_{1}\right\rangle^{2}\left\langle\tau_{0}^{3}\right\rangle+\right. \\
\left.\left\langle\tau_{1}^{2}\right\rangle\right)+\frac{2}{2835}\left(9\left\langle\tau_{0}^{3} \tau_{1}\right\rangle\left\langle\tau_{0}^{3}\right\rangle+4\left\langle\tau_{1}\right\rangle\left\langle\tau_{0}^{3}\right\rangle^{2}\right)+\frac{5}{3402}\left\langle\tau_{0}^{3}\right\rangle^{3}
\end{gathered}
$$

Figure by V. Delecroix, É. Goujard, P. Zograf, and A. Zorich.

Theorem (A., 2020)

Fix $n \geq 0$. As g tends to ∞, we have $\operatorname{Vol} \mathcal{Q}_{g, n} \sim \frac{4}{\pi}\left(\frac{8}{3}\right)^{4 g-4} 2^{n}$.

- Have formulas for $\operatorname{Vol} \mathcal{Q}_{g, n}$ in terms of intersection numbers Issues
- Must understand asymptotics of intersection numbers
- Formula involves sums over graphs, number of which grows exponentially in g

Ribbon Graphs

- Ribbon graph: Graph (possibly with loops) with cyclic ordering of the edges incident to each vertex
- "Thickening" each edge into a thin rectangle (a "ribbon") gives rise to a surface with boundary
- Cyclic ordering prescribes orientation to both long sides of any ribbon

Figures by M. Mulase and M. Penkava.
$\mathcal{R}_{g, n}$: Set of ribbon graphs with following properties

- Trivalent: Each vertex is of degree 3
- Resulting surface is of genus g, with n boundary components

Metric ribbon graph: Ribbon graph with a positive real number (length) assigned to each edge

- Called integral if all edges have integer lengths

Intersection Numbers Through Ribbon Graphs

- Fix $g \in \mathbb{Z}_{\geq 0}, n \in \mathbb{Z}_{\geq 1}$, and $R \in \mathcal{R}_{g, n}$
$N_{R}\left(b_{1}, b_{2}, \ldots, b_{n}\right)$: Number of metric ribbon paths with following properties
- Underlying ribbon graph is R
- Lengths of n boundary components are $b_{1}, b_{2}, \ldots, b_{n}$

Proposition (Kontsevich, 1992)

The weighted sum $\sum_{R \in \mathcal{R}_{g, n}}|\operatorname{Aut}(R)|^{-1} N_{R}\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ is a polynomial in
$\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ of degree $6 g+2 n-6$, with top degree homogeneous part

$$
2^{6-5 g-2 n} \sum_{|\boldsymbol{d}|=3 g+n-3}\left\langle\tau_{d_{1}} \cdots \tau_{d_{n}}\right\rangle \prod_{i=1}^{n} \frac{b_{i}^{2 d_{i}}}{d_{i}!}
$$

- Can be interpreted as combinatorial definition for intersection number $\left\langle\tau_{1} \cdots \tau_{n}\right\rangle$

Intersection Numbers of ψ-Classes

Fix $g \in \mathbb{Z}_{\geq 0}$ and $n \in \mathbb{Z}_{\geq 1}$ with $2 g+n \geq 3$

- $\mathcal{M}_{g, n}$: Moduli space of smooth, genus g curves with n marked points
- $\overline{\mathcal{M}}_{g, n}$: Deligne-Mumford compactification of $\mathcal{M}_{g, n}$
- Moduli space of tuples ($C ; x_{1}, x_{2}, \ldots, x_{n}$), with C a stable genus g curve and $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ a collection of nonsingular points on C
- \mathcal{L}_{i} : Line bundle on $\overline{\mathcal{M}}_{g, n}$ whose fiber over $\left(C ; x_{1}, x_{2}, \ldots, x_{n}\right) \in \overline{\mathcal{M}}_{g, n}$ is $T_{x_{i}}^{*} C$
- $\psi_{i}=c_{1}\left(\mathcal{L}_{i}\right)$: First Chern class of \mathcal{L}_{i}
- For any n-tuple $\mathbf{d}=\left(d_{1}, d_{2}, \ldots, d_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}$, define the intersection number

