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attractor networks in which the storage capacity is in the order of the number of associatively

modifiable recurrent synapses on any one neuron. Based on those and further principles of

cortical computation, hypotheses are explored in which syntax is encoded in the cortex using

sparse distributed place coding. Each cortical module 2–3mm in diameter is proposed to be

formed of a local attractor neuronal network with a capacity in the order of 10,000 words (e.g.

subjects, verbs or objects depending on the module). Such a system may form a deep language-

of-thought layer. For the information to be communicated to other people, the modules in which

the neurons are firing which encode the syntactic role, as well as which neurons are firing to

specify the words, must be communicated. It is proposed that one solution to this (used in

English) is temporal order encoding, for example subject–verb–object. It is shown with integrate-

and-fire simulations that this order encoding could be implemented by weakly forward-coupled

subject–verb–object modules. A related system can decode a temporal sequence. This approach

based on known principles of cortical computation needs to be extended to investigate further

whether it could form a biological foundation for the implementation of language in the brain.

This article is part of a Special Issue entitled SI: Brain and Memory.

& 2014 Elsevier B.V. All rights reserved.
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1. Introduction

Previous research on networks in the cortex involved in
memory and perception is described concisely in Sections
2–5, and is used to suggest principles that might contribute to
advances in understanding one of the major unsolved pro-
blems in brain research, how the syntax needed for language
might be implemented in cortical networks. Those principles
are then explored and investigated using attractor network
models and simulations of cortical function. This paper is
thus intended to address the topic of this special issue of the
Journal on the Brain and Memory, but focusses on a major
new perspective, how language may be implemented in the
brain, using principles based on our understanding of the
operation of cortical attractor networks that implement
memory, perceptual, short-term memory, attentional, and
decision-making functions in the brain (Rolls, 2008).
2. A quantitative theory of the implementation
of episodic memory in the brain

David Marr pioneered quantitative approaches to under-
standing how the hippocampus operates in memory. Marr
(1971) showed how a network with recurrent collaterals could
complete a memory using a partial retrieval cue, and how
sparse representations could increase the number of mem-
ories stored. Early work of Gardner-Medwin (1976) showed
how progressive recall could operate in a network of binary
neurons with binary synapses. The analysis of these auto-
association or attractor networks was developed by Kohonen
(1977), Kohonen et al. (1981), and Hopfield (1982), and the
value of sparse representations was quantified by Treves and
Rolls (1991). Marr (1971) did not specify the functions of the
dentate granule cells vs the CA3 cells vs the CA1 cells (which
were addressed by Rolls, 1987; Rolls, 1989a,b,c and by Treves
and Rolls, 1992, 1994), nor how retrieval to the neocortex of
hippocampal memories could be produced, for which a
quantitative theory was developed by Treves and Rolls (1994).

Rolls (1987) produced a theory of the hippocampus in
which the CA3 neurons operated as an autoassociation
memory to store episodic memories including object and
place memories, and the dentate granule cells operated as a
preprocessing stage for this by performing pattern separation
so that the mossy fibres could act to set up different
representations for each memory to be stored in the CA3
cells. The architecture showing the connections of the system
is shown in Fig. 1. McNaughton and Morris (1987) at about the
same time suggested that the CA3 network might be an
autoassociation network, and that the mossy fibre to CA3
connections might implement ‘detonator’ synapses. The
concepts that the dentate acted as a competitive network to
perform pattern separation, and that the mossy fibers act as a
randomising system to contribute to pattern separation in
CA3 was proposed by Rolls (1989b). The concepts that the
diluted mossy fibre connectivity might implement selection
of a new random set of CA3 cells for each new memory, and
that a direct perforant path input to CA3 is needed to initiate
retrieval, were analyzed quantitatively by Treves and Rolls
(1992). Rolls (1987) suggested that the CA1 cells operate as a
recoder for the information recalled from the CA3 cells to a
partial memory cue, so that the recalled information would
be represented more efficiently to enable recall, via the
backprojection synapses, of activity in the neocortical areas
similar to that which had been present during the original
episode. This theory was developed further (Rolls, 1989a,b,c,d;
Rolls, 1990a,b), including further details about how the back-
projections could operate (Rolls, 1989b, 1989c), and how the
dentate granule cells could operate as a competitive network
(Rolls, 1989a). Quantitative aspects of the theory were then
developed with A. Treves, who brought the expertise of
theoretical physics applied previously mainly to understand
the properties of fully connected attractor networks with
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binary neurons (Amit, 1989; Hopfield, 1982) to bear on the
much more diluted connectivity of the recurrent collateral
connections found in real biological networks (e.g. 2%
between CA3 pyramidal cells in the rat), in networks of
neurons with graded (continuously variable) firing rates,
graded synaptic strengths, and sparse representations in
which only a small proportion of the neurons is active at
any one time, as is found in the hippocampus (Treves, 1990;
Treves and Rolls, 1991). These developments in understand-
ing quantitatively the operation of more biologically relevant
recurrent networks with modifiable synapses were applied
quantitatively to the CA3 region (Treves and Rolls, 1991), and
to the issue of why there are separate mossy fibre and
perforant path inputs to the CA3 cells of the hippocampus
(Treves and Rolls, 1992). This whole model of the hippocam-
pus was described in more detail, and a quantitative treat-
ment of the theory of recall by backprojection pathways in
the brain was provided by Treves and Rolls (1994) and tested
by Rolls (1995).

Further developments of this theory, which remains the
only quantitative theory of information storage for episodic
memory in the hippocampus, and its quantitative recall back
to neocortex, have been described (Rolls, 2008, 2010; Kesner
and Rolls, 2014). These developments include the role of
different parts of the hippocampal system in pattern
separation and pattern completion (Rolls, 2013b; Cerasti and
Treves, 2010; Stella et al., 2013); the utility of the diluted
connectivity between cortical neurons provided by recurrent
collaterals in ensuring that the memory capacity of the
attractor network is not compromised (Rolls, 2012a); and the
way in which time encoding neurons (MacDonald et al., 2011)
in CA1 could be used to implement a temporal sequence
memory for objects and odors (Kesner and Rolls, 2014). The
theory is richly supported by empirical tests of the contribu-
tions of different subregions of the hippocampus (Rolls and
Kesner, 2006; Kesner and Rolls, 2015). The supporting empiri-
cal evidence includes the finding that the CA3 recurrent
collateral system is even more widespread in primates than
in rodents (Kondo et al., 2009). The theory was made directly
relevant to humans by the discovery of spatial view neurons
in primates that encode a location in space being looked at
(Rolls et al., 1989; Feigenbaum and Rolls, 1991; Georges-
François et al., 1999; Robertson et al., 1998; Rolls et al., 1997,
1998), and which combine this with information about
objects (Rolls et al., 2005) and rewards (Rolls and Xiang,
2005) to enable a one-trial episodic memory based on a view
of a place (Rolls and Xiang, 2006) to be implemented. The
primate spatial view neurons enable a memory to be formed
of a place that has been viewed but never visited, impossible
with rodent place cells (Rolls, 2008; Kesner and Rolls, 2014).
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A highlight of this quantitative theory of episodic memory
for understanding cortical function, including how the cortex
implements language, is that the number of memories that
can be stored in a cortical attractor network is in the order of
the number of associatively modifiable recurrent collateral
connections onto any one neuron in the attractor network if
sparse representations are used (Treves and Rolls, 1991; Rolls
and Treves, 1998; Rolls, 2008). Thus in CA3, where there are
12,000 recurrent collaterals onto each neuron in the rat, the
storage capacity is in the order of 12,000 memories (Rolls,
2008). If in the human neocortex there were 10,000 associa-
tively modifiable recurrent collateral synapses onto a neuron
in a local region 2–3 mm in diameter, then in the order of
10,000 words might be represented in such a cortical column,
which is a reasonable working vocabulary. This is one of the
foundations based on our understanding of quantitative
aspects of memory systems in the brain for what follows on
language and syntax.
3. Learning of new perceptual representations

Learning in a competitive network provides a useful way of
building perceptual representations in which for example
sensory inputs activate a population of neurons, which then
compete with each other through inhibitory neurons, with
the neurons left firing with high rates after the competition
showing associative synaptic modification of the high-firing
inputs to those synapses (Rolls, 1992; Rolls and Treves, 1998;
Rolls, 2008). This can build useful sensory or perceptual
categories, as similar inputs activate the same output neu-
rons, and different inputs activate different output neurons
(Rolls and Treves, 1998; Rolls, 2008). Competitive networks
help to build the sparse distributed representations that
result in high capacity in autoassociation (attractor) net-
works, and in pattern association networks (Rolls, 2008;
Rolls and Treves, 1990). These processes may be part of what
is involved in building semantic representations and even
word representations, where similar inputs need to activate a
small number of output neurons, though it is acknowledged
that the building of semantic representations requires excep-
tions to be learned too (McClelland et al., 1995).

