Kyiv formula, its applications and generalizations

Max Planck Institute for Mathematics (Bonn) \rightarrow University of Geneva Skoltech, HSE, Moseow, Russia

PIICQ workshop "Excursions in Integrability"

May 25, 2022
Trieste
(1) Introduction
(2) Gamayun, Iorgov, Lisovyy conjecture
(3) Generalizations

- Higher rank, many points
- Isomonodromic deformations on a torus
- Irregular limits
- q-deformation
- Quantum deformation (announcement)
(4) Proofs of the Kyiv formula
(5) Quantum deformation

Isomonodromic deformations and Painlevé equations: the timeline

- 1910+ ϵ : Painlevé equations coming from classification problem, isomonodromic deformations (Painlevé, Schlesinger, Fuchs).
- 1977+: Holonomic quantum fields (Jimbo, Miwa, Sato).
- Painlevé equations in the Ising model (McCoy, Tracy, Wu).
- 1982+: Asymptotic and connection problems for Painlevé equations (Jimbo; Its, Kapaev, Novokshenov).
- 1984+: Conformal field theory (Belavin, Polyakov, Zamolodchikov).

Isomonodromic deformations and Painlevé equations: the timeline

- 1994+: Gap probabilities and Painlevé equations (Tracy, Widom).
- 1996+: Algebraic solutions of Painlevé VI (Dubrovin, Mazzocco), relation to Frobenius manifolds and topological field theory (Dubrovin; Manin).
- 2000: Nekrasov partition functions for $\mathcal{N}=2$ SUSY gauge theory.
- 2009: AGT conjecture relating Nekrasov functions to conformal blocks.
- 2012: Gamayun, lorgov, Lisovyy formula for generic Painlevé VI solution (Kyiv formula).
- 2012+: Modern development.

Simplest example of conjecture (GIL'13)

Painlevé II_{3} equation:

$$
w^{\prime \prime}(t)-\frac{w^{\prime}(t)^{2}}{w(t)}+\frac{w^{\prime}(t)}{t}+\frac{2 w(t)^{2}}{t^{2}}-\frac{2}{t}=0
$$

Its generic solution $w(t)=-t^{1 / 2} \frac{\tau(t)^{2}}{\tau_{1}(t)^{2}}$:

$$
\begin{aligned}
\tau(t) & =\sum_{n \in \mathbb{Z}} e^{4 \pi i n \eta} t^{(\sigma+n)^{2}} \mathcal{B}(\sigma+n, t), \\
\tau(t) & =\sum_{n \in \frac{1}{2}+\mathbb{Z}} e^{4 \pi i n \eta} t^{(\sigma+n)^{2}} \mathcal{B}(\sigma+n, t),
\end{aligned}
$$

where $\mathcal{B}(\sigma, t)$ are irregular $c=1$ Virasoro conformal blocks.
Useful parameterization of the central charge:
$c=1+6 \frac{\left(\epsilon_{1}+\epsilon_{2}\right)^{2}}{\epsilon_{1} \epsilon_{2}}=1+6\left(b+b^{-1}\right)^{2}$

Initial conjecture (GIL'12)

Generic tau function of the Painlevé VI equation:

$$
\tau(t)=\sum_{n \in \mathbb{Z}} e^{4 \pi i n \eta} t^{(\sigma+n)^{2}-\theta_{0}^{2}-\theta_{t}^{2}} \mathcal{B}(\sigma+n, \vec{\theta}, t)
$$

It is related to isomonodromic deformations of the 2×2 linear problem

$$
\frac{d Y(z)}{d z}=A(z) Y(z)=\left(\frac{A_{0}}{z}+\frac{A_{t}}{z-t}+\frac{A_{1}}{z-1}\right) Y(z)
$$

$\operatorname{tr} A_{k}^{2}=2 \theta_{k}^{2}$ are 4 parameters of equation,

$$
\left.\partial_{t} \log \tau(t)\right|_{\text {Monodromies }=\text { const }}=\frac{1}{2} \operatorname{Res}_{z=t} A(z)^{2} d z
$$

