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Flat Surfaces

e Consider a finite family of polygons in R? ~ C
o Form a flat surface X from them by gluing (anti-)parallel sides of equal
lengths using translations (z — ¢ + z) and / or reflections (z — ¢ — z)
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Figure by A. Zorich. Figure by E. Duryev.

Alternative interpretation: Meromorphic quadratic differentials

@ Gluing dz ® dz on each polygon yields meromorphic quadratic differential on X

@ Quadratic differential taken to ensure gluing is consistent along reflections
o Locally of the form f(z) - dz ® dz, and has at most simple poles

@ Can be reversed: Every such differential comes from gluing polygons

How does a “random” flat surface of large genus “look?” \

@ To make sense of this question, we discretize




Square-Tiled Surfaces

Square-tiled surface: Connected flat surface X produced from gluing squares
@ Finite collection of % X % squares

@ Glue pairs of vertical / horizontal sides by translations or reflections
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Figure by E. Duryev.

Conical singularities: Points on X that do not have total angle 27
@ Also defined on general flat surface
@ Will either have total angle 7 or 2 (m + 1) for some integer m > 1

@ Conical singularities are poles / zeroes of associated differential g

o Simple poles at conical singularities with total angle 7
@ Zeroes of order m at conical singularities with total angle 27 (m + 1)



Discretization Through Square-Tiled Surfaces

Sn(g,n): Set of square-tiled surfaces with three properties
@ At most 4N squares
@ Genus g

@ n Simple poles (conical singularities with total angle 7)

For N large, Sy (g, n) discretizes the set of flat surfaces of genus g with n poles

@ How many square-tiled surfaces are in Sy(g,n) for large N and g?

@ How does a uniformly random surface in Sy(g,n) “look” for large N and g?

First let N tend to oo

@ Yields a discretization of a flat surface

Then let g tend to oo

@ View n as fixed



Enumeration of Square-Tiled Surfaces

@ Fact: For N large, #Sy(g,n) ~ N%+2176.Vol Q, ,, for some constant Vol Q, ,
Masur, Veech (1982): The constant Vol Q, ,, is finite and positive

@ Vol 9, ,,: Volume of moduli space Q, , of meromorphic quadratic differentials
o Q.. Set of pairs (X, g), Riemann surface X and differential g on X
@ Noncompact orbifold of dimension 6g 4 2n — 6
o Parameterized by periods: Sides of polygons (in R* ~ C) that glue to form (X, g)
@ Square-tiled surfaces have periods in %Z[i], so can be viewed as lattice points in Qg »
@ Lebesgue measure on these periods pulls back to volume form on Q. ,

@ Analogy: Volume of a disk approximately determined by number of lattice points in it

Formulas / algorithms to compute Vol Q, ,
@ Eskin—Okounkov (2005): Count branched coverings using representation theory of &,
@ Mirzakhani (2008): Relate to volumes in hyperbolic geometry
@ Delecroix—Goujard—Zograf—Zorich (2019): Relate to ribbon graph counts
°

Chen—-Moller—Sauvaget (2019), Kazarian (2019), Yang—Zagier—Zhang (2020):
Recursions based on intersection theory

@ Andersen—Borot—Charbonnier—Delecroix—Giacchetto—Lewanski—Wheeler (2019):
Topological recursion



Large Genus Asymptotics of Volumes

Almost all formulas / algorithms have exponential complexity in genus g

29 8. 15 12, _ 2106241 _18
@ Vol Q1 = gpm; Vol Q30 = w7 Vol Qu0 = Tisi05135 7

Theorem (A., 2020)

4 3 4g+n—4
Fixn > 0. As g tends to oo, we have Vol Q, ,, ~ — (—) 2",
T

@ Based on analysis of formulas from Delecroix—Goujard—Zograf—Zorich (2019)
through ribbon graph counts / intersection numbers

o Will count square-tiled surfaces “associated” with a graph I', and then sum
over all (exponentially many) graphs

@ The graph I' contains geometric information about the surface
o Can be used to analyze statistics of random square-tiled surfaces



Graph Associated With Square-Tiled Surface

Fix a square-tiled surface X

@ Horizontal foliation decomposes X into maximal cylinders Ule G

@ Each cylinder C; admits a waist curve ;
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Figure by V. Delecroix, E. Goujard, P. Zograf, and A. Zorich.