A small modification of this competitive learning process
in which there is a short-term memory trace, which might be
as simple as the long time constant of an NMDA receptor, or
continuing firing for 100–300 ms, can enable competitive
networks to learn invariant representations of objects
because objects are typically viewed for short periods in
different transforms before another object is viewed
(Földiák, 1991; Rolls, 1992). Indeed, this type of learning with
a short-term memory trace provides the basis of a computa-
tional model of how position, view, and rotation transform
invariant representations are built in the ventral stream
visual pathways (Rolls, 1992; Wallis and Rolls, 1997; Rolls,
2008, 2012b).
4. Neural coding in sensory and memory
systems

Understanding how information is encoded in the brain in
sensory and memory systems is considered briefly, for it too
may provide a foundation for starting to develop biologically
plausible approaches to understanding how language might
be implemented in the brain.
In most cortical systems, information is encoded by which
neurons are firing, and how fast they are firing (Rolls, 2008; Rolls
and Treves, 2011; Rolls, 2012b). This has been evident since even
before the exciting work of Hubel and Wiesel (1968, 1977) which
showed for example that in the primary visual cortex which
neuron is firing conveys information about features and their
location, for example about orientation of a bar or edge and its
location in retinal space. The crucial point here is that it is which
neurons are firing that conveys the information about the object
and the spatial relations of its parts. The principle has been
extended to high order visual cortical areas: in the inferior
temporal visual cortex one reads off information from which
neurons are firing about which face or object is being shown
(Rolls et al., 1997; Rolls, 2008; Rolls and Treves, 2011). This does
not at all mean that this is local or grandmother cell encoding, in
which just one neuron encodes which stimulus is present.
Instead, there is a sparse distributed code, in which a small
proportion of neurons is firing with a particular distribution of
firing rates to represent one object, and another but partially
overlapping population of neurons is firing with a particular
distribution of firing rates to represent another object (Rolls and
Tovee, 1995; Rolls et al., 1997). In this encoding, the information
increases approximately linearly with the number of neurons
(up to reasonable numbers of neurons), showing that the coding
by different neurons is independent (Rolls et al., 1997; Franco
et al., 2007). This is a sparse distributed place code, in that it is
which neurons are firing, and their relative firing rates, that
encode which object is present (Rolls, 2008; Rolls and Treves,
2011). Similar encoding principles are used in the orbitofrontal
cortex to encode information about taste and odour (Rolls et al.,
2010), and in the hippocampus to encode information about
spatial view (Rolls et al., 1998).

There are two important points to emphasise here about
place coding. The first is that what is being represented is
encoded by a neuronal place code in the brain, in that for
example neurons in the inferior temporal visual cortex convey
information about which visual object is present, in the primary
taste cortex about which taste, texture, or temperature is
present; in the orbitofrontal cortex about which odour is present,
and in the hippocampus about which spatial view is present
(Rolls and Treves, 2011). The second point is that if relational
information about parts needs to be represented, as it must to
define objects, then the relational information is encoded by
which neurons are firing, where neurons are tuned not only to
features or objects, but also to their location (Hubel and Wiesel,
1968, 1977; Aggelopoulos and Rolls, 2005; Rolls, 2008, 2012b).

Quantitative information theoretic analyses further show
that relatively little information is encoded by stimulus-
dependent cross-correlations between neurons, with typi-
cally 95% or more of the information being encoded by a
place/firing rate code where the graded firing rates of each
neuron in a sparse distributed representation are used as the
encoding principle (Rolls, 2008; Rolls and Treves, 2011), as
considered further in Section 6.1.1.
5. Short-term memory, attention, and
decision-making

Local cortical attractor networks also provide a foundation for
understanding other processes including short-term mem-
ory, attention, and decision-making (Rolls, 2008). Indeed, that
was why that book was entitled Memory, Attention, and
Decision-Making: A Unifying Computational Neuroscience Approach
(Rolls, 2008). All of these processes are also relevant to
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language as follows, so the same neural foundation, of
cortical attractor networks, is even more relevant.

Short-term memory is typically implemented in the brain
by continuing neuronal firing (Fuster, 2008; Goldman-Rakic,
1996) in what appear to be attractor states (Rolls, 2008; Rolls
et al., 2013). This is highly relevant to the implementation of
language in the brain, for we may wish to hold the compo-
nents of a sentence active, so that it can be checked and if
necessary corrected during its execution (by for example a
higher order syntactic thought, Rolls, 2014), and even to guide
the execution of the remainder of the sentence.

Top-down attention can be implemented by biasing the
operation of attractor networks to reflect the subject of our
attention which is held in a short-term memory store (Rolls and
Deco, 2002; Deco and Rolls, 2005a; Rolls, 2008, 2013a), and this is
likely to be an important component of how our thinking and
sentence production are kept focussed and on target.

Decision-making can be implemented by providing two
competing inputs to an attractor network, which can then fall
into an attractor basin depending on which input is stronger
(Wang, 2002; Rolls, 2008; Rolls and Deco, 2010; Deco et al.,
2013; Rolls, 2014). The ability to categorise a potentially
ambiguous input in this way may be a very useful component
for language, for example in enabling a clear interpretation to
be reached if there is some ambiguity in what may be heard
or meant. An advantage of this mechanism is that not only
does the attractor mechanism lead to a definite result, which
is better than a stalemate with no winner or decision (and
which may utilise neuronal spiking related noise if the inputs
are of similar strength to produce a definite outcome Rolls
and Deco, 2010), but also the same mechanism allows the
decision or interpretation to be held online in short-term
memory to influence further (e.g. language) processing.
6. Neurodynamical hypotheses about
language

When considering the computational processes underlying lan-
guage, it is helpful to analyze the rules being followed (Chomsky,
1965; Jackendoff, 2002). From this, it is tempting to see what one
can infer about how the computations are implemented, using
for example logical operations within a rule-based system, and
switches turned on during development.

In this paper, instead the approach is to take what are
understood as some of the key principles of the operation of
the cerebral cortex (Rolls, 2008) based on the operation of
memory and sensory systems in the brain, and how informa-
tion is encoded in the brain (summarised in Sections 2–5),
and then to set up hypotheses about how some of these
computational mechanisms might be useful and used in the
implementation of language in the brain. Later in this paper
we then test and elucidate some of these hypotheses by
simulations of some of the neuronal network operations
involved.

6.1. Syntax and binding

6.1.1. Binding by synchrony
A fundamental computational issue is how the brain imple-
ments binding of elements such as features with the correct
relationship between the elements. The problem in the
context of language might arise if we have neuronal popula-
tions each firing to represent a subject, a verb, and an object
of a sentence. If all we had were three populations of neurons
firing, how would we know which was the subject, which the
verb, and which the object? How would we know that the
subject was related to the verb, and that the verb operated on
the object? How these relations are encoded is part of the
problem of binding.

Von der Malsburg (1990) considered this computational
problem, and suggested a dynamical link architecture in
which neuronal populations might be bound together tem-
porarily by increased synaptic strength which brought them
into temporary synchrony. This led to a great deal of research
into whether arbitrary relinking of features in different
combinations is implemented in visual cortical areas (Singer
et al., 1990; Engel et al., 1992; Singer and Gray, 1995; Singer,
1999; Abeles, 1991; Fries, 2009), and this has been modelled
(Hummel and Biederman, 1992). However, although this
approach could specify that two elements are bound, it does
not specify the relation (Rolls, 2008). For example, in vision,
we might know that a triangle and a square are part of the
same object because of synchrony between the neurons, but
we would not know the spatial relation, for example whether
the circle was inside the triangle, or above, below it, etc.
Similarly for language, we might know that a subject and an
object were part of the same sentence, but we would not
know which was the subject and which the object, that the
subject operated (via a verb) on the object, etc, that is, the
syntactic relations would not be encoded just by synchrony.
Indeed, neurophysiological recordings show that although
synchrony can occur in a dynamical system such as the
brain, synchrony per se between neurons in high order visual
cortical areas conveys little information about which objects
are being represented, with 95% of the information present in
the number of spikes being emitted by each of the neurons in
the population (Rolls, 2008; Rolls and Treves, 2011).

Instead, in high order visual cortical areas, the spatial
relations between features and objects are encoded by neu-
rons that have spatially biased receptive fields relative to the
fovea (Aggelopoulos and Rolls, 2005; Rolls, 2008, 2012b), and
this feature/place coding scheme is computationally feasible
(Elliffe et al., 2002). In addition, coherence and temporal
synchrony do not appear to be well suited for information
transmission, for in quantitative neuronal network simula-
tions, it is found that information is transmitted between
neuronal populations at much lower values of synaptic
strength than those needed to achieve coherence (Rolls
et al., 2012).

In this situation, I now make alternative proposals for how
syntactic relations are encoded in the cortex.
6.1.2. Syntax using a place code
The brief overview of encoding in Section 4 (Rolls, 2008; Rolls
and Treves, 2011) leads to a hypothesis about how syntax, or
the relations between the parts of a sentence, is encoded for
language. The hypothesis is that a place code is used, with for
example one cortical module or region used to represent
subjects, another cortical module used to represent verbs,
and another cortical module used to represent objects.

The size of any such neocortical module need not be large.
An attractor network in the cortex need occupy no more than
a local cortical area perhaps 2–3 mm in diameter within
which there are anatomically dense recurrent collateral
associatively modifiable connections between the neurons
(Rolls, 2008). This cortical computational attractor network
module would thus be about the size of a cortical column. It is
an attractor network module in the sense that neurons more
than a few mm away would not be sufficiently strongly
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activated to form part of the same attractor network (Rolls,
2008). An attractor network of this type with sparse distrib-
uted representations can store and encode approximately as
many items are there are synaptic connections onto each
cortical neuron from the nearby neurons (Treves and Rolls,
1991; Rolls and Treves, 1998; Rolls, 2008). The implication for
language is that of order 10,000 nouns could be stored in a
single cortical attractor network with 10,000 recurrent collat-
eral connections onto each neuron. This capacity is only
realised if there is only a low probability of more than one
recurrent collateral connection between any pair of the
neurons in a module, and this has been proposed as one of
the underlying reasons for why cortical connectivity is
diluted, with a probability in the order of 0.1 for connections
between any pair of nearby neurons in the neocortex, and
0.02 for CA3 neurons in the rodent hippocampus (Rolls,
2012a).