Historical remark

Vadim Knizhnik could do some of this back in 1987, and this would still be Kyiv formula

Vadim Genrikhovich Knizhnik (Russian: Вади́м Ге́нрихович Кни́жник; 20 February 1962, Kiev- 25 December 1987,
Moscow) was a Soviet physicist of Jewish and Russian descent.

$$
\begin{equation*}
\frac{\partial Y}{\partial z}=\sum_{i=1}^{l} \frac{A_{i}}{z-a_{i}} Y \tag{IV.2}
\end{equation*}
$$

with given monodromy matrices M_{i}

$$
\begin{equation*}
\hat{\pi}_{a_{i}} Y(z)=Y(z) M_{i}, \tag{IV.3}
\end{equation*}
$$

where $Y(z)$ represents the fundamental matrix of the solutions of (2).

This connection arises as follows. Consider the Green's function for analytic fields f and q with spins j and $1-j$ on a surface X specified in the form of a covering of the z-plane with branch points $a_{i}, i=1, \ldots, l$:

$$
\begin{align*}
& Y^{k m}\left(z, z_{0}\right)=\left(z_{0}-z\right)\left\langle\varphi^{(k)}\left(z_{0}\right) f^{(n)}(z) \prod_{i} V_{\mathbf{q}_{i}(a)}\right\rangle \\
& \times\left\langle\prod_{i} V_{\mathbf{q}_{i}}\left(a_{i}\right)\right\rangle^{-1} \tag{IV.4}\\
&(k, m=0, \ldots, N-1)
\end{align*}
$$

where the upper index on the fields φ and f represents the number of the sheet and the operators $V_{\mathbf{q}_{i}}\left(a_{i}\right)$ correspond to branch points as in Sec. 9 and 10. We assume, for the sake of simplicity, that the charges \boldsymbol{q}_{i} are chosen so that

$$
\begin{equation*}
\tau\left(a_{1} \ldots a_{l}\right) \xlongequal{\text { df }}\left\langle\prod_{i=1}^{l} V_{\mathrm{q}}\left(a_{i}\right)\right\rangle \neq 0 \tag{IV.5}
\end{equation*}
$$

Sov. Phys. Usp. 32 (11), November 1989

Plan

(1) Introduction

(2) Gamayun, Iorgov, Lisovyy conjecture
(3) Generalizations

- Higher rank, many points
- Isomonodromic deformations on a torus
- Irregular limits
- q-deformation
- Quantum deformation (announcement)
(4) Proofs of the Kyiv formula
(5) Quantum deformation

Higher rank, many points

- $N \times N$ connection matrix is

$$
A(z)=\frac{A_{0}}{z}+\sum_{k=1}^{n-2} \frac{A_{k}}{z-z_{k}}
$$

- All A_{k} should have the form "identity + rank 1 ": $A_{k}=b_{k} \mathbb{I}+u_{k} \otimes v_{k}$.
- In this case isomonodromic tau function is described by multi-point W_{N} conformal blocks (subsets of PG, lorgov, Lisovyy).
- Isomonodromic tau function:

$$
\tau=\sum_{\left\{\vec{w}_{k} \in Q_{A_{N}}\right\}} e^{4 \pi i \sum_{k=1}^{n-3}\left(\vec{\eta}_{k}, \vec{w}_{k}\right)} F\left(\vec{\sigma}_{n-3}+\vec{w}_{n-3}, \ldots, \vec{\sigma}_{1}+\vec{w}_{1} ;\left\{z_{k}\right\}\right)
$$

where $Q_{A_{N}}$ is $\mathfrak{s l}_{N}$ root lattice.

