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Minimal Complexity Extreme Learning Machines
Learning sparse representations and minimizing model complexity have gained much interest recently. Par-
simonious models are expected to generalize well, are easier to implement, and lead to smaller test times. The
recently proposed Minimal Complexity Machine (MCM) showed that for training data X = {(xi, yi)|xi ∈
Rn, yi ∈ R, i = 1, 2, ...M}, minimizing h2, where
\begin{equation}
h = \frac{\max_{i = 1, 2, …, M} \|u^T x^i + v\|}{\min_{i = 1, 2, …, M} \|u^T x^i + v\|}.
\end{equation}
leads to a hyperplane classifier uTx+v = 0with a small VC dimension. This task was shown to be equivalent
to

\begin{equation}
\min_{w, b, h} h + C \cdot \sum_{i = 1}^M q_i
\end{equation}
\begin{equation}
h \geq y_i \cdot [{w^T x^i + b}] + q_i, ~i = 1, 2, …, M
\end{equation}
\begin{equation}
y_i \cdot [{w^T x^i + b}] + q_i \geq 1, ~i = 1, 2, …, M
\end{equation}
\begin{equation}
q_i \geq 0, ~i = 1, 2, …, M.
\end{equation}

Models such as the Extreme Learning Machine (ELM) and Random Vector Functional Link Network (RVFLN)
have been adapted to a number of applications and offer several advantages. Typically, the ELM solves
\begin{equation}
\min_{\beta, \xi} \; \frac{1}{2} ||\beta||^2 + \frac{1}{2} C \sum_i^M \xi_i^2
\end{equation}
\begin{equation}
h(x_i) \beta = y_i - \xi_i , \; i=1, 2, …, M
\end{equation}

The last layer of the ELM network conventionally involves the computation of a pseudo-inverse; the hidden
layer outputmatrixH is computed as a solution toHβ = Y , whereH(w1, w2, ..., wn̂, b1, b2, ..., bn̂, x1, x2, ..., xM ) =
g(wi ·xi+b), βi = [βi1, βi2, ..., βin]

T is the weight vector connecting the ith hidden node and output nodes,
w = [wi1, wi2, ..., win]

T is the weight vector connecting the ith hidden node and input nodes, and Y is the
vector of yi’s.

We propose combining the ELM with the MCM. This allows us to build classifiers or regressors with lower
complexity in terms of VC dimension, which induce sparsity in the connections between the neurons of the
final layer of the network. This has shown to not only improve generalization, but also create sparser networks
which depict models closer to human cognition. Numerical stability issues associated with the calculation of
the pseudo-inverse are also avoided.
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