The hypothesis is further that different local cortical
modules encode the nouns that are the subjects of sentences,
and that are the objects of sentences. A prediction is thus
that there will be single neurons in a human cortical lan-
guage area that respond to a noun when it is the subject but
not the object of a sentence, and vice versa.

Clearly the full details of the system would be more
complicated, but the general hypothesis is that adjectives
and adjectival phrases that are related to the subject of a
sentence will have strong connections to the subject module
or modules; that adverbs and adverbial phrases that are
related to the verbs of sentence will have strong connections
to the verb module or modules; and that adjectives and
adjectival phrases that are related to the object of a sentence
will have strong connections to the object module or modules.

6.1.3. Temporal trajectories through a state space of
attractors
To represent syntactical structure within the brain, what has
been proposed already might be along lines that are consis-
tent with the principles of cortical computation (Rolls, 2008).
The high representational capacity would be provided for by
the high capacity of a local cortical attractor network, and
syntactic binding within a brain would be implemented by
using a place code in which the syntactic role would be
defined by which neurons are firing – for example, subjects in
one cortical module or modules, and objects in another
cortical module or modules.

However, a problem arises if we wish to communicate this
representation to another person, for the neural implementation
described so far could not be transferred to another person
without transferring which neurons in the language areas were
currently active, and having a well trained person as the decoder!

To transfer or communicate what is encoded in the
representations to another person, and the relations or
syntax, it is proposed that a number of mechanisms might
be used. One might be a temporal order encoding, for
example the subject–verb–object encoding that is usual in
English, and which has the advantage of following the
temporal order that usually underlies causality in the world.
Another mechanism might be the used of inflections (usually
suffixes) to words to indicate their place in the syntax, such
as cases for nouns (e.g. nominative for the subject or agent,
and accusative for the object or patient, dative, and genitive),
and person for verbs (e.g. first, second, and third person
singular and plural, to specify I, you, he/she/it, we, you, they)
used to help disambiguate which noun or nouns operate on
the verb. Another mechanism is the use of qualifying
prepositions to indicate syntactic role of a temporally related
word, with examples being ‘with’, ‘to’, and ‘from’. This
mechanism is used in combination with temporal order in
English. In this paper, I focus on temporal order as an encoder
of syntactical relations, and next set out hypotheses on how
this could be implemented in the cerebral cortex based on the
above computational neuroscience background.

6.1.4. Hypotheses about the implementation of language
in the cerebral cortex
1. Subjects, verbs, and objects are encoded using sparse
distributed representations (Rolls, 2008; Rolls and Treves,
2011) in localised cortical attractor networks. One cortical
module with a diameter of 2–3 mm and 10,000 recurrent
collateral connections per neuron could encode in the order
of 10,000 items (e.g. subjects, verbs or objects) (Rolls, 2008;
Treves and Rolls, 1991). One cortical module would thus be
sufficient to encode all the objects, all the verbs, or all the
objects (depending on the module) in most people's working
vocabulary, which is of the order to several thousand nouns,
or verbs.

This follows from the analysis that the capacity of an
attractor network with sparse encoding a (where for binary
networks a is the proportion of neurons active for any one
memory pattern) is as follows, and from the fact that there
are in the order of 10,000 recurrent collateral connections on
each neuron (Rolls, 2008). The capacity is measured by the
number of patterns p that can be stored and correctly
retrieved from the attractor network

p� C

a ln
1
a

� � k ð1Þ

where C is the number of synapses on the dendrites of each
neuron devoted to the recurrent collaterals from other neu-
rons in the network, and k is a factor that depends weakly on
the detailed structure of the rate distribution, on the con-
nectivity pattern, etc., but is roughly in the order of 0.2–0.3
(Treves and Rolls, 1991; Rolls, 2008, 2012a).

The use of attractor networks for language-based func-
tions is itself important. Cortical computation operates at the
neuronal level by computing the similarity or dot product or
correlation between an input vector of neuronal firing rates
and the synaptic weights that connect the inputs to the
neurons (Rolls, 2008, 2012c). The output of the neuron is a
firing rate, usually between 0 and 100 spikes/s. Cortical
computation at the neuronal level is thus largely analogue.
This is inherently not well suited to language, in which
precise, frequently apparently logical, rules are followed on
symbolic representations. This gap may be bridged by attrac-
tor or autoassociation networks in the brain, which can enter
discrete attractor high firing rate states that can provide for
error correction in the analogue computation, and to the
robustness to noise, that are often associated with the
processing of discrete symbols (Treves, 2005; Rolls, 2008,
2012c). These discrete attractor states are network properties,
not the properties of single neurons, and this capability is at
the heart of much cortical computation including long-term
memory, short-term memory, and decision-making (Rolls,
2008, 2014).

2. Place coding with sparse distributed representations is
used in these attractors. The result is that the module that is
active specifies the syntactic role of what is represented in it.
One cortical module would be for subjects, another for verbs,
another for objects, etc.



Fig. 2 – Schematic diagram of the concepts. (a) Each circle
indicates a local cortical attractor network capable of storing
10,000 items. The Deep layer local cortical attractor networks
use place coding to encode the syntax, that is, the syntactic role
of each attractor network is encoded bywhere it is in the cortex.
In this implementation there are separate Subject (S), Verb (V),
and Object (O) networks. Syntax within the brain is
implemented by place encoding. For communication, the deep
representation must be converted into a sequence of words. To
implement this, the Deep attractor networks provide a weak
selective bias to theWord attractor networks, which have weak
non-selective forward coupling S to V to O. (b) The operation in
time of the system. The Deep networks fire continuously, and
the syntax is implemented using place encoding. The Deep
networks apply a weak selective bias to the Word networks,
which is insufficient to make a word attractor fire, but is
sufficiently strong to bias it later into the correct one of its
10,000 possible attractor states, each corresponding to a word.
Sentence production is started by a small extra input to the
Subject Word network. This with the selective bias from the
Deep subject network make the Word subject network fall into
an attractor, the peak firing of which is sufficient to elicit
production of the subject word. Adaptation in the subject
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3. The presence of these weakly coupled attractors would
enable linguistic operations of a certain type to be performed
within the brain, but the information with the syntax could
not be communicated in this form to other people. In this
statement, ‘weakly coupled’ is clearly and quantitatively
defined by attractors that have weak interconnections so that
they can have different basins of attraction, yet can influence
each other (Rolls, 2008) (Section B.9). The computations
involved in these interactions might instantiate a ‘language
of thought’ that would be below the level of written or spoken
speech, and would involve for example constraint satisfac-
tion within coupled attractors, and the types of brain-style
computation described by Rolls (2012c) in section 2.15 on
brain computation vs computation in a digital computer. The
cortical computational processes could be usefully influenced
and made creative by the stochastic dynamics of neuronal
networks in the brain that are due to the ‘noisy’ Poisson-like
firing of neurons (Rolls, 2008; Rolls and Deco, 2010). When
someone has a hunch that they have solved a problem, this
may be the computational system involved in the processing.
This might be termed a ‘deep’ structure or layer of linguistic
processing.

4. To enable these computations that involve syntactical
relations to be communicated to another person or written
down to be elaborated into an extended argument, the
process considered is one involving weakly forward coupled
attractor networks. One such system would be to have weak
forward coupling between subject–verb–object attractor net-
works. The exact trajectories followed (from subject to verb to
object) could be set up during early language learning, by
forming during such learning stronger forward than reverse
connections between the attractors, by for example spike-
timing dependent plasticity (Markram et al., 1997; Bi and Poo,
1998; Feldman, 2012) and experience with the order of items
that is provided during language learning. Which trajectory
was followed would be biased by which subject, which verb,
and which object representation was currently active in the
deep layer. These temporal trajectories through the word
attractors would enable the syntactical relations to be
encoded in the temporal order of the words.
With this relatively weak coupling between attractors
implemented with integrate-and-fire neurons and low firing
rates, the transition from one active attractor to the next can
be relatively slow, taking 100–400 or more ms (Deco and Rolls,
2005b). This property of the system adapts it well to the
production of speech, in which words are produced sequen-
tially with a spacing in the order of 300–500 ms, a rate that is
influenced by the mechanics and therefore dynamics of the
speech production muscles and apparatus.

A simulation testing this system and making the details of
the operation of the system and their biological plausibility
clear is described in the Methods and Results sections of
this paper.
network makes its firing rate decrease, but still remain in a
moderate firing rate attractor state to provide a short-term
memory for the words uttered in a sentence, in case they need
to be corrected or repeated. The high andmoderate firing rate in
the Subject Word network provides non-selective forward bias
to the whole of the Object Word network, which falls into a
particular attractor produced by the selective bias from the Deep
Verb network, and the verb is uttered. Similar processes then
lead to the correct object being uttered next. The sentence can
be seen as a trajectory through a high dimensional state space
of words in which the particular words in the sentence are due
to the selective bias from the Deep networks, and the temporal
order is determined by the weak forward non-selective
connections between the networks, i.e. connections from
subject-to-verb, and verb-to-object networks. The simulations
show dynamical network principles by which this type of
sentence encoding and also decoding could be implemented.
The overall concept is that syntax within the brain can be
solved by the place coding used in most other representations
in the brain; and that the problems with syntax arise when this
place-coded information must be transmitted to another
individual, when one solution is to encode the role in syntax of
a word by its temporal order in a sentence.