- Conformal block of W_{N} algebra:

$$
\mathrm{F}\left(\vec{\sigma}_{n-3}, \ldots ;\left\{z_{k}\right\}\right)=\left\langle\vec{\theta}_{\infty}\right| V_{a_{n-2} \vec{\omega}_{1}}\left(z_{n-2}\right) \mathrm{P}_{\vec{\sigma}_{n-3}} \ldots \mathrm{P}_{\vec{\sigma}_{1}} V_{a_{1} \vec{\omega}_{1}}\left(z_{1}\right)\left|\vec{\theta}_{0}\right\rangle
$$

Torus (simplest example)

- Non-autonomous Calogero-Moser system:

$$
(2 \pi i)^{2} \frac{d^{2} Q(\tau)}{d \tau^{2}}=m^{2} \wp^{\prime}(2 Q(\tau) \mid \tau)
$$

- Tau function:

$$
\partial_{\tau} \log \mathcal{T}_{C M}(\tau)=\left(2 \pi i \partial_{\tau} Q(\tau)\right)^{2}-m^{2} \wp(2 Q(\tau) \mid \tau)+4 \pi i m^{2} \partial_{\tau} \log \eta(\tau)
$$

- Isomonodromy-CFT relation (Bonelli, Del Monte, PG, Tanzini):

$$
\begin{aligned}
& \eta(\tau)^{-2} \theta_{1}(\rho+Q(\tau)) \theta_{1}(\rho-Q(\tau)) \mathcal{T}_{C M}(\tau):=\mathcal{T}_{(1,1)}(\tau)= \\
= & \sum_{n_{1}, n_{2} \in \mathbb{Z}} e^{4 \pi i\left(\rho+\frac{1}{2}\right) \frac{n_{1}+n_{2}+1}{2}} e^{\frac{i\left(n_{1}-n_{2}\right) \eta}{2}} \mathrm{~F}\left((a,-a)+\left(n_{1}, n_{2}\right), m ; \tau\right),
\end{aligned}
$$

where $\mathrm{F}=\operatorname{tr} q^{L_{0}} V_{m}(0)$ is a toric Virasoro \oplus Heisenberg conformal block.

Torus (general example)

- We should consider $N \times N$ connection matrix on a torus with some number of simple poles and non-trivial twist \boldsymbol{Q}.
- Residues at all points should be "identity + rank 1".
- Good object is $\mathcal{T}_{(1, n)}$:

$$
\begin{equation*}
\mathcal{T}_{(1, n)}=\eta(\tau)^{-N} \prod_{i=1}^{N} \theta_{1}\left(Q_{i}-\rho\right) \mathcal{T} \tag{1}
\end{equation*}
$$

- $\mathcal{T}_{(1, n)}$ is a Fourier series of $W_{N} \oplus$ Heisenberg toric conformal blocks.

Irregular cases

Hajime Nagoya; Bonelli, Lisovyy, Maruyoshi, Sciarappa, Tanzini; ...

- Painlevé equations other from PVI have regions with irregular expansions (like for Bessel functions at infinity).
- For some cases CFT counterparts are know, for some, no.
- The simplest example (to write) is PIII_{3} tau function at infinity (Its, Lisovyy, Tykhyy):

$$
\begin{gathered}
\tau^{\infty}(\rho, \nu, r)=e^{\frac{r^{2}}{16}} r^{\frac{1}{4}} \sum_{n \in \mathbb{Z}} e^{4 \pi i n \rho} e^{(\nu+i n) r} r^{\frac{1}{2}(\nu+i n)^{2}} \mathcal{B}^{\infty}(\nu+i n, r), \\
\tau_{1}^{\infty}(\rho, \nu, r)=e^{\frac{r^{2}}{16}} r^{\frac{1}{4}} \sum_{n \in \mathbb{Z}}(-1)^{n}(\ldots),
\end{gathered}
$$

where $r=t^{1 / 4} / 8$, and \mathcal{B}^{∞} has no CFT (or any other) formula yet.

q-deformation: q-PIII ${ }_{3}$

q-Painlevé III_{3} :

$$
G\left(Z q^{-1}\right)^{\frac{1}{2}} G(Z q)^{\frac{1}{2}}=\frac{G(Z)+Z}{G(Z)+1}
$$