@ Givesrise to a graph I

o Vertices: Connected components of S \ Ji_, i
o Edges: Waist curves ~; (alternatively, cylinders C;)
o Unpaired half-edges: Singularities of total angle 7 (poles of quadratic differential)

@ Can view I as the “skeleton” of the square-tiled surface



Topologies of Surfaces

@ Let S,E,F) (g,n) denote the surfaces in Sy(g, n) associated with I’
Delecroix-Goujard—ZografZorich (2019): lim N8 (¢ 1) = Z(T) Exists
@ Formulas for Z(T") through intersection numbers (7, - - - 74,) of 1-classes
@ Summing over I' implies an analogous formula for Vol Q.
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Figure by V. Delecroix, E. Goujard, P. Zograf, and A. Zorich.

Theorem (A., 2020)

4 (8%~
Fixn > 0. As g tends to oo, we have Vol Qg ~ — (5) 2",
s

@ Have formulas for Vol Q, , in terms of intersection numbers
Issues
@ Must understand asymptotics of intersection numbers
@ Formula involves sums over graphs, number of which grows exponentially in g



Ribbon Graphs

@ Ribbon graph: Graph (possibly with loops) with cyclic ordering of the edges
incident to each vertex

@ “Thickening” each edge into a thin rectangle (a “ribbon”) gives rise to a surface
with boundary

o Cyclic ordering prescribes orientation to both long sides of any ribbon

F ok —

Figures by M. Mulase and M. Penkava.
‘Re.n: Set of ribbon graphs with following properties

@ Trivalent: Each vertex is of degree 3

@ Resulting surface is of genus g, with n boundary components

Metric ribbon graph: Ribbon graph with a positive real number (length) assigned to
each edge

@ Called integral if all edges have integer lengths

9/22



Intersection Numbers Through Ribbon Graphs

@ Fixge Zzo, nec ZZU andR € Rg,n

Ng(b1,bs, ..., b,): Number of metric ribbon paths with following properties
@ Underlying ribbon graph is R

@ Lengths of n boundary components are by, by, ..., b,

Proposition (Kontsevich, 1992)

The weighted sum Z | Aut(R) |_1NR(b1 by, ... by) is a polynomial in
RER,,
(by,by, ..., by) of degree 6g + 2n — 6, with top degree homogeneous part
n32d;
G bi™
S e [
|d|=3g4+n—3 i=1 '

@ Can be interpreted as combinatorial definition for intersection number
<7_1 DY Tn>



Intersection Numbers of ¢)-Classes

Fix g € Z>pand n € Z> with2g +n >3
@ M, ,: Moduli space of smooth, genus g curves with n marked points

@ M, ,: Deligne-Mumford compactification of M, ,

@ Moduli space of tuples (C;x1,x2, . . ., Xn), with C a stable genus g curve and
(x1,%x2, . ..,x,) acollection of nonsingular points on C

@ L;: Line bundle on M, , whose fiber over (C;x1,x2, . ..,X,) € My, is T;C
@ v; = ¢ (L;): First Chern class of L;

@ For any n-tupled = (dy,d,,...,d,) € 7, define the intersection number

n
d;
(T ma)en= | J]¥"
Men j=1
which is nonzero only if [d| = Y di=3g+n—3
o Ubiquitous in mathematics

@ Mathematical physics: Correlations functions for quantum gravity models
o Algebraic geometry: Invariants in intersection theory
@ Dynamics / geometric topology: Moduli space volumes / multicurve counts



Evaluating Intersection Numbers

@ Recursions (on3g +n —3)
o Witten (1991): Initial data (73)o,3 = 1 and (1)1,1 = 5
@ Kontsevich (1992): Virasoro constraints / Witten’s conjecture
@ Witten (1991), Kontsevich (1992): Imply that (T3,_3),,1 = ﬁ@!