Fig. 3 – The operation of the model, illustrated at three
different time steps. Time 1 is during the production of the
subject work, time 2 during the verb word, and time 3 during
the object word. Each circle represents an attractor network
that can fall into one of 10,000 possible states indicated by
the direction of the arrow vector, each state corresponding to
a word (for the Word-level networks) or a semantic concept
(for the Deep-level networks). The length of the arrow vector
indicates the firing rate of the selected attractor. The Deep
attractor networks fire continuously, with the syntactic role
indicated by the particular network using place coding. The
Deep networks, which represent semantics or meaning,
provide a weak selective bias continuously to the Word
attractor networks. The sequential operation of the Subject
then Verb then Object Word networks is produced by the
weak non-selective forward connections between the
networks. After its initial high firing rate, a Word attractor
network remains active at a lower firing rate as a result of
adaptation, to provide a short-term memory for the words
uttered in a sentence, in case they need to be corrected or
repeated.

Fig. 4 – The attractor network model. There are three
modules, Subject (S), Verb (V), and Object (O). Each module is
a fully connected attractor network with n¼10 pools of
excitatory neurons. The ten excitatory pools each have 640
excitatory neurons, and each module has 1600 inhibitory
neurons using GABA as the transmitter. Each excitatory pool
has recurrent connections with strength wþ ¼ 2:1 to other
neurons in the same pool implemented with AMPA and
NMDA receptors. There are forward connections with
strength wff12 from all excitatory neurons in module 1 (S) to
all excitatory neurons in module 2 (V). There are forward
connections with strength wff23 from all excitatory neurons
in module 2 (V) to all excitatory neurons in module 3 (O). An
external bias can be applied to any one or more of the
attractor pools in each of the modules. In operation for
production, a stronger bias is applied to one pool in module
1 to start the process, and then an attractor emerges
sequentially in time in each of the following modules. The
particular pool that emerges in each of the later modules
depends on which pool in that module is receiving a weak
bias from another (deeper) structure that selects the items to
be included in a sentence. The syntax of the sentence,
encoded in the order of the items, is determined by the
connectivity and dynamics of the network. The same
network can be used for decoding (see text).
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5. The system for enabling the syntax to be communicated
to other people or written down would have some computa-
tional advantages apart from purely the communication. In
particular, once the syntax can be formally expressed in
written statements, it becomes easier to perform logical
operations on the statements, which become propositional,
and can be tested. These logical operations, and reasoning,
may not be the style of computation utilised in general by
computational processes within the brain (see Rolls, 2012c
Section 2.15), but may become algorithms that can be fol-
lowed to achieve quantitatively precise and accurate results,
as in long division, or by learning logic. Thus the importance
of communication using syntax may allow other environ-
mental tools to be applied to enable reasoning and logic that
is not the natural style of neural computation.

6. To enable the system to produce words in the correct
temporal order, and also to remember with a lower level of
neuronal firing what has just been said for monitoring in case
it needs correcting, a mechanism such as spike frequency
adaptation may be used, as described next.

A property of cortical neurons is that they tend to adapt with
repeated input (Abbott et al., 1997; Fuhrmann et al., 2002). The
mechanism is understood as follows. The afterpolarisation (AHP)
that follows the generation of a spike in a neuron is primarily



Fig. 5 – The architecture of one module containing one fully
connected attractor network. The excitatory neurons are
divided into N¼10 selective pools or neuronal populations
S1–SN of which three are shown, S1, S2 and SN. The synaptic
connections have strengths that are consistent with
associative learning. In particular, there are strong intra-pool
connection strengths wþ. The excitatory neurons receive
inputs from the inhibitory neurons with synaptic connection
strength winh ¼ 1. The other connection strengths are 1. The
integrate-and-fire spiking module contained 8000 neurons,
with 640 in each of the 10 non-overlapping excitatory pools,
and 1600 in the inhibitory pool IH. Each neuron in the
network also receives external Poisson inputs λext from 800
external neurons at a typical rate of 3 Hz/synapse to simulate
the effect of inputs coming from other brain areas.
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Fig. 6 – Firing rates of the biased pools in the Subject–Verb–
Object modules as a function of time.
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mediated by two calcium-activated potassium currents, IAHP and
the sIAHP (Sah and Faber, 2002), which are activated by calcium
influx during action potentials. The IAHP current is mediated by
small conductance calcium-activated potassium (SK) channels,
and its time course primarily follows cytosolic calcium, rising
rapidly after action potentials and decaying with a time constant
of 50 to several hundred milliseconds (Sah and Faber, 2002). In
contrast, the kinetics of the sIAHP are slower, exhibiting a distinct
rising phase and decaying with a time constant of 1–2 s (Sah,
1996). A variety of neuromodulators, including acetylcholine
(ACh) acting via a muscarinic receptor, noradrenaline, and
glutamate acting via G-protein-coupled receptors, suppress the
sIAHP and thus reduce spike-frequency adaptation (Nicoll, 1988).

When recordings are made from single neurons operating
in physiological conditions in the awake behaving monkey,
peristimulus time histograms of inferior temporal cortex neu-
rons to visual stimuli show only limited adaptation. There is
typically an onset of the neuronal response at 80–100ms after
the stimulus, followed within 50 ms by the highest firing rate.
There is after that some reduction in the firing rate, but the
firing rate is still typically more than half-maximal 500ms later
(see example in Tovee et al., 1993). Thus under normal
physiological conditions, firing rate adaptation can occur.

The effects of this adaptation can be studied by including a
time-varying intrinsic (potassium-like) conductance in the cell
membrane (Brown et al., 1990; Treves, 1993; Rolls, 2008). This can
be done by specifying that this conductance, which if open tends
to shunt the membrane and thus to prevent firing, opens by a
fixed amount with the potential excursion associated with each
spike, and then relaxes exponentially to its closed state. In this
manner sustained firing driven by a constant input current
occurs at lower rates after the first few spikes, in a similar
way, if the relevant parameters are set appropriately, to the
behaviour observed in vitro of many pyramidal cells (for exam-
ple, Lanthorn et al., 1984; Mason and Larkman, 1990). The details
of the implementation used are described in the Methods.
7. Results

7.1. A production system

The operation of the integrate-and-fire system illustrated in
Fig. 4 is shown in Fig. 6 when it is producing a subject – verb –

object sequence. The firing rates of attractor pools 1 in Word
modules 1 (subject), 2 (verb), and 3 (object) are shown. No other
pool had any increase of its firing rate above baseline. The
attractor pools 1 in modules 2 and 3 received an increase above
the baseline rate of 3.00 Hz per synapse (or 2400 spikes/s per
neuron given that each neuron receives these inputs through 800
synapses) to 3.03 Hz per synapse throughout the trial. This itself
was insufficient to move any attractor pool in modules 2 and 3
into a high firing rate state, as illustrated, until one of the
attractor pools in a preceding module had entered a high firing
rate attractor state. At time¼500ms, the external input into
attractor pool 1 of module 1 (subject) was increased to 3.20 Hz
per synapse, andmaintained at this value for the rest of the trial.
This produced after a little delay due to the stochastic recurrent
dynamics an increase in the firing of pool 1 in module 1, which
peaked at approximately 1000ms. The initial peak firing rate of
approximately 40 spikes/s was followed by a reduction due to the
spike frequency adaptation to approximately 25 spikes/s, and
this level was maintained for the remainder of the trial, as
shown in Fig. 6. The parameters for the spike frequency adapta-
tion for all the excitatory neurons in the network were Vk¼�80
mV, gAHP¼200 nS, αCa¼0.002, and τCa¼300ms.

The increase in the firing in attractor pool 1 of module 1
influenced the neurons in module 2 via the feedforward
synaptic strength of wff12 ¼ 0:55, and, because attractor pool
1 in module 2 already had a weak external bias to help it be
selected, it was attractor pool 1 in module 2 that increased its
firing, with the peak rate occurring at approximately 1250 ms,
as shown in Fig. 6. Again, the peak was followed by low
maintained firing in this pool for the remainder of the trial.

The increase in the firing in attractor pool 1 of module 2
influenced the neurons in module 3 via the feedforward
synaptic strength of wff23 ¼ 0:4, and, because attractor pool 1
in module 3 already had a weak external bias to help it be
selected, it was attractor pool 1 in module 3 that increased its
firing, with the peak rate occurring at approximately 1650 ms,
as shown in Fig. 6. Again, the peak was followed by low
maintained firing in this pool for the remainder of the trial.
The value of wff23 was optimally a little lower than that of
wff12, probably because with the parameters used the firing in
module 2 was somewhat higher than that in module 1. All
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Fig. 7 – Decoding the Subject–Verb–Object sequence to
produce activation in the Subject (module 1), Verb (module
2), and Object (module 3) modules. A weak bias was applied
to all pools in module 1 throughout the trial (see text). Noun
1, the subject, was applied to module 1 pool 1 and module 3
pool 1 during the period 500–1000 ms. Verb 2, was applied to
module 2 pool 2 during the period 1000–1500 ms. Noun 3,
the object, was applied to module 1 pool 3 and module 3
pool 3 during the period 1500–2000 ms. The firing of module
1 attractor 1 neurons that reflect the decoded subject, of
module 2 attractor 2 neurons that reflect the decoded verb,
and of module 3 attractor 3 neurons that reflect the decoded
object, are shown. None of the other 30 attractor neural
populations became active.
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subsequent stages would be expected to operate with
wff ¼ 0:4.

The network thus shows that the whole system can
reliably perform a trajectory that is sequential and delayed
at each step through the state space, with the item selected
in each module determined by the steady bias being received
from a deep structure containing the items to be included in
the sentence. However, the order in which the items were
produced and which specified the syntax was determined by
the connectivity and dynamics of the Word network. In this
particular example, the resulting sentence might correspond
to ‘James chased John’, which has a completely different
syntax and meaning to ‘John chased James’, ‘chased John
James’, etc. The peak of firing in each module could be used
to produce the appropriate word in the correct order. The
lower rate of ongoing firing in each module provided the basis
for the items produced in the sentence to be remembered and
used for monitoring, with the role of each item in the
sentence made explicit by the module in which the attractor
pool was still active.