Expression in terms of tau functions $G(Z)=-Z^{1 / 2} \frac{\tau(Z)^{2}}{\tau_{1}(Z)^{2}}$ (Bershtein, Shchechkin):

$$
\begin{aligned}
\tau(Z) & =\sum_{n \in \mathbb{Z}} e^{4 \pi i n \eta} Z^{(\sigma+n)^{2}} \mathcal{B}_{q}(\sigma+n, Z) \\
\tau_{1}(Z) & =\sum_{n \in \frac{1}{2}+\mathbb{Z}} e^{4 \pi i n \eta} Z^{(\sigma+n)^{2}} \mathcal{B}_{q}(\sigma+n, Z)
\end{aligned}
$$

where \mathcal{B}_{q} are q-deformed conformal blocks

q-deformation: general case

- Large class of q-difference systems can be obtained from deautonomized discrete flows in Goncharov-Kenyon integrable systems (Bershtein, PG, Marshakov).
- Initial combinatorial datum is a Newton polygon.
- On the isomonodromic side it defines dimer lattice, quiver and related cluster algebra, and then discrete flows (=quiver automorphisms).
- On the "CFT" side it defines partition function of topological strings on toric CY_{3}, the analog of conformal block.
- Fourier transformation of TS partition function solves the discrete flow.

Quantum deformation

- Should not be confused with q-deformation.
- Corresponds to arbitrary central charge.
- Will come after some motivation.

Plan

(1) Introduction

(2) Gamayun, Iorgov, Lisovyy conjecture
(3) Generalizations

- Higher rank, many points
- Isomonodromic deformations on a torus
- Irregular limits
- q-deformation
- Quantum deformation (announcement)
(4) Proofs of the Kyiv formula
(5) Quantum deformation

Proofs of the Kyiv formula

(1) From quantum monodromies of conformal blocks:
(1) Initial 2×2 problem: lorgov, Lisovyy, Teschner
(2) W_{N} case: PG, lorgov, Lisovyy
(3) q-difference case: Jimbo, Nagoya, Sakai

- Toric case: Bonelli, Del Monte, PG, Tanzini
(2) From $\mathbb{C}^{2} / \mathbb{Z}_{2}$ blow-up relations (Bershtein, Shchechkin)
(3) Fully rigorous: from the Fredholm determinant:
(1) Spherical case, 2×2 : PG, Lisovyy
(2) Spherical case, $N \times N$: PG, lorgov, Lisovyy
(3) Toric case: Del Monte, Desiraju, PG
(9) From \mathbb{C}^{2} blow-up relations (Nekrasov). Blow-up relations still have to be proved.

lorgov, Lisovyy, Teschner proof

(1) Consider conformal block with insertion of two $\phi_{(2,1)}$ degenerate fields ϕ_{i} at y and y_{0} :
$\Psi_{i j}\left(y, y_{0}\right)=\left\langle\theta_{\infty}\right| \phi_{i}(y) \phi_{-j}\left(y_{0}\right) V\left(z_{n-2}\right) \mathrm{P}_{\sigma_{n-3}} V\left(z_{n-3}\right) \ldots \mathrm{P}_{\sigma_{1}} V\left(z_{1}\right)\left|\theta_{0}\right\rangle$
(2) Compute monodromies of $\phi_{(2,1)}$ around all points. They are operator-valued functions $\hat{M}_{\nu}=\hat{M}_{\nu}\left(\left\{e^{2 \pi i b \sigma_{k}}\right\},\left\{e^{b \partial_{\sigma_{k}}}\right\}\right)$.
(3) For $b^{2}=-1$ diagonalize $e^{2 \pi i b \sigma}$ and $e^{b \sigma}$ by Fourier transformation.
(9) Express Fourier transformation of $\Psi\left(y, y_{0}\right)$ in terms of solution of the linear system $Y(y)$.
(5) Identify tau function.

