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Figure 7. Histogram of (α − 〈α〉)/σα measured from ξ (r) of the post-
reconstruction mocks, where 〈α〉 is the mean. This quantity is a proxy
for the signal-to-noise ratio of our BAO measurement. We see that this
distribution is close to Gaussian as indicated by the near-zero K-S Dn. The
corresponding p-value indicates that we are 90 per cent certain our values
are drawn from a Gaussian distribution, indicating that the values of σα we
measure from the χ2 distribution are reasonable descriptors of the error on
α measured by fitting ξ (r).

also makes our distance estimates more robust to parameter choices
in our fitting algorithms and reduces the scatter between the distance
estimates from the the correlation function and the power spectrum.
We quantify these improvements further in the following sections.

We next compare the observed scatter in the best-fitting α in
the mocks to the σα estimated in each fit from the χ2(α) curve.
In Fig. 7, we plot a histogram of (α − 〈α〉)/σα from the mocks
and compare the result to the unit normal distribution. We find
excellent agreement; a Kolmogorov–Smirnov (K-S) test finds a
high likelihood that the observed distribution is drawn from a unit
normal. Hence the Gaussian probability distribution obtained from
the χ2 statistic is an appropriate characterization of the error on α.

6 TH E P OW E R SP E C T RU M

6.1 Measuring the power spectrum

The power spectra recovered from the CMASS DR9 data are shown
in Fig. 8 before (left) and after (right) reconstruction. The inset
shows the oscillations in these data, calculated by dividing by a
smooth model (see Section 6.2 for details). The effect of the re-
construction algorithm is clear – the large-scale power is decreased
corresponding to the removal of RSD effects, with the small-scale
power being further reduced by the reduction in non-linear power.
These data represent the most accurate measurement of a redshift-
space galaxy power spectrum ever obtained.

Power spectra were calculated using the Fourier method first de-
veloped by Feldman et al. (1994), as described in Percival et al.
(2007b) and Reid et al. (2010). We work in redshift-space as if ob-
served recession velocities solely arise from the Hubble expansion.
As we focus on measuring angle-averaged baryon acoustic oscilla-
tions, we do not convert from a galaxy density field to a halo density
field as in Reid et al. (2010), or apply corrections for Finger-of-God
effects. Given a weight wi for galaxy i at location r i , the overdensity
field can be written

F (r) = 1
N

[
∑

i

wiδD(r i − r) − 〈w(r)n(r)〉
]

, (31)

where N is a normalization constant

N ≡
{∫

d3r〈w(r)n(r)〉2
}1/2

, (32)

and 〈w(r)n(r)〉 is the expected weighted distribution of galaxies at
location r in the absence of clustering, and n(r) is the galaxy density.
The quantity δD is the standard Dirac-δ function. We do not apply
luminosity-dependent weights (as applied by Percival et al. 2007b
and Reid et al. 2010), as we are only interested in the BAO, and not
the overall shape of the power spectrum.

We chose to model the expected distribution of galaxies using a
random catalogue with points selected at the mean galaxy density

Figure 8. The CMASS DR9 power spectra before (left) and after (right) reconstruction with the best-fitting models overplotted. The vertical dotted lines
show the range of scales fitted (0.02 < k < 0.3 h Mpc−1), and the inset shows the BAO within this k-range, determined by dividing both model and data by
the best-fitting model calculated (including window function convolution) with no BAO. Error bars indicate

√
Cii for the power spectrum and the rms error

calculated from fitting BAO to the 600 mocks in the inset (see Section 4.2 for details).
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The galaxy 
power spectrum:
what is it and 
why it matters



Outlook

Homogeneous cosmology

Density perturbations

The growth of matter perturbations

The power spectrum

Baryonic Acoustic Oscillations,  
Redshift-space Distortions & 
Full-Shape Analysis



The Homogeneous Universe



A metric for the Universe

We assume homogeneity and isotropy: 
the Friedmann-Lemaître-Robertson-Walker metric 

scale factor

ds2 = c2dt2 � a2(t)
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A metric for the Universe

We assume homogeneity and isotropy: 
the Friedmann-Lemaître-Robertson-Walker metric 

scale factor
the Universe is not static!

Einstein’s equations reduce to Friedmann’s equations for the scale factor
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Given the fluid equation of state
⇢ = w p

we can find the dependence of 
the density on the scale

and finally solve for the evolution of the scale factor …



time

time

What fluid?