7.2. A decoding system

In Section 7.1 the operation of the system when it is operating
to produce a subject–verb–object sequence in which the
temporal sequence encodes syntactic information is
described. In this section, the operation of the system when
it decodes a Subject–Verb–Object sentence is considered. The
aim is to receive as input the temporal sequence, and to
activate the correct attractor in the Subject, Verb, and Object
Word attractor modules. The syntactic information in the
sequence allows correct decoding of the subject and object
nouns in the sentence, when the position in the sequence is
the only information that enables a noun to activate a noun
attractor in the subject or the object module. The deep
semantic attractor modules could then be activated from
the Word attractor modules, using selective, associatively
modifiable, synaptic connections.

The operation of the system in decoding mode is illu-
strated in Fig. 7. The architecture of the network is the same
as that already described. The baseline input to each of the
800 external synapses is maintained at 3 Hz per synapse in all
pools in all modules throughout the sentence except where
stated. Throughout the trial all pools in module 1 receive a
bias of 0.24 Hz on each of the 800 external input synapses.
(This corresponds to an extra 192 spikes/s received by every
neuron in each of attractor pools.) The aim of this is to
prepare all the attractors in module 1, the subject attractor, to
respond if an input cue, a word, is received. This bias
essentially sets the system into a mode where it is waiting
for an input stream to arrive in module 1. All the attractors in
module 1 are stable with low firing rates while only this bias
is being applied.

At time 500–1000 ms module 1 pool 1 and module 3 pool 1
receive a noun recall cue as an additional input on the
external synapses at an additional 0.08 Hz per synapse. (This
corresponds to an extra 64 spikes/s received by every neuron
in these two pools of neurons.) Module 1 pool 1 goes into an
attractor, as illustrated in Fig. 7, because it is receiving a noun
recall cue and the bias. Module 3 pool 1 does not enter a high
firing rate attractor state, even though the word recall cue for
its attractor 1 is being applied, because it is not receiving a
bias. This shows how the system can decode correctly a noun
due to its position in the sequence as a subject or as an
object. In the simulations the bias to pool 1 can be left on, or
turned off at this stage in the trial, for once an attractor state
has been reached by a pool in module 1, it remains with a
stable high firing rate for the remainder of the sentence. The
continuing firing is implemented to ensure that the subject
remains decoded in the system while the rest of the sentence
is decoded, and for use even after the end of the sentence. At
time 1000 ms, the noun applied to attractor pools 1 in
modules 1 and 3 is removed, as it is no longer present in
the environment.

At time 1000–1500 ms the verb recall cue is applied to
module 2 pool 2, which enters an attractor. The strength of
this recall cue alone (the same as before, an additional
0.08 Hz per synapse) is insufficient to cause this pool in
module 2 to enter an attractor. However, all pools in module
2 are receiving now via the feed-forward connections wff12 a
priming input from the firing now occurring in module 1, and
when the verb recall cue is applied to module 2 pool 2, the
combined effects of the recall cue and the feedforward inputs
cause module 2 pool 2 to enter its correct attractor state to
indicate the presence of this verb in the sentence. The
intention of the priming forward input from the preceding
module is to provide for future expansion of the system, to
allow for example correct decoding of two verbs at different
positions within the sequence of words in a sentence. Module
2 pool 2 has the Verb recall cue removed at time 1500 ms as it
is no longer present in the environment. Module 2 pool 2
however keeps firing in its stable high firing rate attractor
state to ensure that the verb remains decoded in the system
while the rest of the sentence is decoded, and for use even
after the end of the sentence.
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At time 1500–2000 ms the object recall cue is applied to
module 3 pool 3, and, as a control and test of the syntactic
operation of the system, simultaneously also to module 1
pool 3. Module 3 pool 3 enters its correct object attractor,
utilising the feedforward priming inputs wff23. These priming
inputs again provide for further expansion of the system, in
case there is another object in the sentence in a later clause.
Meanwhile module 1 remains in its pool 1 subject attractor
state which is now stable in the face of interfering noun
inputs because of its deep low energy basin of attraction. This
shows how this noun is forced by its order in the sequence
into the Object pool, demonstrating how the system is able to
decode information about syntactic role that is present from
the position of the item in the sequence. Module 3 pool 3
keeps firing in its stable high firing rate attractor state to
ensure that the object remains decoded in the system for use
even after the end of the sentence.

As noted, the architecture and overall dynamical princi-
ples of operation of the system used for decoding were the
same as for encoding. The firing rate adaption was left to
operate as before, though it is less useful for the decoding.
The only parameters that were adjusted a little for the
decoding system were wþ ¼ 2:3 (to help stability of the high
firing rate attractor state in the face of for example interfering
nouns); wff12 ¼wff23 ¼ 0:2; bias for all pools in module
1¼0.24 Hz per synapse; and recall cue¼0.08 Hz per synapse.

The results just described and illustrated in Fig. 7 illustrate
some of the principles of operation of the functional archi-
tecture when decoding sentences. Further results were as
follows. If during the application of the noun for the subject
(time 500–1000 ms in the simulations) an input effective for
an attractor in module 2 was also applied, then a pool in
module 2 tends to enter a high firing rate attractor state, for it
is receiving both a recall cue and the forward bias from the
high firing starting in module 1 and applied to module 2 via
wff12. An implication is that only nouns should be applied to
Subject and Object attractor modules. Having attractors for
verbs that respond to different recall cues (words that are
verbs) helps the system to decode the input stream into the
correct modules and pools. Thus the semantics, the words
being applied to the network, are important in enabling the
system to respond correctly.
8. Discussion

The system described here shows how a word production
system might operate using neuronal architecture of the type
found in the cerebral cortex.

One possible objection to such a computational imple-
mentation is how to deal with the passive form. What I
propose is that temporal order could again be used, but with
different coupling between the attractors appropriate for
implementing the passive voice that is again learned by early
experience, and is selected instead of the active voice by top-
down bias in the general way that we have described else-
where (Deco and Rolls, 2003, 2005c). The hypothesis is thus
that operation of the system for passive sentences would
require a different set of connections to be used to generate
the correct temporal trajectory through these or possible
different modules, with the head of the sentence no longer
being (in English) the subject (e.g. James in ‘James chased
John’), but instead the object (e.g. ‘John was chased by
James’).
In a similar way, it is proposed that different languages are
implemented by different forward connectivity between the
different modules representing subjects, verbs, and objects in
that language, with the connectivity for each language learned
by repeated experience and forced trajectories during learning
using for example spike-timing-dependent plasticity. Separate
neuronal implementation of different languages is consistent
with neurological evidence that after brain damage one language
but not another may be impaired.

The system would require considerable elaboration to
provide for adjectives and adjectival phrases qualifying the
subject or the object, and for adverbs or adverbial phrases
qualifying the verbs, but a possible principle is stronger
synaptic connectivity between the modules in which the
qualifiers are represented. To be specific, one type of imple-
mentation might have adjectives in modules that qualify
subjects connected with relatively stronger synapses to subject
modules than to object modules. This should be feasible given
that any one attractor network capable of encoding thousands
of words need occupy only 2–3mm of neocortical area.

In such a system, the problem does arise of how the nouns
in the subject attractor module can refer to the same object in
the word as the nouns in the object attractor, and of the
extent to which when one representation (e.g. in the subject
module) is updated by modifying its properties (encoded by
which neurons are active in the sparse distributed represen-
tation within a module), the representation of the same
object in another module (e.g. in the object module) is
updated to correspond.

The results on the operation of the system when it is
decoding a sentence illustrated in Fig. 7 illustrate how the
temporal sequence of the words can be used to place them
into the appropriate module, for example to place a noun into
a subject or an object module. Interestingly, if during the
application of the noun for the subject (time 500–1000 ms in
the simulations) an input effective for an attractor in module
2 (the verb module) was also applied, then a pool in module 2
tended to enter a high firing rate attractor state, for it was
receiving both a recall cue and the forward bias from the high
firing starting in module 1 and applied to module 2 via wff12.
An implication is that only nouns should be applied to
Subject and Object attractors. Having attractors for verbs that
respond to different input cues (words that are verbs) helps
the system to decode the input stream into the correct
modules and pools. Thus the semantics, the words being
applied to the network, are important in enabling the system
to respond correctly.

Indeed, overall the system might be thought of as having
different modules and pools for different types of word
(subject noun, object noun, verb, adverb, adjective, etc) and
using the match of the incoming word to the word defined in
a module to provide an important cue to which module
should have an attractor activated, and then adding to this
the temporal sequence sensitivity also considered here to
help disambiguate the syntax, for example whether a noun is
a subject or an object. Thus the semantics, the word as
a noun, verb, or potentially adjective or adverb, help the
dynamics because the cue details (adverb, noun, verb, adjec-
tive etc) provides constraints on the trajectories and
dynamics of the system, and thus on how it decodes input
sequences.

Language would thus be brittle if there were not subject-
noun, object-noun, verb, adjective, adverb etc pools. An
inflected language helps words to activate the correct pools.
If inflections are lost or not present in a language, then the
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order in a sequence can compensate to some extent, but the
system still relies on the words activating selective pools,
with the temporal dynamics used for example to disambig-
uate matters if a noun might otherwise be a subject or an
object, or an adjective might qualify a subject vs an object,
etc. Moreover, because language is often irregular, particular
words must also favour particular dynamics/relations.

