
Large Genus Asymptotics for Intersection Numbers

Amol Aggarwal

Institute of Advanced Study / Columbia University

May 25, 2022

1 / 22



Flat Surfaces

Consider a finite family of polygons in R2 ' C
Form a flat surface X from them by gluing (anti-)parallel sides of equal
lengths using translations (z 7→ c + z) and / or reflections (z 7→ c− z)

Figure by A. Zorich. Figure by E. Duryev.

Alternative interpretation: Meromorphic quadratic differentials
Gluing dz⊗ dz on each polygon yields meromorphic quadratic differential on X

Quadratic differential taken to ensure gluing is consistent along reflections
Locally of the form f (z) · dz⊗ dz, and has at most simple poles

Can be reversed: Every such differential comes from gluing polygons

Question
How does a “random” flat surface of large genus “look?”

To make sense of this question, we discretize
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Square-Tiled Surfaces

Square-tiled surface: Connected flat surface X produced from gluing squares

Finite collection of 1
2 ×

1
2 squares

Glue pairs of vertical / horizontal sides by translations or reflections

Figure by E. Duryev.

Conical singularities: Points on X that do not have total angle 2π
Also defined on general flat surface
Will either have total angle π or 2π(m + 1) for some integer m ≥ 1
Conical singularities are poles / zeroes of associated differential q

Simple poles at conical singularities with total angle π
Zeroes of order m at conical singularities with total angle 2π(m + 1)
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Discretization Through Square-Tiled Surfaces

SN(g, n): Set of square-tiled surfaces with three properties
At most 4N squares
Genus g

n Simple poles (conical singularities with total angle π)

For N large, SN(g, n) discretizes the set of flat surfaces of genus g with n poles

Question
1 How many square-tiled surfaces are in SN(g, n) for large N and g?
2 How does a uniformly random surface in SN(g, n) “look” for large N and g?

First let N tend to∞
Yields a discretization of a flat surface

Then let g tend to∞
View n as fixed
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Enumeration of Square-Tiled Surfaces

Fact: For N large, #SN(g, n) ∼ N6g+2n−6 ·VolQg,n, for some constant VolQg,n

Masur, Veech (1982): The constant VolQg,n is finite and positive
VolQg,n: Volume of moduli space Qg,n of meromorphic quadratic differentials

Qg,n: Set of pairs (X, q), Riemann surface X and differential q on X
Noncompact orbifold of dimension 6g + 2n− 6
Parameterized by periods: Sides of polygons (in R2 ' C) that glue to form (X, q)

Square-tiled surfaces have periods in 1
2Z[i], so can be viewed as lattice points inQg,n

Lebesgue measure on these periods pulls back to volume form onQg,n

Analogy: Volume of a disk approximately determined by number of lattice points in it

Formulas / algorithms to compute VolQg,n

Eskin–Okounkov (2005): Count branched coverings using representation theory of Sm

Mirzakhani (2008): Relate to volumes in hyperbolic geometry

Delecroix–Goujard–Zograf–Zorich (2019): Relate to ribbon graph counts

Chen–Möller–Sauvaget (2019), Kazarian (2019), Yang–Zagier–Zhang (2020):
Recursions based on intersection theory

Andersen–Borot–Charbonnier–Delecroix–Giacchetto–Lewański–Wheeler (2019):
Topological recursion
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Large Genus Asymptotics of Volumes

Almost all formulas / algorithms have exponential complexity in genus g

VolQ2,1 = 29
840π

8; VolQ3,0 = 115
33264π

12; VolQ4,0 = 2106241
11548293120π

18

Theorem (A., 2020)

Fix n ≥ 0. As g tends to∞, we have VolQg,n ∼
4
π

(
8
3

)4g+n−4

2n.

Based on analysis of formulas from Delecroix–Goujard–Zograf–Zorich (2019)
through ribbon graph counts / intersection numbers

Will count square-tiled surfaces “associated” with a graph Γ, and then sum
over all (exponentially many) graphs

The graph Γ contains geometric information about the surface
Can be used to analyze statistics of random square-tiled surfaces
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Graph Associated With Square-Tiled Surface

Fix a square-tiled surface X

Horizontal foliation decomposes X into maximal cylinders
⋃k

i=1 Ci

Each cylinder Ci admits a waist curve γi

Figure by V. Delecroix, É. Goujard, P. Zograf, and A. Zorich.