@ Alternative proofs: Okounkov—Pandharipande (2001), Mirzakhani (2003),
Kazarian—Lando (2006)

@ Okounkov (2001), Zhou (2013), Bertola—Dubrovin—Yang (2015): Exact formulas for
generating series

Theorem (Virasoro Constraints)
For fixedk > 1 andd = (di,d>, .

..,d ) with |d| =3g+n—k—3,
(2K + 2dj + 1)1t
(2k + 3)”<7'k+17'd1 S Tay) = W Tdy  Tditk Tdyp )
1
5 Z 2r+ D25 + 1)!!(7’,73-7',11
r4+s=k—1
>0

ar Tdy )

1
+- > > 2r + DN(2s + DU () (r577)-
2 bsmk—110={1,2,....,n}
rys20 [10J]=0

Integrability: Generating series of intersection numbers solves KdV equation / is annihilated
by differential operators satisfying Virasoro commutation relations



Evaluating Intersection Numbers
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Do these numbers admit a tractable asymptotic behavior as g tends to co?
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Large Genus Asymptotics for Intersection Numbers

Theorem (A., 2020)

Letd = (dy,dy, . .. ,dy) satisfy |d| = 3g + n — 3. Then, as g tends to oo,

(6g +2n — 5! o
g [, i+ I"= o(Ve)-

In particular, (d)g, ~ 1, uniformly ind if n = o(,/g), where

(Tay - Ta,)gn ~

2488 T, (2d; + D!
(6g +2n — 5!

(d)gn = ATayTdy =~ T g

Proof is based on a probabilistic interpretation of the Virasoro constraints

o Universality: Asymptotically, (74, - - - 74, ) e [T, (2d; + 1)!! (typical
normalization in literature) is independent of d

@ Predicted by Delecroix—Goujard—Zograf—Zorich (2019)
o Theorem is false if n ~ ¢, /g, since then (3g — 2, 1" 1), , ~ exp (%)
Alternative proof by Guo—Yang (2021) when n = O(log g)



Asymptotic Contribution to the Volume

Theorem (A., 2020)

4g—4
Fixn > 0. As g tends to oo, we have Vol Qg , ~ 4 (2) 7,
™

@ Now have asymptotics for intersection numbers

Theorem established by analyzing contributions from classes of graphs I'

8\ 4g—4
@ Graphs with at least two vertices: o ( (g) 2">

4g—4
4
© Graphs with one vertex (but possibly several loops): — (3) 2" (1 + 0(1)).
T

Imply with probability 1 — o(1) that I" has one vertex, as g tends to oo

@ Pinching cylinder waist curves in a random square-tiled surface likely leaves it connected



Single-Vertex Graphs

@ Random square-tiled surface S € Sy(g, n)
o First let N tend to co
o Then let g tend to co

@ Underlying graph I has one vertex, with probability 1 — o(1)
There are g + 1 such graphs

e I',(E): Single vertex with E self-edges, for any E € [0, g
e Square-tiled surface has E cylinders

Proposition (A., 2020)

Let Z;( Z C2a1 2ak) . Then,
|a|=m
_ _ Z(Ly(E)) 1/2 Ze(3g)
P = Fg(E)] = NolQ,, (6m8)"" - SE—igy-

@ Uses asymptotics for intersection numbers of 1-classes, and further analysis
after inserting into formulas for Z (T'y(E))



Statistical Consequences

Proposition (A., 2020)

2ap) -+ - ¢(2aq Z(T,(E Zr(3
Let zi(m) = > w Then, P[T = Ty (E)] = 7\/5)12&)") ~ (67g) /2 . zsz(lgE)!'

la|=m

Delecroix—Goujard—Zograf—Zorich (2020): Used, with other deep analytic /
combinatorial ideas, to study refined geometric statistics at high genus

@ E Converges to a Poisson random variable with parameter 1 (log(24g) + )

@ Random square-tiled surface of large genus g has about lozgg cylinders

@ Slowly divergent number of cylinder / geodesics; surface still remains connected after
pinching / cutting along them

@ Law of E is very close to number of cycles in random permutation sampled
under a certain multiparameter Ewens measure
@ Cycle of length k weighted by %C (2k)
© Distribution of cylinder heights / geodesic multiplcities

@ Square-tiled surface: ]P’[All cylinder heights < A] = 4/ ALH

@ Probability all cylinders are one square tall is about %



Analysis of Virasoro Constraints

Letd = (dy,dy, . . .,d,) satisfy |d| = 3g +n — 3. Then, as g tends to oo,
(d)ygn~1, uniformly ind, if n = 0(\/g).