In such a stochastic dynamical system (Rolls, 2008;
Rolls and Deco, 2010), speech or writing errors such as
words appearing in the incorrect order, word substitution,
and repetition of the same word, could be easily accounted
for by failures in the stochastically influenced (Rolls, 2008;
Rolls and Deco, 2010) transitions from one attractor to the
next, and in the word selected in each attractor. This
supports the proposed account of the cortical implemen-
tation of language.

Overall, in this paper the coding and dynamical principles
of the operation of the cerebral cortex have been considered
in the context of how they may be relevant to the imple-
mentation of language in the cerebral cortex. It has been
proposed that the high capacity of local attractor networks in
the neocortex would provide a useful substrate for represen-
tations of words with different syntactical roles, for example
subject noun, object noun, adjective modifying a subject,
adjective modifying an object, verb, and adverb. With this
as a principle of operation, in an inflected language the words
produced can have the appropriate suffix (typically) added to
specify the module from which it originated and therefore its
syntactic role in the sentence. In an inflected language, the
inflections added to words can indicate case, person etc, and
during decoding of the sentence (when listening or reading)
these inflections can be used to help the word to activate
attractors in the correct module. In a language without
inflections, or that is losing inflections, the order in the
sequence can be used to supplement the information present
in the word to help activate a representation in the correct
attractor. Examples of how cortical dynamics might help in
this process both during production and during decoding are
provided in the simulations in this paper.

Interestingly, at least during decoding, temporal dynamics
alone was found to be brittle in enabling words to be decoded
by the correct module, and the system was found to work
much more robustly if words find matches only in different
specialised modules, for example with nouns being decod-
able by only subject noun or object noun modules, verbs only
be verb modules, etc. The actual decoding is of course a great
strength of the type of attractor neuronal network approach
described here, for attractor networks are beautifully suited
to performing such decoding based on the vector dot product
similarity of the recall cue to what is stored in the network
(Rolls, 2008; Hopfield, 1982; Amit, 1989). The implication is
that content addressable specialised word attractor cortical
modules are important in the implementation of language,
and that temporal dynamics utilising the order of a word in
the sequence can be used to help disambiguate the syntactic
role of a word being received by enabling it to activate a
representation in the correct module, using mechanisms of
the general type described.

This raises the interesting point that in the present
proposal, the syntactic role of a representation is encoded
in the brain by the particular cortical module that is active,
with different cortical modules for different parts of speech.
An implication is that for the internal operations of this
syntactical system, the syntax is encoded by the module
within which the representation is active, and this is a form
of place coding. Much may be computed internally by such a
system based on this specification of the syntactic role of
each module in the thought process. The problem arises
when these thoughts must be communicated to others. Then
a production system is needed, and in this system the
syntactic role of which module the representation arises
from can be specified partly by the word itself (with noun
words indicating that they arise from a subject or object noun
representations, verb words indicating that they arise from a
verb module); and this specification is supported by inflection
and/or by temporal order information to help disambiguate
the module from which the word originates. Then during
decoding of a sentence, the word again allows it to match
only certain modules, with inflection and/or order in the
sequence being used to disambiguate the module that should
be activated by the word.

Thus an internal language of thought may be implemen-
ted by allocating different cortical modules to different
syntactic roles, and using place encoding. However, when
language becomes externalised in the process of communi-
cation, the way in which language can be used as a computa-
tional mechanism may be enhanced. Once a language has the
rules that allow syntactic role to be expressed in for example
written form, this enables formal syntactic operations includ-
ing logic to be checked in an extended argument or algorithm
or proof, and this then provides language with much greater
power, providing a basis for formal reasoned extended argu-
ment, which may not be a general property of neuronal
network operations (Rolls, 2008), and which facilitates the
use of the reasoned route to action (Rolls, 2014).

One of the hypotheses considered here is that place coding
in quite small cortical modules approximately the size of a
cortical column (i.e. a region within which there is a high
density of local recurrent collaterals to support attractor
functionality, and within which local inhibitory neurons
operate) may be used to encode the syntactic role of a word
might not easily reveal itself at the brain lesion or functional
neuroimaging levels, which generally operate with less reso-
lution than this. For example, such studies of the effects of
brain damage and of activations do not provide clear evi-
dence for segregation by syntactic role, such as noun-
selective vs verb-selective areas (Vigliocco et al., 2011).
Although effects produced by nouns vs verbs do segregate
to some extent into the temporal and frontal lobes, this may
be because the semantic associations of nouns with objects,
and verbs with actions, will tend to activate different cortical
areas because of the semantic not purely because of the
syntactic difference (Vigliocco et al., 2011). One of the
hypotheses developed here is that nouns as subjects and
nouns as objects may use different place coding, and one way
that this might become evident in future is if single neuron
recordings from language areas support this. Indeed, it is a
specific and testable prediction of the approach described
here that some neurons in language-related cortical areas
will have responses to words that depend on the syntactic
role of the word. For example, such a neuron might respond
preferentially to a noun word when it is a subject compared
to when it is an object.

It will be interesting in future to investigate whether this
approach based on known principles of cortical computation
can be extended to show whether it could provide at least a
part of the biological foundation for the implementation of
language in the brain. Because of its use of place coding, the
system would not be recursive. But language may not be
recursive, and indeed some of the interesting properties but
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also limitations of language may be understood in future as
arising from the limitations of its biological implementation.

We note that there are a number of biological mechanisms
that might implement the slow transitions from one attractor
state to another, some investigated by Deco and Rolls (2005b),
and that we are not wedded to any particular mechanism.
The speed with which the trajectory through the state space
of attractors is executed will depend on factors such as the
magnitude of the inputs including the biassing inputs, the
strengths of the synapses between the modules, the NMDA
dynamics, the effects of finite size noise which will be
influenced by the number of spiking neurons, the dilution
of the connectivity, and the graded nature of the firing (Rolls
and Deco, 2010; Webb et al., 2011; Rolls and Webb, 2012). An
implication is that the speed of speech production might be
influenced by factors that influence for example NMDA
receptors, such as dopamine via D1 receptors (Rolls and
Deco, 2010).

One such extension in the future of the approach taken in
this paper would be to extend the implementation from a
single cortical attractor network for each linguistic type
(subject nouns, object nouns, verbs, etc) to a set of attractor
networks for each linguistic type. If each single local cortical
attractor network could store say S patterns (the p referred to
above), then how would the system operate with M such
attractor nets or modules? There would be two types of
connection in such a system. One would be the synaptic
connections between the neurons in each attractor network
or module. The other connections would be the typically
weaker connections between cortical modules (see Rolls,
2008). The whole system of coupled interacting attractor nets
is known as a Potts attractor (Treves, 2005; Kropff and Treves,
2005). In a language system representing for example nouns,
one attractor net or ‘unit’ in Potts terminology might contain
properties such as shape, another colour, another texture,
etc, and the full semantic description of the object might be
represented by which attractors in which of the M modules
are active, that is in a high firing rate state. One advantage of
such a system is that all of the properties of an object could
be encoded in this way, so we could specify whether the hat
is round, red, smooth in texture, etc. Associated with this
advantage, the total capacity of the system, that is the
number of possible objects that could be represented, is
now proportional to S2. Thus if a single attractor network
could store S¼10,000 items (104), a Potts system with 5 such
modules might be able to represent of order 5:108 such
objects. In more detail, the number of patterns Pc that can
be represented over the Potts attractor is

Pc � cMS
2=aM ð2Þ

where cM is the number of other modules on average with
which a module is connected, S is the number of different
attractor states within any one module, and aM is the
proportion of the attractor modules in which there is an
active attractor, i.e. a high firing rate attractor state (Treves,
2005; Kropff and Treves, 2005). Such a Potts system only
works well if (1) long-range connections between the differ-
ent modules are non-uniformly distributed and (2) only a
sparse set of the modules (measured by aM) is in a high firing
rate attractor state (Treves, 2005). In principle, the dynamical
system described here could be replaced by substituting each
cortical word type module (e.g. that for subject nouns) with a
Potts attractor system each with several attractor network
modules coding for different properties of features such as
shape, colour, texture, etc.
An overview at present is that such a Potts system might
be useful for a semantic network (Treves, 2005), which might
correspond to the deep network that biases the word mod-
ules in the architecture described in this paper. That seman-
tic system would then bias the word modules (with one
cortical module for each type of word, subject noun, etc), and
this architecture might have the advantage that word repre-
sentations may be more uncorrelated than are semantic
representations, which would keep the word representation
capacity high. However, in the Potts system simulated so far
to model language, the units corresponded to semantic
features not to words; and place coding was not used, with
instead the syntactic roles of the semantic representations
requiring further Potts units to specify the syntactic roles of
the semantic units (Pirmoradian and Treves, 2013).

Treves (2005) also considered how such a Potts system
might have dynamics that might display some of the proper-
ties of language. Adaptation was introduced into each of the
attractor networks. After a population of neurons had been
active in a high firing rate state in one attractor module for a
short time, due to adaptation in that neuronal population, the
system then jumped to another attractor state in the same
module, or in another connected module a jump might occur
to another attractor state, because its inputs had changed due
to the adaptation in the other module. The result was a
latching process that resulted in complex dynamics of the
overall system (Treves, 2005; Song et al., 2014). Whether that
complex dynamics is how language is produced has not been
proven yet. My view here is that there are sensory inputs
from the world, or remembered states that enter short-term
memory, and that these states in the deep, semantic, net-
works then bias the word networks to produce the sequential
stream of language. That keeps the processing not a random
trajectory through a state space perhaps biased by the
statistics of the correlations within a language, but instead
a trajectory useful for communication that reflects the states
produced by the world or recalled into memory and that can
then be communicated to others as a stream of words.