$$
\left\langle\tau_{d_{1}} \cdots \tau_{d_{n}}\right\rangle_{g, n}=\int_{\overline{\mathcal{M}}_{g, n}} \prod_{i=1}^{n} \psi_{i}^{d_{i}}
$$

which is nonzero only if $|\mathbf{d}|=\sum_{i=1}^{n} d_{i}=3 g+n-3$

- Ubiquitous in mathematics
- Mathematical physics: Correlations functions for quantum gravity models
- Algebraic geometry: Invariants in intersection theory
- Dynamics / geometric topology: Moduli space volumes / multicurve counts

Evaluating Intersection Numbers

- Recursions (on $3 g+n-3$)
- Witten (1991): Initial data $\left\langle\tau_{0}^{3}\right\rangle_{0,3}=1$ and $\left\langle\tau_{1}\right\rangle_{1,1}=\frac{1}{24}$
- Kontsevich (1992): Virasoro constraints / Witten's conjecture
- Witten (1991), Kontsevich (1992): Imply that $\left\langle\tau_{3 g-3}\right\rangle_{g, 1}=\frac{1}{248 g!}$
- Alternative proofs: Okounkov-Pandharipande (2001), Mirzakhani (2003),

Kazarian-Lando (2006)

- Okounkov (2001), Zhou (2013), Bertola-Dubrovin-Yang (2015): Exact formulas for generating series

Theorem (Virasoro Constraints)

For fixed $k \geq 1$ and $\boldsymbol{d}=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ with $|\boldsymbol{d}|=3 g+n-k-3$,

$$
\begin{aligned}
(2 k+3)!!\left\langle\tau_{k+1} \tau_{d_{1}} \cdots \tau_{d_{n}}\right\rangle= & \sum_{j=1}^{n} \frac{\left(2 k+2 d_{j}+1\right)!!}{\left(2 d_{j}-1\right)!!}\left\langle\tau_{d_{1}} \cdots \tau_{d_{j}+k} \cdots \tau_{d_{n}}\right\rangle \\
& +\frac{1}{2} \sum_{\substack{r+s=k-1 \\
r, s \geq 0}}(2 r+1)!!(2 s+1)!!\left\langle\tau_{r} \tau_{s} \tau_{d_{1}} \cdots \tau_{d_{n}}\right\rangle \\
& +\frac{1}{2} \sum_{\substack{r+s=k-1 \\
r, s \geq 0}} \sum_{\substack{l \cup J=\{1,2, \ldots, n\} \\
|I \cap J|=0}}(2 r+1)!!(2 s+1)!!\left\langle\tau_{r} \tau_{1}\right\rangle\left\langle\tau_{s} \tau_{J}\right\rangle .
\end{aligned}
$$

Integrability: Generating series of intersection numbers solves KdV equation / is annihilated by differential operators satisfying Virasoro commutation relations,