@ Exactif n = 1 (Kontsevich, 1992; predicted by Witten, 1991)
@ Asymptotic known if n = 2 (Delecroix—Goujard—Zograf—Zorich, 2019)
Virasoro constraints:

| n
(k+ 1,d)g ny1 = P Z}(zdj + D{dj + k d\ {d}), ,
=

12¢
+ (rys,d)g 1 nt2
(6g + 21 — 3) (68 + 21 — 5) y+.§71 g=lint
r,5>0
n 1 g (6" + 20" = 3)N(6g" 420" — 3N
2 Sk 1= {1 2,...n} 8'ls""! (6g +2n — 3!
rs2>0 [1nJ]=0
X (r, d‘l>$”‘”/+1 (s, d\_/>g//'”//+]
@ Blue term: Decreases n; Red term: Increases n

@ Green term: Will be asymptotically negligible



Analysis of Virasoro Constraints

Recall

(k+1,d)g 1 = ZAd' Yo + Z Bar(d')g_1 442 + Asymptotically negligible

@ Red term causes issues

o Understand (d), , for small n
o Repeated use of recursion yields (d'),/ » with large n’, due to red term
o Red term is not asymptotically negligible

o Partially counteracted by effect of blue term, which reduces n
We will show that the effect of the blue term “dominates” that of the red term

@ Comparison to random walk

e Space variable: n
e Time variable: Number of applications of recursion



Random Walk Heuristic

o Evaluate (D); 1, for D = (D1, Dy, ..., Dyy1) € Z25!
o Letk+ 1 = minj<j<,4+1 D;, and setd =D\ {k + 1} SO

<D>g,n+1 <k +1, d g n+1 = ZAd/ d/ g nt Z Bd/ g 1nt2 + Small term

DefineA =) Ay and B = Zd/ By
@ Then, it can be shown that A +B =1 + 0(%) ~1
Random walk interpretation
@ Flip coin with heads probability ﬁ ~ A and tails probability /% ~ B
o If heads, then selectd’ € Z%, with probability A~'Ag
o If tails, then select d’ € Z”ZT)Z with probability B~ Bg/
@ Replace d with d’ and (g,n + 1) with (g’,n’ + 1)

e If heads, then n’ = n — 1 and, if tails, then n’ =n + 1
e Decrease n with probability A, and increase n with probability B

@ Repeat many times
@ Output E [(d’ ) g/’n/] as approximation for (D) g 41



Random Walk Heuristic

@ Under random walk, n decreases with probability A and increases with probability B

@ Asymptotic (d), .41 = 1 known forn € {0,1}

@ Kontsevich (1992), predicted by Witten (1991): Exact forn = 0
@ Delecroix—Goujard—Zograf-Zorich (2019): Asymptotic forn = 1

@ Assume initially n > 2; after many repetitions, wish for 7 to likely decrease to 1
@ Want random walk to have negative drift: B < A
Explicit forms of A, B yield, B < ﬁ < %
@ Since A 4+ B ~ 1, this implies A > % > B
Random walk has drift of B — A < —%
@ After about 3n steps, expect n to decrease to 2

o Suggests that E[(d')y/ ,v] =~ (d')y > ~ 1 after 4n repetitions



@ Asymptotics on square-tiled surfaces
o Enumerative: Total number of such objects
@ Closely related to volume Vol Q, , of moduli space of quadratic differentials
o Statistical: Geometry of randomly chosen object

o Geometry summarized through a graph associated with the surface
e Statistics given by contribution to volume coming from given graph
o Expression for this contribution in terms of intersection numbers

@ Asymptotics of intersection numbers
o Based on a probablistic interpretation of terms in Virasoro constraints