Matter: baryons and dark matter
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The Perturbed Universe



Cosmological perturbations

T (n̂)

ng(~x)

CMB temperature fluctuations

number density of galaxies

Mathematically, these are random fields

We study the statistical properties of 
cosmological perturbations



Random fields

If         is a random field we can compute correlation functions�(~x)
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The distribution of galaxies in the Universe

The galaxy number density and its 
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The galaxy two-point correlation function

What is the probability of finding two galaxies in 
the volume elements       and       ?    dV1 dV2

dV1
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2
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The galaxy two-point correlation function

What is the probability of finding two galaxies in 
the volume elements       and       ?    dV1 dV2
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dP = dV1dV2dV3hng(~x1)ng(~x2)ng(~x3)i

The galaxy three-point correlation function

Similarly I can ask the probability of finding three 
galaxies in the volume elements       ,        and          dV1 dV2
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the 3-point correlation function 
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Gaussian and non-Gaussian random fields

The statistical properties of a Gaussian 
random field are completely 
characterised by its 2-point correlation 
function.  All higher-order, connected 
correlation functions are vanishing
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Perturbations in the CMB are a very good 
example of Gaussian random field!



Gaussian and non-Gaussian random fields

random fields describing perturbations at low 
redshift, however, are typically non-Gaussian

The Universe evolves from Gaussian initial conditions 
(CMB) to a highly non-Gaussian distribution of 
matter (LSS) due to nonlinear growth of 
perturbations under the effects of gravity  

The statistical properties of a Gaussian 
random field are completely 
characterised by its 2-point correlation 
function.  All higher-order, connected 
correlation functions are vanishing



Ergodic hypothesis and observations

Expectation values, in principle, are to be intended 
as ensemble averages, i.e. averages over many 
“realisations of the Universe” …

… but we only have one Universe!

We have to assume the ergodic hypothesis:
ensemble averages are equal to spatial 
averages
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We should make sure, however, that the 
observed volume correspond to a “fair sample” 
of the Universe



Fourier space

Theoretical predictions for the matter 
correlation functions are performed in 
Fourier space
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The power spectrum

The power spectrum is the 2-point function in Fourier space

h �~k1
�~k2

i = �D(~k1 + ~k2)P (k1)

The power spectrum 
is a measure of the 
amplitude of 
perturbations as a 
function of scale

homogeneity & isotropy
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The power spectrum is in fact the Fourier Transform of the 2-point correlation function
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Figure 7. Histogram of (α − 〈α〉)/σα measured from ξ (r) of the post-
reconstruction mocks, where 〈α〉 is the mean. This quantity is a proxy
for the signal-to-noise ratio of our BAO measurement. We see that this
distribution is close to Gaussian as indicated by the near-zero K-S Dn. The
corresponding p-value indicates that we are 90 per cent certain our values
are drawn from a Gaussian distribution, indicating that the values of σα we
measure from the χ2 distribution are reasonable descriptors of the error on
α measured by fitting ξ (r).

also makes our distance estimates more robust to parameter choices
in our fitting algorithms and reduces the scatter between the distance
estimates from the the correlation function and the power spectrum.
We quantify these improvements further in the following sections.

We next compare the observed scatter in the best-fitting α in
the mocks to the σα estimated in each fit from the χ2(α) curve.
In Fig. 7, we plot a histogram of (α − 〈α〉)/σα from the mocks
and compare the result to the unit normal distribution. We find
excellent agreement; a Kolmogorov–Smirnov (K-S) test finds a
high likelihood that the observed distribution is drawn from a unit
normal. Hence the Gaussian probability distribution obtained from
the χ2 statistic is an appropriate characterization of the error on α.

6 TH E P OW E R SP E C T RU M

6.1 Measuring the power spectrum

The power spectra recovered from the CMASS DR9 data are shown
in Fig. 8 before (left) and after (right) reconstruction. The inset
shows the oscillations in these data, calculated by dividing by a
smooth model (see Section 6.2 for details). The effect of the re-
construction algorithm is clear – the large-scale power is decreased
corresponding to the removal of RSD effects, with the small-scale
power being further reduced by the reduction in non-linear power.
These data represent the most accurate measurement of a redshift-
space galaxy power spectrum ever obtained.

Power spectra were calculated using the Fourier method first de-
veloped by Feldman et al. (1994), as described in Percival et al.
(2007b) and Reid et al. (2010). We work in redshift-space as if ob-
served recession velocities solely arise from the Hubble expansion.
As we focus on measuring angle-averaged baryon acoustic oscilla-
tions, we do not convert from a galaxy density field to a halo density
field as in Reid et al. (2010), or apply corrections for Finger-of-God
effects. Given a weight wi for galaxy i at location r i , the overdensity
field can be written

F (r) = 1
N

[
∑

i

wiδD(r i − r) − 〈w(r)n(r)〉
]

, (31)

where N is a normalization constant

N ≡
{∫

d3r〈w(r)n(r)〉2
}1/2

, (32)

and 〈w(r)n(r)〉 is the expected weighted distribution of galaxies at
location r in the absence of clustering, and n(r) is the galaxy density.
The quantity δD is the standard Dirac-δ function. We do not apply
luminosity-dependent weights (as applied by Percival et al. 2007b
and Reid et al. 2010), as we are only interested in the BAO, and not
the overall shape of the power spectrum.