Evaluating Intersection Numbers

$\left\langle\tau_{14}{ }^{2} \tau_{17}\right\rangle=\frac{23414499614949743}{4218918642758340433196089344000}$ $\left\langle\tau_{14} \tau_{15} \tau_{19}\right\rangle=\frac{3672285682784833909}{13237634410877959119232529596416000}$ $\left\langle\tau_{14} \tau_{16} \tau_{21}\right\rangle=\frac{4730560922267075714303}{39236348398422708294052177237770240000}$ $\left(\tau_{14} \tau_{18} \tau_{19}\right)=\frac{1352428754551622110128037}{82396331627068768741750957219931750400000}$ $\left\langle\tau_{14} \tau_{20}{ }^{2}\right\rangle=\frac{3219493188176607553369649}{4529444058585151744546538334032819650560000}$
$\left(\tau_{15}{ }^{2} \tau_{18}\right)=\frac{218085649505684627}{624882121258835337305386490265600}$
$\left\langle\tau_{15} \tau_{16} \tau_{20}\right\rangle=\frac{1312348909533728275697}{78472696787684541658810435447554048000}$
$\left\langle\tau_{15} \tau_{18}{ }^{2}\right\rangle=\frac{52352080828528548475957}{2535271742371346730515414068305592320000}$
$\left\langle\tau_{15} \tau_{20} \tau_{22}\right\}=\frac{3308236340083900843297847}{88140533031927277191176881094692706713600000}$
$\left(\tau_{16}{ }^{2} \tau_{19}\right)=\frac{599848364674576145507}{287733221554843319415638263307698176000}$
$\left\langle\tau_{16} \tau_{17} \tau_{21}\right\rangle=\frac{3465846005232923308730179}{3625438591591025824637042117676997017600000}$
$\left\langle\tau_{16} \tau_{19} \tau_{22}\right\rangle=\frac{904251266254585075508619}{193909172670240009820586938408323954769920000}$
$\left\langle\tau_{17}{ }^{3}\right\rangle=\frac{2251806074131919129}{9222218639578311519731995618836480000}$
$\left\langle\tau_{17} \tau^{\tau} 18 \tau_{22}\right\rangle=\frac{135637689940928503997585459}{26103157859455388593738670324727437852672000000}$
$\left\langle\tau_{17} \tau_{21} \tau_{22}\right\rangle=\frac{1057844571695605417974075443}{398331397153699942839180194579797682159616000000}$
$\left\langle\tau_{18} \tau_{19} \tau^{\top} 20\right\rangle=\frac{123364949487816164600458793}{1770475054815234872274924220249914369638400000}$
$\left\langle\tau_{19}{ }^{3}\right\rangle=\frac{2982901214510928468022863079}{40720926260750402062323257065748030501683200000}$
$\left\langle\tau_{19}{ }^{\tau} 22^{2}\right\rangle=\frac{1364569522408068750074196767329}{8602559160929915526502661911508520401324998656000000}$
$\left(\tau_{14}{ }^{2} \tau_{20}\right)=\frac{46767979092427}{2206272401818293318653875932736000}$
$\left\langle\tau_{14} \tau_{15} \tau_{22}\right\rangle=\frac{1212961084312874497}{13719002934908888005386839763558400000}$
$\left\langle\tau_{14} \tau_{1} 7^{2}\right\rangle=\frac{}{26898137622555535557603974797}$
 $\left\langle\tau_{14} \tau_{21} \tau_{22}\right\rangle=\frac{6916520224212391689888593}{255607545795859103554110055174608839469400000}$

 $\left\langle\tau_{15} \tau_{18} \tau_{21}\right\rangle=\frac{24954912390584169150939}{2926717693334826657069900041975742080000}$

$\left\langle r_{17}{ }^{2} \tau_{20}\right\rangle=\frac{70967329662996755591613}{60423976525517070077284035294616169600000}$
$\left\langle\tau_{17} \tau_{19} \tau_{21}\right\rangle=\frac{170987260091500906198923}{295079175502533145379154036770811966606400000}$
$\left\langle\tau_{18}{ }^{3}\right\rangle=\frac{203933958495643939992947}{1485872062768988881824738771555154690560000}$
$\left\langle\tau_{18} \tau_{20} \tau_{22}\right\rangle=\frac{254359175992516192861293}{824133926146858688632786604774434803024000000}$