In conclusion, we have shown in this paper how some of
the principles of cortical computation used to implement
episodic memory, short-term memory, perception, attention,
and decision-making (Rolls, 2008) might contribute to the
implementation of language including syntax in the cortex.
9. Experimental Procedures

9.1. An integrate-and-fire network with three attractor
network modules connected by stronger forward than
backward connections

The computational neuroscience aspects of the hypotheses
described above were investigated with an integrate-and-fire
network with three attractor network modules connected by
stronger forward than backward connections, the operation
of which is illustrated conceptually in Figs. 2 and 3, and the
architecture of which is illustrated in Fig. 4. Each module is
an integrate-and-fire attractor network with n possible attrac-
tor states. For the simulations described there were n¼10
orthogonal attractor states in each module, each implemen-
ted by a population of neurons with strong excitatory con-
nections between the neurons with value wþ ¼ 2:1 for the
NMDA and AMPA synapses. There were N¼8000 neurons in
each module, of which 0.8 (i.e. 6400) were excitatory, and 1600
were inhibitory. The first module could represent one of 10
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Subjects (S), the second module one of 10 verbs (V), and the
third module one of 10 objects (O). In the cerebral cortex, each
module might be expected to be able to encode up to 10,000
items using sparse distributed representations, and assuming
of order 10,000 excitatory recurrent collateral connection onto
each neuron (Treves and Rolls, 1991, 1994; Rolls, 2008). The
parameters in each module were set so that the spontaneous
firing state with no input applied was stable, and so that only
one of its n possible attractor states was active at any time
when inputs were applied (Rolls, 2008; Rolls and Deco, 2010;
Deco et al., 2013) (see Appendix).

In the model, there are forward connections from all
excitatory neurons in one module to all excitatory neurons
in the next module, with uniform strength wff . The role of
these forward connections is to produce some non-specific
input to the next module of the network when the previous
module enters an attractor state with one of its neuronal
pools. The role of this forward input is to encourage the next
module in the series to start firing with some small delay
after the previous module, to enable a temporal trajectory
through a state space of an active attractor pool in one
module to an active attractor pool in the next module. In
the cerebral cortex, there are typically both stronger forward
than backward connections between modules in different
cortical areas, and connections in both directions between
modules in the same cortical area (Rolls, 2008). In the latter
case, the hypothesis is that the stronger connections in one
direction than the reverse between nearby modules might be
set up by spike-timing dependent plasticity (Markram et al.,
1997; Bi and Poo, 1998; Feldman, 2012) based on the temporal
order in which the relevant modules were normally activated
during a stage when a language was being learned. For the
simulations, only weak forward connections were implemen-
ted for simplicity.

During operation, one attractor pool in each module
receives a continuous bias throughout a trial from a Deep
network (see Figs. 2 and 3). For example the Subject Word
module might receive bias from a Deep attractor pool repre-
senting ‘James’, the Verb Word module might receive bias
from an attractor pool representing ‘chased’, and the Object
Word module might receive bias from an attractor pool
representing ‘John’. These biases would represent the deep
structure of the sentence, what it is intended to say, but not
the generation of the sentence, which is the function of the
network shown in Fig. 4. The biases in all the modules apart
from the first are insufficient to push any attractor pool in a
Word module into an attractor state. In the first (or head)
Word module, the bias is sufficiently strong to make the
attractor pool being biased enter a high firing rate attractor
state. The concept is that because of the forward connections
to all neurons in the second (Verb Word) module, the
attractor pool in the second module receiving a steady bias
(in our example, the ‘chased’ pool) then has sufficient input
for it to gradually enter an attractor. The same process is then
repeated for the biased attractor in Word module 3, which
then enters a high firing rate state. Due to the slow stochastic
dynamics of the network, there are delays between the firing
in each of the Word modules. It is this that provides the
sequentiality to the process that generates the words in the
sentence in the correct order.

In addition, a concept of the cortical dynamics of this
system is that each module should maintain a level of
continuing firing in its winning attractor for the remainder of
the sentence, and even for a few seconds afterwards. The
purpose of this is to enable correction of the process (by for
example a higher order thought or monitoring process, see
Rolls, 2014) if the process needs to be corrected. The main-
tenance of the attractors in a continuing state of firing enables
monitoring of exactly which attractors did occur in the
trajectory through the state space, in case there was a slip of
the tongue. (Indeed, ‘slips of the tongue’ or speech production
errors are accounted for in this framework by the somewhat
noisy trajectory through the state space that is likely to occur
because of the close to Poisson spiking times of the neurons
for a given mean rate, which introduces noise into the system
Rolls, 2008; Rolls and Deco, 2010; Rolls, 2014). The main
parameters of each module that enable this to be achieved
are wþ, and the external bias entering each attractor pool.

However, although it is desired to have a short-term
memory trace of previous activity during and for a short time
after a sentence, it is also important that each word is uttered
at its correct time in the sentence, for this carries the
syntactic relations in this system. To achieve the production
of the word at the correct time, the firing of each attractor has
a mechanism to produce high firing initially for perhaps 200–
300 ms, and then lower firing later to main an active memory
trace of previous neuronal activity. The mechanism used to
achieve this initial high firing when a neuronal pool enters a
high firing rate state, was spike frequency adaptation, a
common neuronal process which is described later, and
which has been implemented and utilised previously (Liu
and Wang, 2001; Deco and Rolls, 2005b; Rolls and Deco, 2014).

9.2. The operation of a single attractor network module

The aim is to investigate the operation of the system in a
biophysically realistic attractor framework, so that the prop-
erties of receptors, synaptic currents and the statistical
effects related to the probabilistic spiking of the neurons
can be part of the model. We use a minimal architecture, a
single attractor or autoassociation network (Hopfield, 1982;
Amit, 1989; Hertz et al., 1991; Rolls and Treves, 1998; Rolls and
Deco, 2002; Rolls, 2008) for each module. A recurrent (attrac-
tor) integrate-and-fire network model which includes synap-
tic channels for AMPA, NMDA and GABAA receptors (Brunel
and Wang, 2001; Rolls and Deco, 2010) was used.

Each Word attractor network contains 6400 excitatory, and
1600 inhibitory neurons, which is consistent with the
observed proportions of pyramidal cells and interneurons in
the cerebral cortex (Abeles, 1991; Braitenberg and Schütz,
1991). The connection strengths are adjusted using mean-
field analysis (Brunel and Wang, 2001; Deco and Rolls, 2006;
Rolls and Deco, 2010), so that the excitatory and inhibitory
neurons exhibit a spontaneous activity of 3 Hz and 9 Hz,
respectively (Wilson et al., 1994; Koch and Fuster, 1989). The
recurrent excitation mediated by the AMPA and NMDA
receptors is dominated by the NMDA current to avoid
instabilities during delay periods (Wang, 2002).

The architecture of the cortical network module illustrated
in Fig. 5 has 10 selective pools each with 640 neurons. The
connection weights between the neurons within each pool or
population are called the intra-pool connection strengths wþ,
which were set to 2.1 for the simulations described. All other
weights including winh were set to 1.

All the excitatory neurons in each attractor pool S1, S2 …
SN receive an external bias input λ1, λ2 … λN. This external
input consists of Poisson external input spikes via AMPA
receptors which are envisioned to originate from 800 external
neurons. One component of this bias which is present by
default arrives at an average spontaneous firing rate of 3 Hz
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from each external neuron onto each of the 800 synapses for
external inputs, consistent with the spontaneous activity
observed in the cerebral cortex (Wilson et al., 1994; Rolls
and Treves, 1998; Rolls, 2008). The second component is a
selective bias from a deep structure system which provides a
bias present throughout a trial to one of the attractor pools in
each module, corresponding to the subject, verb, or object
(depending on the module) to be used in the sentence being
generated. This bias makes it more likely that the attractor
pool will become active if there are other inputs, but is not
sufficiently strong (except in the first module) to initiate a
high firing rate attractor state. (This selective bias might be
set up by associative synaptic modification between the Deep
and the Word modules.) In addition, all excitatory neurons in
a module receive inputs with a uniform synaptic strength of
wff from all the excitatory neurons in the preceding module,
as illustrated in Fig. 4.

Both excitatory and inhibitory neurons are represented by
a leaky integrate-and-fire model (Tuckwell, 1988). The basic
state variable of a single model neuron is the membrane
potential. It decays in time when the neurons receive no
synaptic input down to a resting potential. When synaptic
input causes the membrane potential to reach a threshold, a
spike is emitted and the neuron is set to the reset potential at
which it is kept for the refractory period. The emitted action
potential is propagated to the other neurons in the network.
The excitatory neurons transmit their action potentials via
the glutamatergic receptors AMPA and NMDA which are both
modeled by their effect in producing exponentially decaying
currents in the postsynaptic neuron. The rise time of the
AMPA current is neglected, because it is typically very short.
The NMDA channel is modeled with an alpha function
including both a rise and a decay term. In addition, the
synaptic function of the NMDA current includes a voltage
dependence controlled by the extracellular magnesium con-
centration (Jahr and Stevens, 1990). The inhibitory postsy-
naptic potential is mediated by a GABAA receptor model and
is described by a decay term. A detailed mathematical
description is provided in the Appendix.
9.3. Spike frequency adaptation mechanism

A specific implementation of the spike-frequency adaptation
mechanism using Ca2þ-activated Kþ hyper-polarising cur-
rents (Liu and Wang, 2001) was implemented, and is
described in the Appendix. Its parameters were chosen to
produce spike frequency adaptation similar in timecourse to
that found in the inferior temporal visual cortex of the
behaving macaque (Tovee et al., 1993). In particular, ½Ca2þ�
is initially set to be 0 μM, τCa ¼ 300 ms, α¼ 0:002, VK ¼ �80 mV
and gAHP ¼ 200 nS. (We note that there are a number of other
biological mechanisms that might implement the slow tran-
sitions from one attractor state to another, some investigated
by Deco and Rolls (2005b), and that we use the spike
frequency adaptation mechanism to illustrate the principles
of operation of the networks.)
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Appendix A

A.1. Implementation of neural and synaptic dynamics

We use the mathematical formulation of the integrate-and-
fire neurons and synaptic currents described by Brunel and
Wang (2001). Here we provide a brief summary of this
framework.