We chose to model the expected distribution of galaxies using a
random catalogue with points selected at the mean galaxy density

Figure 8. The CMASS DR9 power spectra before (left) and after (right) reconstruction with the best-fitting models overplotted. The vertical dotted lines
show the range of scales fitted (0.02 < k < 0.3 h Mpc−1), and the inset shows the BAO within this k-range, determined by dividing both model and data by
the best-fitting model calculated (including window function convolution) with no BAO. Error bars indicate

√
Cii for the power spectrum and the rms error

calculated from fitting BAO to the 600 mocks in the inset (see Section 4.2 for details).
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Goal: 
predict the correlation 
functions describing the 
statistical properties of the 
Large-Scale Structure

for this we study the evolution of

We need:
1.   Equations of motion
2.   Initial conditions

�~k(t)



Evolution of matter perturbation:
Initial Conditions



The “initial” matter power spectrum

Inflation predicts a (nearly) scale-invariant initial power spectrum  
for perturbations in the gravitational potential

P�(k) '
C

k3
��(k) ⌘ 4⇡k3P�(k) ' constant

The variance of perturbations in the gravitational 
potential receives equal contributions from 
perturbations at all scales 
(Harrison-Zeldovich power spectrum)

Departures from this simple prediction provide constraints on inflation 
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Inflation predicts a (nearly) scale-invariant initial power spectrum  
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In terms of 
matter 
perturbations:

Poisson equation
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Evolution of matter perturbations:
Equations of motion



Evolution of matter perturbations

In first approximation we can study the evolution of matter perturbations 
assuming:

1.  All matter is cold (ignore the effects of baryons & neutrinos)

2. Newtonian approximation:
                                   scales much smaller than the horizon
                          velocities much smaller than the speed of light

3. Matter domination (ignore effects of dark energy at late times) 

k � aH(a)
v ⌧ c



Fluid equations

Assuming CDM as ideal fluid we need the following equations:

@⇢

@t
+ ~rr · (⇢~v) = 0 continuity equation

(conservation of mass)

Euler’s equation
(conservation of momentum)
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� ~rr�tot

pressure term
(vanishing for CDM)

force

Single-stream 
approximation

~v(~r, t)
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Fluid equations for perturbations

Assuming CDM as ideal fluid we need the following equations:

continuity equation
(conservation of mass)

Euler’s equation
(conservation of momentum)

@�

@⌧
+ ~r · [(1 + �) ~u] = 0

@~u

@⌧
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Poisson’s equationr
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3
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Now written for the perturbations:

⇢(~x, ⌧) = ⇢̄(⌧)[1 + �(~x, ⌧)] matter perturbations�(~x, ⌧)

Hubble flow

~v(~x, ⌧) = H(⌧) ~x(⌧) + ~u(~x, ⌧) peculiar velocities~u(~x, ⌧)

Approximated!



Linear solution

Linearising and combining the equations we obtain
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Linear solution

Linearising and combining the equations we obtain
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Linear vs Nonlinear evolution

��-� ��-� ��� �

��-�

��-�

��-�

���

�

��

���

� [����-�]

�(
�)

z = 10

h �~k1
�~k2

i = �D(~k1 + ~k2)P (k1)

PL(k, a) = D2(a)P0(k)

D2(a)



Linear vs Nonlinear evolution

��-� ��-� ��� �

��-�

��-�

��-�

���

�

��

���

� [����-�]

�(
�)

��-� ��-� ��� �

��-�

��-�

��-�

���

�

��

���

� [����-�]

�(
�)

z = 10

z = 2

h �~k1
�~k2

i = �D(~k1 + ~k2)P (k1)

PL(k, a) = D2(a)P0(k)

D2(a)



Linear vs Nonlinear evolution
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Linear vs Nonlinear evolution
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Linear vs Nonlinear evolution

��-� ��-� ��� �

��-�

��-�

��-�

���

�

��

���

� [����-�]

�(
�)

��-� ��-� ��� �

��-�

��-�

��-�

���

�

��

���

� [����-�]

�(
�)

��-� ��-� ��� �

��-�

��-�

��-�

���

�

��

���

� [����-�]

�(
�)