$\left\langle\tau_{14} \tau_{15} \tau_{16}\right\rangle=\frac{2107304965306301063}{336308086094164851674773979136000}$
$\left\langle\tau_{14} \tau_{16} \tau_{18}\right\rangle=\frac{18511317621367751831}{56462563099459050120808136441856000}$
$\left\langle\tau_{14} \tau_{17} \tau_{20}\right\rangle=\frac{2607872832951318082813}{176060537664676856285792643632332800000}$ $\left\langle\tau_{14} \tau_{19} \tau_{21}\right\rangle=\frac{128929471395477419779072391}{190236650460576373270954610029378425323520000}$
$\left\langle\tau_{15}{ }^{3}\right\rangle=\frac{407865477597219179}{61146924744393609395413450752000}$
$\left\langle\tau_{15} \tau_{16} \tau_{17}\right\rangle=\frac{784505444815566537}{20048301390387633738547816562688000}$
$\left\langle\tau_{15} \tau_{17} \tau_{22}\right\rangle=\frac{46211280072787052120641}{65917065301655014993400765775945400320000}$ $\left\langle\tau_{15} \tau_{19} \tau_{20}\right\rangle=\frac{2558236268720775352584411}{27176664381610910467279230004196917903360000}$
$\left\langle\tau_{16}{ }^{3}\right\rangle=\frac{1188640218358884251}{2864043055769661962649688080384000}$
$\left\langle\tau_{16} \tau_{17} \tau_{18}\right\rangle=\frac{53806305287455434615317}{2323999097173734502972462895946792960000}$ $\left\langle\tau_{16} \tau_{19}{ }^{2}\right\rangle=\frac{174579614489377253808092707}{1494716539333100075700357650230830484684800000}$ $\left\langle\tau_{16} \tau_{22}{ }^{2}\right\rangle=\frac{39179428581020680553974871}{18968161769223806801865723551418937245696000000}$ $\left\langle\tau_{17} \tau_{18} \tau_{19}\right\rangle=\frac{1047477686982113541721818679}{804847367333207733069423350124293337907200000}$ $\left\langle\tau_{17} \tau_{20}{ }^{2}\right\rangle=\frac{4741805420689517701880449}{75409122705093337152450476047681537966080000}$ $\left\langle\tau_{18}{ }^{2} \tau_{21}\right\rangle=\frac{39591541928920093711873281}{6264757886269292624972808779345850846412800000}$
$\left\langle\tau_{18} \tau_{21}{ }^{2}\right\rangle=\frac{661332733691610118175077}{204753770222606860529884871919364839833600000}$
$\left(\tau_{19} \tau_{20} \tau_{21}\right)=\frac{763067752555417693134692171}{214274820537852383044524518463615304885862400000}$
$\left\langle\tau_{20} T_{21} \top_{22}\right\rangle=\frac{59907930252114536543946157271}{344102366437196621060106476460340816052999946240000}$

Figure by M. Bertola, B. Dubrovin, and D. Yang.

If g is are very large, then $\left\langle\tau_{d_{1}} \cdots \tau_{d_{n}}\right\rangle$ is typically quite intricate

Question

Do these numbers admit a tractable asymptotic behavior as g tends to ∞ ?

Large Genus Asymptotics for Intersection Numbers

Theorem (A., 2020)

Let $\boldsymbol{d}=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ satisfy $|\boldsymbol{d}|=3 g+n-3$. Then, as g tends to ∞,

$$
\left\langle\tau_{d_{1}} \cdots \tau_{d_{n}}\right\rangle_{g, n} \sim \frac{(6 g+2 n-5)!!}{24^{g} g!\prod_{i=1}^{n}\left(2 d_{i}+1\right)!!}, \quad \text { if } n=o(\sqrt{g})
$$

In particular, $\langle\boldsymbol{d}\rangle_{g, n} \sim 1$, uniformly in \boldsymbol{d} if $n=o(\sqrt{g})$, where

$$
\langle\boldsymbol{d}\rangle_{g, n}=\frac{24^{g} g!\prod_{i=1}^{n}\left(2 d_{i}+1\right)!!}{(6 g+2 n-5)!!} \cdot\left\langle\tau_{d_{1}} \tau_{d_{2}} \cdots \tau_{d_{n}}\right\rangle_{g, n}
$$