What about other central charges?

Tau function as a conformal block

- Tau function is a concrete element in the space of $c=1$ conformal blocks.
- It diagonalizes the action of Verlinde loop operators (see previous slide).
- It also simplifies the action of Moore-Seiberg gruppoid:

$$
\tau(\ldots, 1-t)=\chi_{01} \tau(\widetilde{\ldots}, t)
$$

χ_{01} is called connection constant.

- Knowledge of χ_{01} gives fusion matrix for conformal blocks. It is conjectured by lorgov, Lisovyy, Tykhyy, and proved by Its, Lisovyy, Prokhorov.

Bershtein-Shchechkin proof

(1) Substitute Fourier-type ansatz into the equation.
(2) Get bilinear equations for conformal blocks ($\mathbb{C}^{2} / \mathbb{Z}_{2}$ blow-up relations).
(3) Prove these relations from conformal field theory, or from Nakajima-Yoshioka (\mathbb{C}^{2}) blow-up relations.
These relation exist for arbitrary central charge $\left(\epsilon_{1} \neq-\epsilon_{2}\right)$.
Typical form of $\mathbb{C}^{2} / \mathbb{Z}_{\mathbf{2}}$ blow-up relation:
$\sum_{2 n \in \mathbb{Z}} \hat{\mathrm{D}}\left(\mathrm{F}\left(\sigma+2 n \epsilon_{1}, \mathbf{2} \epsilon_{1}, \epsilon_{2}-\epsilon_{1} \mid t\right), \mathrm{F}\left(\sigma+2 n \epsilon_{2}, \epsilon_{1}-\epsilon_{2}, \mathbf{2} \epsilon_{2} \mid t\right)\right)=\mathrm{F}_{N S R}(=0)$
It is used only for $\epsilon_{1}=-\epsilon_{2}(c=1)$. What about other central charges?

Nakajima-Yoshioka blow-up relations

Typical Nakajima-Yoshioka, or \mathbb{C}^{2}, blow-up relation:

$$
\mathrm{F}\left(\sigma, \epsilon_{1}, \epsilon_{2}\right)=\sum_{n \in \mathbb{Z}} \mathrm{~F}\left(\sigma+n \epsilon_{1}, \epsilon_{1}, \epsilon_{2}-\epsilon_{1} \mid t\right) \mathrm{F}\left(\sigma+n \epsilon_{2}, \epsilon_{1}-\epsilon_{2}, \epsilon_{2} \mid t\right)
$$

- For $\epsilon_{2}=0$ we have relation between $c=\infty$ and $c=1$ conformal blocks.
- Such kind of relations were used by Nekrasov to relate Litvinov, Lukyanov, Nekrasov, Zamolodchikov paper about $c=\infty$ conformal blocks to GIL.
- $c=\infty$ conformal block describe vanishing of $c=1$ tau function, and so spectral problems for something like cos-potential.
- For $\epsilon_{1}=-\epsilon_{2}$ there is a formula $\tau^{P I I I_{3}}=\tau_{+} \tau_{-}$, where $\tau_{ \pm}$are $\underline{c=-2}$, or $\left(\varepsilon_{1}, \varepsilon_{2}\right)=(-1,2)$ tau functions (Bershtein, Shchechkin).

Plan

(1) Introduction

(2) Gamayun, Iorgov, Lisovyy conjecture
(3) Generalizations

- Higher rank, many points
- Isomonodromic deformations on a torus
- Irregular limits
- q-deformation
- Quantum deformation (announcement)

4 Proofs of the Kyiv formula
(5) Quantum deformation

Motivations for quantum deformation

(1) lorgov, Lisovyy, Teschner quantization of monodromies.
(2) Bershtein-Shchechkin $\mathbb{C}^{2} / \mathbb{Z}_{2}$ bilinear relations for arbitrary c.
(3) Very natural quantization of cluster discrete flows.

Consequences:
(1) σ and η should be replaced with $\hat{\sigma}$ and $\hat{\eta}$.
(2) It's better to start from q-difference equations.