The dynamics of the sub-threshold membrane potential V
of a neuron is given by the equation:

Cm
dVðtÞ
dt

¼ �gm V tð Þ�VLð Þ� Isyn tð Þ; ð3Þ

Both excitatory and inhibitory neurons have a resting
potential VL ¼ �70 mV, a firing threshold Vthr ¼ �50 mV and
a reset potential Vreset ¼ �55 mV. The membrane parameters
are different for both types of neurons: Excitatory (Inhibitory)
neurons are modeled with a membrane capacitance
Cm ¼ 0:5 nF (0.2 nF), a leak conductance gm ¼ 25 nS (20 nS), a
membrane time constant τm ¼ 20 ms (10 ms), and a refractory
period tref ¼ 2 ms (1 ms). Values are extracted from
McCormick et al. (1985).

When the threshold membrane potential Vthr is reached,
the neuron is set to the reset potential Vreset at which it is
kept for a refractory period τref and the action potential is
propagated to the other neurons.

Each attractor network is fully connected with NE ¼ 6400
excitatory neurons and NI ¼ 1600 inhibitory neurons, which is
consistent with the observed proportions of the pyramidal
neurons and interneurons in the cerebral cortex (Braitenberg
and Schütz, 1991; Abeles, 1991). The synaptic current imping-
ing on each neuron is given by the sum of recurrent
excitatory currents (IAMPA;rec and INMDA;rec), the external exci-
tatory current (IAMPA;ext) and the inhibitory current ðIGABAÞ:
IsynðtÞ ¼ IAMPA;extðtÞ þ IAMPA;recðtÞ þ INMDA;recðtÞ þ IGABAðtÞ: ð4Þ

The recurrent excitation is mediated by the AMPA and
NMDA receptors, inhibition by GABA receptors. In addition,
the neurons are exposed to external Poisson input spike
trains mediated by AMPA receptors at a rate of 2.4 kHz. These
can be viewed as originating from Next ¼ 800 external neurons
at an average rate of 3 Hz per neuron, consistent with the
spontaneous activity observed in the cerebral cortex (Wilson
et al., 1994; Rolls and Treves, 1998). The currents are defined
by

IAMPA;extðtÞ ¼ gAMPA;extðVðtÞ�VEÞ ∑
Next

j ¼ 1
sAMPA;ext
j ðtÞ ð5Þ

IAMPA;recðtÞ ¼ gAMPA;recðVðtÞ�VEÞ ∑
NE

j ¼ 1
wAMPA

ji sAMPA;rec
j ðtÞ ð6Þ

INMDA;rec tð Þ ¼ gNMDAðVðtÞ�VEÞ
1þ ½Mgþþ�expð�0:062 VðtÞÞ=3:57

� ∑
NE

j ¼ 1
wNMDA

ji sNMDA
j ðtÞ ð7Þ

IGABAðtÞ ¼ gGABAðVðtÞ�VIÞ ∑
NI

j ¼ 1
wGABA

ji sGABAj ðtÞ ð8Þ

where VE ¼ 0 mV, VI ¼ �70 mV, wj are the synaptic weights, sj's
the fractions of open channels for the different receptors and g's
the synaptic conductances for the different channels. The NMDA
synaptic current depends on the membrane potential and the
extracellular concentration of Magnesium (½Mgþþ� ¼ 1 mM Jahr



Table 1 – Parameters used for each module in the
integrate-and-fire simulations.

NE 6400
NI 1600
r 0.1
wþ 2.1
wI 1.0
Next 800
νext 2.4 kHz
Cm (excitatory) 0.5 nF
Cm (inhibitory) 0.2 nF
gm (excitatory) 25 nS
gm (inhibitory) 20 nS
VL �70 mV
Vthr �50 mV
Vreset �55 mV
VE 0 mV
VI �70 mV
gAMPA;ext (excitatory) 2.08 nS

gAMPA;rec (excitatory) 0.01 nS

gNMDA (excitatory) 0.041 nS
gGABA (excitatory) 0.156 nS

gAMPA;ext (inhibitory) 1.62 nS

gAMPA;rec (inhibitory) 0.01 nS

gNMDA (inhibitory) 0.032 nS
gGABA (inhibitory) 0.122 nS

τNMDA;decay 100 ms

τNMDA;rise 2 ms

τAMPA 2 ms
τGABA 10 ms
α 0.5 ms�1
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and Stevens, 1990). The values for the synaptic conductances for
excitatory neurons are gAMPA;ext ¼ 2:08 nS, gAMPA;rec ¼ 0:013 nS,
gNMDA ¼ 0:041 nS and gGABA ¼ 0:16 nS; and for inhibitory neurons
gAMPA;ext ¼ 1:62 nS, gAMPA;rec ¼ 0:01 nS, gNMDA ¼ 0:03 nS and
gGABA ¼ 0:12 nS. These values are obtained from the ones used
by Brunel and Wang (2001) by correcting for the different
numbers of neurons. The conductances were calculated so that
in an unstructured network the excitatory neurons have a
spontaneous spiking rate of 3 Hz and the inhibitory neurons a
spontaneous rate of 9 Hz. The fractions of open channels are
described by

dsAMPA;ext
j ðtÞ

dt
¼ �

sAMPA;ext
j ðtÞ
τAMPA

þ∑
k
δ t�tkj
� �

ð9Þ

dsAMPA;rec
j ðtÞ

dt
¼ �

sAMPA;rec
j ðtÞ
τAMPA

þ∑
k
δ t�tkj
� �

ð10Þ

dsNMDA
j ðtÞ
dt

¼ �
sNMDA
j ðtÞ

τNMDA;decay
þ αxj tð Þ 1�sNMDA

j tð Þ
� �

ð11Þ

dxjðtÞ
dt

¼ � xjðtÞ
τNMDA;rise

þ∑
k
δ t�tkj
� �

ð12Þ

dsGABAj ðtÞ
dt

¼ �
sGABAj ðtÞ
τGABA

þ∑
k
δ t�tkj
� �

; ð13Þ

where τNMDA;decay ¼ 100 ms is the decay time for NMDA synapses,
τAMPA ¼ 2 ms for AMPA synapses (Hestrin et al., 1990; Spruston
et al., 1995) and τGABA ¼ 10 ms for GABA synapses (Salin and
Prince, 1996; Xiang et al., 1998); τNMDA;rise ¼ 2 ms is the rise time
for NMDA synapses (the rise times for AMPA and GABA are
neglected because they are typically very short) and
α¼ 0:5 ms�1. The sums over k represent a sum over spikes
formulated as δ-Peaks δðtÞ emitted by presynaptic neuron j at
time tj

k.
The equations were integrated numerically using a second

order Runge–Kutta method with step size 0.02 ms. The
Mersenne Twister algorithm was used as random number
generator for the external Poisson spike trains.

A.2. Calcium-dependent spike frequency adaptation
mechanism

A specific implementation of the spike-frequency adaptation
mechanism using Caþþ-activated Kþ hyper-polarising cur-
rents (Liu and Wang, 2001) is described next, and was used by
Deco and Rolls (2005b). We assume that the intrinsic gating of
Kþ After-Hyper-Polarising current (IAHP) is fast, and therefore
its slow activation is due to the kinetics of the cytoplasmic
Ca2þ concentration. This can be introduced in the model by
adding an extra current term in the integrate-and-fire model,
i.e. by adding IAHP on the right hand side of equation (14,
which describes the evolution of the subthreshold membrane
potential V(t) of each neuron:

Cm
dVðtÞ
dt

¼ �gm V tð Þ�VLð Þ� Isyn tð Þ ð14Þ

where IsynðtÞ is the total synaptic current flow into the cell, VL

is the resting potential, Cm is the membrane capacitance, and
gm is the membrane conductance. The extra current term
that is introduced into this equation is as follows:

IAHP ¼ �gAHP½Ca2þ�ðVðtÞ�VKÞ ð15Þ
where VK is the reversal potential of the potassium channel.
Further, each action potential generates a small amount (α) of
calcium influx, so that IAHP is incremented accordingly.
Between spikes the ½Ca2þ� dynamics is modelled as a leaky
integrator with a decay constant τCa. Hence, the calcium
dynamics can be described by following system of equations:

d½Ca2þ�
dt

¼ � ½Ca2þ�
τCa

ð16Þ

If VðtÞ ¼ θ, then ½Ca2þ� ¼ ½Ca2þ� þ α and V¼Vreset, and these are
coupled to the equations of the neural dynamics provided
here and elsewhere (Rolls and Deco, 2010). The ½Ca2þ� is
initially set to be 0 μM, τCa ¼ 300 ms, α¼ 0:002, VK ¼ �80 mV
and gAHP ¼ 0–40 nS. gAHP ¼ 40 nS simulates the effect of high
levels of acetylcholine produced alertness and attention, and
gAHP ¼ 0 nS simulates the effect of low levels of acetylcholine
in normal aging.

A.3. The model parameters used in the simulations of
memory

The fixed parameters of the model are shown in Table 1, and
not only provide information about the values of the para-
meters used in the simulations, but also enable them to be
compared to experimentally measured values.
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