Proof is based on a probabilistic interpretation of the Virasoro constraints

- Universality: Asymptotically, $\left\langle\tau_{d_{1}} \cdots \tau_{d_{n}}\right\rangle_{g, n} \prod_{i=1}^{n}\left(2 d_{i}+1\right)$!! (typical normalization in literature) is independent of \mathbf{d}
- Predicted by Delecroix-Goujard-Zograf-Zorich (2019)
- Theorem is false if $n \sim c \sqrt{g}$, since then $\left\langle 3 g-2,1^{n-1}\right\rangle_{g, n} \sim \exp \left(\frac{n^{2}}{12 g}\right)$

Alternative proof by Guo-Yang (2021) when $n=O(\log g)$

Asymptotic Contribution to the Volume

> Theorem (A., 2020)
> Fix $n \geq 0$. As g tends to ∞, we have $\operatorname{Vol} \mathcal{Q}_{g, n} \sim \frac{4}{\pi}\left(\frac{8}{3}\right)^{4 g-4} 2^{n}$.

- Now have asymptotics for intersection numbers Theorem established by analyzing contributions from classes of graphs Γ
(1) Graphs with at least two vertices: $o\left(\left(\frac{8}{3}\right)^{4 g-4} 2^{n}\right)$
(2. Graphs with one vertex (but possibly several loops): $\frac{4}{\pi}\left(\frac{8}{3}\right)^{4 g-4} 2^{n}(1+o(1))$. Imply with probability $1-o(1)$ that Γ has one vertex, as g tends to ∞
- Pinching cylinder waist curves in a random square-tiled surface likely leaves it connected

Single-Vertex Graphs

- Random square-tiled surface $S \in \mathcal{S}_{N}(g, n)$
- First let N tend to ∞
- Then let g tend to ∞
- Underlying graph Γ has one vertex, with probability $1-o(1)$

There are $g+1$ such graphs

- $\Gamma_{g}(E)$: Single vertex with E self-edges, for any $E \in[0, g]$
- Square-tiled surface has E cylinders

Proposition (A., 2020)

Let $Z_{k}(m)=\sum_{|\boldsymbol{a}|=m} \frac{\zeta\left(2 a_{1}\right) \cdots \zeta\left(2 a_{k}\right)}{a_{1} \cdots a_{k}}$. Then,

$$
\mathbb{P}\left[\Gamma=\Gamma_{g}(E)\right]=\frac{\mathcal{Z}\left(\Gamma_{g}(E)\right)}{\operatorname{Vol} \mathcal{Q}_{g, n}} \sim(6 \pi g)^{1 / 2} \cdot \frac{Z_{E}(3 g)}{2^{E-1} E!}
$$

- Uses asymptotics for intersection numbers of ψ-classes, and further analysis after inserting into formulas for $\mathcal{Z}\left(\Gamma_{g}(E)\right)$

Statistical Consequences

Proposition (A., 2020)

Let $Z_{k}(m)=\sum_{|a|=m} \frac{\zeta\left(2 a_{1}\right) \cdots \zeta\left(2 a_{k}\right)}{a_{1} \cdots a_{k}}$. Then, $\mathbb{P}\left[\Gamma=\Gamma_{g}(E)\right]=\frac{\mathcal{Z}\left(\Gamma_{g}(E)\right)}{\operatorname{Vol} \mathcal{Q}_{g, n}} \sim(6 \pi g)^{1 / 2} \cdot \frac{Z_{E}(3 g)}{2^{E-1} E!}$.
Delecroix-Goujard-Zograf-Zorich (2020): Used, with other deep analytic / combinatorial ideas, to study refined geometric statistics at high genus
(1) E Converges to a Poisson random variable with parameter $\frac{1}{2}(\log (24 g)+\gamma)$

- Random square-tiled surface of large genus g has about $\frac{\log g}{2}$ cylinders
- Slowly divergent number of cylinder / geodesics; surface still remains connected after pinching / cutting along them
(2) Law of E is very close to number of cycles in random permutation sampled under a certain multiparameter Ewens measure
- Cycle of length k weighted by $\frac{1}{2} \zeta(2 k)$
(3) Distribution of cylinder heights / geodesic multiplcities
- Square-tiled surface: $\mathbb{P}[$ All cylinder heights $\leq A] \approx \sqrt{\frac{A}{A+1}}$
- Probability all cylinders are one square tall is about $\frac{\sqrt{2}}{2}$
(4) ...