Gives rise to a graph Γ

Vertices: Connected components of S \
⋃k

i=1 γi

Edges: Waist curves γi (alternatively, cylinders Ci)
Unpaired half-edges: Singularities of total angle π (poles of quadratic differential)

Can view Γ as the “skeleton” of the square-tiled surface
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Topologies of Surfaces

Let S(Γ)
N (g, n) denote the surfaces in SN(g, n) associated with Γ

Delecroix–Goujard–Zograf–Zorich (2019): lim
N→∞

N6−6g−2nS(Γ)
N (g, n) = Z(Γ) Exists

Formulas for Z(Γ) through intersection numbers 〈τd1 · · · τdn〉 of ψ-classes
Summing over Γ implies an analogous formula for VolQg,n

Figure by V. Delecroix, É. Goujard, P. Zograf, and A. Zorich.

Theorem (A., 2020)

Fix n ≥ 0. As g tends to∞, we have VolQg,n ∼
4
π

(
8
3

)4g−4

2n.

Have formulas for VolQg,n in terms of intersection numbers
Issues

Must understand asymptotics of intersection numbers
Formula involves sums over graphs, number of which grows exponentially in g
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Ribbon Graphs

Ribbon graph: Graph (possibly with loops) with cyclic ordering of the edges
incident to each vertex

“Thickening” each edge into a thin rectangle (a “ribbon”) gives rise to a surface
with boundary

Cyclic ordering prescribes orientation to both long sides of any ribbon

Figures by M. Mulase and M. Penkava.

Rg,n: Set of ribbon graphs with following properties

Trivalent: Each vertex is of degree 3

Resulting surface is of genus g, with n boundary components

Metric ribbon graph: Ribbon graph with a positive real number (length) assigned to
each edge

Called integral if all edges have integer lengths
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Intersection Numbers Through Ribbon Graphs

Fix g ∈ Z≥0, n ∈ Z≥1, and R ∈ Rg,n

NR(b1, b2, . . . , bn): Number of metric ribbon paths with following properties

Underlying ribbon graph is R

Lengths of n boundary components are b1, b2, . . . , bn

Proposition (Kontsevich, 1992)

The weighted sum
∑

R∈Rg,n

∣∣Aut(R)
∣∣−1NR(b1, b2, . . . , bn) is a polynomial in

(b1, b2, . . . , bn) of degree 6g + 2n− 6, with top degree homogeneous part

26−5g−2n
∑

|d|=3g+n−3

〈τd1 · · · τdn〉
n∏

i=1

b2di
i

di!
.

Can be interpreted as combinatorial definition for intersection number
〈τ1 · · · τn〉
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Intersection Numbers of ψ-Classes

Fix g ∈ Z≥0 and n ∈ Z≥1 with 2g + n ≥ 3
Mg,n: Moduli space of smooth, genus g curves with n marked points
Mg,n: Deligne–Mumford compactification ofMg,n

Moduli space of tuples (C; x1, x2, . . . , xn), with C a stable genus g curve and
(x1, x2, . . . , xn) a collection of nonsingular points on C

Li: Line bundle onMg,n whose fiber over (C; x1, x2, . . . , xn) ∈Mg,n is T∗xi
C

ψi = c1(Li): First Chern class of Li

For any n-tuple d = (d1, d2, . . . , dn) ∈ Zn
≥0, define the intersection number

〈τd1 · · · τdn〉g,n =

∫
Mg,n

n∏
i=1

ψdi
i ,

which is nonzero only if |d| =
∑n

i=1 di = 3g + n− 3
Ubiquitous in mathematics

Mathematical physics: Correlations functions for quantum gravity models
Algebraic geometry: Invariants in intersection theory
Dynamics / geometric topology: Moduli space volumes / multicurve counts
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Evaluating Intersection Numbers
Recursions (on 3g + n− 3)

Witten (1991): Initial data 〈τ 3
0 〉0,3 = 1 and 〈τ1〉1,1 = 1

24
Kontsevich (1992): Virasoro constraints / Witten’s conjecture

Witten (1991), Kontsevich (1992): Imply that 〈τ3g−3〉g,1 = 1
24gg!

Alternative proofs: Okounkov–Pandharipande (2001), Mirzakhani (2003),
Kazarian–Lando (2006)

Okounkov (2001), Zhou (2013), Bertola–Dubrovin–Yang (2015): Exact formulas for
generating series

Theorem (Virasoro Constraints)
For fixed k ≥ 1 and d = (d1, d2, . . . , dn) with |d| = 3g + n− k − 3,

(2k + 3)!!〈τk+1τd1 · · · τdn 〉 =
n∑

j=1

(2k + 2dj + 1)!!