Quantum q-PIII ${ }_{3}$ equation

The equation:

$$
\left\{\begin{array}{c}
\hat{G}\left(Z q^{-1}\right)^{\frac{1}{2}} \hat{G}(Z q)^{\frac{1}{2}}=\frac{\hat{G}(Z)+p Z}{\hat{G}(Z)+p} \\
\hat{G}(Z) \hat{G}\left(q^{-1} Z\right)=p^{4} \hat{G}\left(q^{-1} Z\right) \hat{G}(Z)
\end{array}\right.
$$

where $p^{2}=e^{I_{5}\left(\epsilon_{1}+\epsilon_{2}\right)}, q=e^{2 / 5 \epsilon_{2}}$. Its solution:

$$
\begin{aligned}
& \hat{G}(Z)^{\frac{1}{2}}= \pm i p^{\frac{1}{2}} Z^{\frac{1}{4}}\left(\sum_{n \in \frac{1}{2}+\mathbb{Z}} e^{4 \pi i \hat{\eta} n} F_{5 d}\left(\hat{\sigma}+2 n \epsilon_{2}, \epsilon_{1}-\epsilon_{2}, 2 \epsilon_{2} \mid Z\right)\right)^{-1} \\
& \sum_{n \in \mathbb{Z}} e^{4 \pi i \hat{\eta} n} F_{5 d}\left(\hat{\sigma}+2 n \epsilon_{2}, \epsilon_{1}-\epsilon_{2}, 2 \epsilon_{2} \mid Z\right)
\end{aligned}
$$

Commutation relation: $[\hat{\sigma}, \hat{\eta}]=\frac{\epsilon_{1}+\epsilon_{2}}{2 \pi i}$.

Quantum PIII ${ }_{3}$ at infinity: new conformal blocks

- $q \rightarrow 1$ limit of quantum equation:

$$
\left\{\begin{aligned}
& 4 \epsilon_{2}^{2} t \frac{d}{d t}\left(t \frac{d \hat{w}}{d t} \cdot \hat{w}^{-1}\right)=\frac{2 t}{\hat{w}}-2 \hat{w}, \\
& {\left[\hat{w}^{-1}, t \frac{d \hat{w}}{d t}\right]=2\left(\epsilon_{1}+\epsilon_{2}\right) . }
\end{aligned}\right.
$$

- Its solution (PG, Marshakov, Stoyan):

$$
\begin{aligned}
\hat{w}(r)^{\frac{1}{2}}= \pm & \frac{r}{8}\left(\sum_{n \in \mathbb{Z}}(-1)^{n} e^{4 \pi i n \hat{\rho}} F^{\infty}\left(\hat{\nu}+2 i n \epsilon_{2}, \epsilon_{1}-\epsilon_{2}, 2 \epsilon_{2} \mid r\right)\right)^{-1} \\
& \sum_{n \in \mathbb{Z}} e^{4 \pi i n \hat{\rho}} F^{\infty}\left(\hat{\nu}+2 i n \epsilon_{2}, \epsilon_{1}-\epsilon_{2}, 2 \epsilon_{2} \mid r\right)
\end{aligned}
$$

- F^{∞} are the arbitrary-c analogs of Its, Lisovyy, Tykhyy "conformal blocks". Cannot be found in any other way yet.

Perspectives

- There is a lot of conjectures still to be proved, like conjecture about solution for the general non-autonomus Goncharov-Kenyon integrable system, also the formulas for q-deformed Fredholm determinants.
- Formulas for more irregular expansions still have to be found. Also, it is unclear if there is any phenomenon of this kind for q-difference equations.
- There should be also generalizations to higher genus, to Lie algebras of other series (Del Monte, et al.)
- The story about other central charges should be understood better: what is the correct quantization of other Painlevé equations, what is the role of $b^{2}=-n$, what are the linear systems in all these cases, etc.

Thank you for your attention!