Analysis of Virasoro Constraints

Theorem

Let $\boldsymbol{d}=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ satisfy $|\boldsymbol{d}|=3 g+n-3$. Then, as g tends to ∞,

$$
\langle\boldsymbol{d}\rangle_{g, n} \sim 1, \quad \text { uniformly in } \boldsymbol{d} \text {, if } n=o(\sqrt{g}) .
$$

- Exact if $n=1$ (Kontsevich, 1992; predicted by Witten, 1991)
- Asymptotic known if $n=2$ (Delecroix-Goujard-Zograf-Zorich, 2019) Virasoro constraints:

$$
\begin{aligned}
\langle k+1, \mathbf{d}\rangle_{g, n+1}= & \frac{1}{6 g+2 n-3} \sum_{j=1}^{n}\left(2 d_{j}+1\right)\left\langle d_{j}+k, \mathbf{d} \backslash\left\{d_{j}\right\}\right\rangle_{g, n} \\
& +\frac{12 g}{(6 g+2 n-3)(6 g+2 n-5)} \sum_{\substack{r+s=k-1 \\
r, s \geq 0}}\langle r, s, \mathbf{d}\rangle_{g-1, n+2} \\
& +\frac{1}{2} \sum_{\begin{array}{r}
r+s=k-1 \\
r, s \geq 0 \\
\end{array} \sum_{\substack{1 \cup J=\{1,2, \ldots, n\} \\
|l \cap \cap|=0}} \frac{g!}{g^{\prime}!g^{\prime \prime \prime}!}} \frac{\left(6 g^{\prime}+2 n^{\prime}-3\right)!!\left(6 g^{\prime \prime}+2 n^{\prime \prime}-3\right)!!}{(6 g+2 n-3)!!} \\
& \times\left\langle r,\left.\mathbf{d}\right|_{I}\right\rangle_{g^{\prime}, n^{\prime}+1}\left\langle s,\left.\mathbf{d}\right|_{J}\right\rangle_{g^{\prime \prime}, n^{\prime \prime}+1}
\end{aligned}
$$

- Blue term: Decreases $n ; \quad$ Red term: Increases n
- Green term: Will be asymptotically negligible

Analysis of Virasoro Constraints

Recall

$$
\langle k+1, \mathbf{d}\rangle_{g, n+1}=\sum_{\mathbf{d}^{\prime}} A_{\mathbf{d}^{\prime}}\left\langle\mathbf{d}^{\prime}\right\rangle_{g, n}+\sum_{\mathbf{d}^{\prime}} B_{\mathbf{d}^{\prime}}\left\langle\mathbf{d}^{\prime}\right\rangle_{g-1, n+2}+\text { Asymptotically negligible }
$$

- Red term causes issues
- Understand $\langle\mathbf{d}\rangle_{g, n}$ for small n
- Repeated use of recursion yields $\left\langle\mathbf{d}^{\prime}\right\rangle_{g^{\prime}, n^{\prime}}$ with large n^{\prime}, due to red term
- Red term is not asymptotically negligible
- Partially counteracted by effect of blue term, which reduces n

We will show that the effect of the blue term "dominates" that of the red term

- Comparison to random walk
- Space variable: n
- Time variable: Number of applications of recursion