(2dj − 1)!!
〈τd1 · · · τdj+k · · · τdn 〉

+
1

2

∑
r+s=k−1

r,s≥0

(2r + 1)!!(2s + 1)!!〈τrτsτd1 · · · τdn 〉

+
1

2

∑
r+s=k−1

r,s≥0

∑
I∪J={1,2,...,n}
|I∩J|=0

(2r + 1)!!(2s + 1)!!〈τrτI〉〈τsτJ〉.

Integrability: Generating series of intersection numbers solves KdV equation / is annihilated
by differential operators satisfying Virasoro commutation relations
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Evaluating Intersection Numbers

Figure by M. Bertola, B. Dubrovin, and D. Yang.

If g is are very large, then 〈τd1 · · · τdn〉 is typically quite intricate

Question
Do these numbers admit a tractable asymptotic behavior as g tends to∞?
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Large Genus Asymptotics for Intersection Numbers

Theorem (A., 2020)
Let d = (d1, d2, . . . , dn) satisfy |d| = 3g + n− 3. Then, as g tends to∞,

〈τd1 · · · τdn〉g,n ∼
(6g + 2n− 5)!!

24gg!
∏n

i=1(2di + 1)!!
, if n = o(

√
g).

In particular, 〈d〉g,n ∼ 1, uniformly in d if n = o(
√

g), where

〈d〉g,n =
24gg!

∏n
i=1(2di + 1)!!

(6g + 2n− 5)!!
· 〈τd1τd2 · · · τdn〉g,n.

Proof is based on a probabilistic interpretation of the Virasoro constraints

Universality: Asymptotically,
〈
τd1 · · · τdn

〉
g,n

∏n
i=1(2di + 1)!! (typical

normalization in literature) is independent of d
Predicted by Delecroix–Goujard–Zograf–Zorich (2019)

Theorem is false if n ∼ c
√

g, since then 〈3g− 2, 1n−1〉g,n ∼ exp
( n2

12g

)
Alternative proof by Guo–Yang (2021) when n = O(log g)
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Asymptotic Contribution to the Volume

Theorem (A., 2020)

Fix n ≥ 0. As g tends to∞, we have VolQg,n ∼
4
π

(
8
3

)4g−4

2n.

Now have asymptotics for intersection numbers

Theorem established by analyzing contributions from classes of graphs Γ

1 Graphs with at least two vertices: o
((8

3

)4g−4
2n
)

2 Graphs with one vertex (but possibly several loops):
4
π

(
8
3

)4g−4

2n(1 + o(1)
)
.

Imply with probability 1− o(1) that Γ has one vertex, as g tends to∞
Pinching cylinder waist curves in a random square-tiled surface likely leaves it connected
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Single-Vertex Graphs

Random square-tiled surface S ∈ SN(g, n)

First let N tend to∞
Then let g tend to∞

Underlying graph Γ has one vertex, with probability 1− o(1)

There are g + 1 such graphs
Γg(E): Single vertex with E self-edges, for any E ∈ [0, g]

Square-tiled surface has E cylinders

Proposition (A., 2020)

Let Zk(m) =
∑
|a|=m

ζ(2a1) · · · ζ(2ak)

a1 · · · ak
. Then,

P
[
Γ = Γg(E)

]
=
Z(Γg(E))

VolQg,n
∼ (6πg)1/2 · ZE(3g)

2E−1E!
.

Uses asymptotics for intersection numbers of ψ-classes, and further analysis
after inserting into formulas for Z

(
Γg(E)

)
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Statistical Consequences

Proposition (A., 2020)

Let Zk(m) =
∑
|a|=m

ζ(2a1) · · · ζ(2ak)

a1 · · · ak
. Then, P

[
Γ = Γg(E)

]
=
Z(Γg(E))

VolQg,n
∼ (6πg)1/2 ·

ZE(3g)

2E−1E!
.

Delecroix–Goujard–Zograf–Zorich (2020): Used, with other deep analytic /
combinatorial ideas, to study refined geometric statistics at high genus

1 E Converges to a Poisson random variable with parameter 1
2

(
log(24g) + γ

)
Random square-tiled surface of large genus g has about log g

2 cylinders
Slowly divergent number of cylinder / geodesics; surface still remains connected after
pinching / cutting along them

2 Law of E is very close to number of cycles in random permutation sampled
under a certain multiparameter Ewens measure

Cycle of length k weighted by 1
2 ζ(2k)

3 Distribution of cylinder heights / geodesic multiplcities
Square-tiled surface: P

[
All cylinder heights ≤ A] ≈

√
A

A+1

Probability all cylinders are one square tall is about
√

2
2

4 · · ·
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Analysis of Virasoro Constraints

Theorem
Let d = (d1, d2, . . . , dn) satisfy |d| = 3g + n− 3. Then, as g tends to∞,

〈d〉g,n ∼ 1, uniformly in d, if n = o(
√

g).

Exact if n = 1 (Kontsevich, 1992; predicted by Witten, 1991)
Asymptotic known if n = 2 (Delecroix–Goujard–Zograf–Zorich, 2019)

Virasoro constraints:

〈k + 1, d〉g,n+1 =
1

6g + 2n− 3

n∑
j=1

(2dj + 1)
〈

dj + k, d \ {dj}
〉

g,n

+
12g

(6g + 2n− 3)(6g + 2n− 5)

∑
r+s=k−1

r,s≥0

〈r, s, d〉g−1,n+2

+
1

2

∑
r+s=k−1

r,s≥0

∑
I∪J={1,2,...,n}
|I∩J|=0

g!

g′!g′′!

(6g′ + 2n′ − 3)!!(6g′′ + 2n′′ − 3)!!

(6g + 2n− 3)!!

×〈r, d|I〉g′,n′+1〈s, d|J〉g′′,n′′+1

Blue term: Decreases n; Red term: Increases n

Green term: Will be asymptotically negligible
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Analysis of Virasoro Constraints

Recall

〈k + 1,d〉g,n+1 =
∑

d′
Ad′〈d′〉g,n +

∑
d′

Bd′〈d′〉g−1,n+2 + Asymptotically negligible

Red term causes issues
Understand 〈d〉g,n for small n
Repeated use of recursion yields 〈d′〉g′,n′ with large n′, due to red term
Red term is not asymptotically negligible

Partially counteracted by effect of blue term, which reduces n

We will show that the effect of the blue term “dominates” that of the red term

Comparison to random walk
Space variable: n
Time variable: Number of applications of recursion
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Random Walk Heuristic

Evaluate 〈D〉g,n+1, for D = (D1,D2, . . . ,Dn+1) ∈ Zn+1
≥0

Let k + 1 = min1≤i≤n+1 Di, and set d = D \ {k + 1}, so

〈D〉g,n+1 = 〈k + 1,d〉g,n+1 =
∑

d′
Ad′〈d′〉g,n +

∑
d′

Bd′〈d′〉g−1,n+2 + Small term

Define A =
∑

d′ Ad′ and B =
∑

d′ Bd′

Then, it can be shown that A + B = 1 + O
( n

g

)
≈ 1

Random walk interpretation
Flip coin with heads probability A

A+B ≈ A and tails probability B
A+B ≈ B

If heads, then select d′ ∈ Zn
≥0 with probability A−1Ad′

If tails, then select d′ ∈ Zn+2
≥0 with probability B−1Bd′

Replace d with d′ and (g, n + 1) with (g′, n′ + 1)
If heads, then n′ = n− 1 and, if tails, then n′ = n + 1
Decrease n with probability A, and increase n with probability B

Repeat many times
Output E

[
〈d′〉g′,n′

]
as approximation for 〈D〉g,n+1
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Random Walk Heuristic

Under random walk, n decreases with probability A and increases with probability B

Asymptotic 〈d〉g,n+1 ≈ 1 known for n ∈ {0, 1}
Kontsevich (1992), predicted by Witten (1991): Exact for n = 0
Delecroix–Goujard–Zograf–Zorich (2019): Asymptotic for n = 1

Assume initially n ≥ 2; after many repetitions, wish for n to likely decrease to 1

Want random walk to have negative drift: B < A

Explicit forms of A,B yield, B ≤ 1
n+1 ≤

1
3

Since A + B ≈ 1, this implies A ≥ 2
3 > B

Random walk has drift of B− A ≤ −1
3

After about 3n steps, expect n to decrease to 2

Suggests that E
[
〈d′〉g′,n′

]
≈ 〈d′〉g′,2 ≈ 1 after 4n repetitions
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Summary

Asymptotics on square-tiled surfaces
Enumerative: Total number of such objects

Closely related to volume VolQg,n of moduli space of quadratic differentials
Statistical: Geometry of randomly chosen object

Geometry summarized through a graph associated with the surface
Statistics given by contribution to volume coming from given graph
Expression for this contribution in terms of intersection numbers

Asymptotics of intersection numbers
Based on a probablistic interpretation of terms in Virasoro constraints
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