Random Walk Heuristic

- Evaluate $\langle\mathbf{D}\rangle_{g, n+1}$, for $\mathbf{D}=\left(D_{1}, D_{2}, \ldots, D_{n+1}\right) \in \mathbb{Z}_{\geq 0}^{n+1}$
- Let $k+1=\min _{1 \leq i \leq n+1} D_{i}$, and set $\mathbf{d}=\mathbf{D} \backslash\{k+1\}$, so

$$
\langle\mathbf{D}\rangle_{g, n+1}=\langle k+1, \mathbf{d}\rangle_{g, n+1}=\sum_{\mathbf{d}^{\prime}} A_{\mathbf{d}^{\prime}}\left\langle\mathbf{d}^{\prime}\right\rangle_{g, n}+\sum_{\mathbf{d}^{\prime}} B_{\mathbf{d}^{\prime}}\left\langle\mathbf{d}^{\prime}\right\rangle_{g-1, n+2}+\text { Small term }
$$

Define $A=\sum_{\mathbf{d}^{\prime}} A_{\mathbf{d}^{\prime}}$ and $B=\sum_{\mathbf{d}^{\prime}} B_{\mathbf{d}^{\prime}}$

- Then, it can be shown that $A+B=1+O\left(\frac{n}{g}\right) \approx 1$

Random walk interpretation

- Flip coin with heads probability $\frac{A}{A+B} \approx A$ and tails probability $\frac{B}{A+B} \approx B$
- If heads, then select $\mathbf{d}^{\prime} \in \mathbb{Z}_{>0}^{n}$ with probability $A^{-1} A_{\mathbf{d}^{\prime}}$
- If tails, then select $\mathbf{d}^{\prime} \in \mathbb{Z}_{\geq 0}^{n+2}$ with probability $B^{-1} B_{\mathbf{d}^{\prime}}$
- Replace d with \mathbf{d}^{\prime} and $(g, n+1)$ with $\left(g^{\prime}, n^{\prime}+1\right)$
- If heads, then $n^{\prime}=n-1$ and, if tails, then $n^{\prime}=n+1$
- Decrease n with probability A, and increase n with probability B
- Repeat many times
- Output $\mathbb{E}\left[\left\langle\mathbf{d}^{\prime}\right\rangle_{g^{\prime}, n^{\prime}}\right]$ as approximation for $\langle\mathbf{D}\rangle_{g, n+1}$

Random Walk Heuristic

- Under random walk, n decreases with probability A and increases with probability B
- Asymptotic $\langle\mathbf{d}\rangle_{g, n+1} \approx 1$ known for $n \in\{0,1\}$
- Kontsevich (1992), predicted by Witten (1991): Exact for $n=0$
- Delecroix-Goujard-Zograf-Zorich (2019): Asymptotic for $n=1$
- Assume initially $n \geq 2$; after many repetitions, wish for n to likely decrease to 1
- Want random walk to have negative drift: $B<A$

Explicit forms of A, B yield, $B \leq \frac{1}{n+1} \leq \frac{1}{3}$

- Since $A+B \approx 1$, this implies $A \geq \frac{2}{3}>B$

Random walk has drift of $B-A \leq-\frac{1}{3}$

- After about $3 n$ steps, expect n to decrease to 2
- Suggests that $\mathbb{E}\left[\left\langle\mathbf{d}^{\prime}\right\rangle_{g^{\prime}, n^{\prime}}\right] \approx\left\langle\mathbf{d}^{\prime}\right\rangle_{g^{\prime}, 2} \approx 1$ after $4 n$ repetitions
- Asymptotics on square-tiled surfaces
- Enumerative: Total number of such objects
- Closely related to volume $\operatorname{Vol} \mathcal{Q}_{g, n}$ of moduli space of quadratic differentials
- Statistical: Geometry of randomly chosen object
- Geometry summarized through a graph associated with the surface
- Statistics given by contribution to volume coming from given graph
- Expression for this contribution in terms of intersection numbers
- Asymptotics of intersection numbers
- Based on a probablistic interpretation of terms in Virasoro constraints