��-� ��-� ��� �

��-�

��-�

��-�

���

�

��

���

� [����-�]

�(
�)

��-� ��-� ��� �

��-�

��-�

��-�

���

�

��

���

� [����-�]

�(
�)

z = 10

z = 2
z = 1
z = 0.5
z = 0

h �~k1
�~k2

i = �D(~k1 + ~k2)P (k1)

PL(k, a) = D2(a)P0(k)

D2(a)



Linear vs Nonlinear evolution

��-� ��-� ��� �

��-�

��-�

��-�

���

�

��

���

� [����-�]

�(
�)

��-� ��-� ��� �

��-�

��-�

��-�

���

�

��

���

� [����-�]

�(
�)

��-� ��-� ��� �

��-�

��-�

��-�

���

�

��

���

� [����-�]

�(
�)

��-� ��-� ��� �

��-�

��-�

��-�

���

�

��

���

� [����-�]

�(
�)

��-� ��-� ��� �

��-�

��-�

��-�

���

�

��

���

� [����-�]

�(
�)

��-� ��-� ��� �

��-�

��-�

��-�

���

�

��

���

� [����-�]

�(
�)

z = 10

z = 2
z = 1
z = 0.5
z = 0

PNL(k) = PL(k) +�PNL(k)

nonlinear 
corrections!



Linear vs Nonlinear evolution

��-� ��-� ��� �

��-�

��-�

��-�

���

�

��

���

� [����-�]

�(
�)

��-� ��-� ��� �

��-�

��-�

��-�

���

�

��

���

� [����-�]

�(
�)

��-� ��-� ��� �

��-�

��-�

��-�

���

�

��

���

� [����-�]

�(
�)

��-� ��-� ��� �

��-�

��-�

��-�

���

�

��

���

� [����-�]

�(
�)

��-� ��-� ��� �

��-�

��-�

��-�

���

�

��

���

� [����-�]

�(
�)

��-� ��-� ��� �

��-�

��-�

��-�

���

�

��

���

� [����-�]

�(
�)

��-� ��-� ��� �

��-�

��-�

��-�

���

�

��

���

� [����-�]

�(
�)

z = 10

z = 2
z = 1
z = 0.5
z = 0

PNL(k) = PL(k) +�PNL(k)

nonlinear 
corrections!



Linear vs Nonlinear evolution

��-� ��-� ��� �

��-�

��-�

��-�

���

�

��

���

� [����-�]

�(
�)

��-� ��-� ��� �

��-�

��-�

��-�

���

�

��

���

� [����-�]

�(
�)

��-� ��-� ��� �

��-�

��-�

��-�

���

�

��

���

� [����-�]

�(
�)

��-� ��-� ��� �

��-�

��-�

��-�

���

�

��

���

� [����-�]

�(
�)

��-� ��-� ��� �

��-�

��-�

��-�

���

�

��

���

� [����-�]

�(
�)

��-� ��-� ��� �

��-�

��-�

��-�

���

�

��

���

� [����-�]

�(
�)

��-� ��-� ��� �

��-�

��-�

��-�

���

�

��

���

� [����-�]

�(
�)

��-� ��-� ��� �

��-�

��-�

��-�

���

�

��

���

� [����-�]

�(
�)

z = 10

z = 2
z = 1
z = 0.5
z = 0

PNL(k) = PL(k) +�PNL(k)

nonlinear 
corrections!



Linear vs Nonlinear evolution

��-� ��-� ��� �

��-�

��-�

��-�

���

�

��

���

� [����-�]

�(
�)

��-� ��-� ��� �

��-�

��-�

��-�

���

�

��

���

� [����-�]

�(
�)

��-� ��-� ��� �

��-�

��-�

��-�

���

�

��

���

� [����-�]

�(
�)

��-� ��-� ��� �

��-�

��-�

��-�

���

�

��

���

� [����-�]

�(
�)

��-� ��-� ��� �

��-�

��-�

��-�

���

�

��

���

� [����-�]

�(
�)

��-� ��-� ��� �

��-�

��-�

��-�

���

�

��

���

� [����-�]

�(
�)

��-� ��-� ��� �

��-�

��-�

��-�

���

�

��

���

� [����-�]

�(
�)

��-� ��-� ��� �

��-�

��-�

��-�

���

�

��

���

� [����-�]

�(
�)

��-� ��-� ��� �

��-�

��-�

��-�

���

�

��

���

� [����-�]

�(
�)

z = 10

z = 2
z = 1
z = 0.5
z = 0

PNL(k) = PL(k) +�PNL(k)

nonlinear 
corrections!



Linear vs Nonlinear evolution

��-� ��-� ��� �

��-�

��-�

��-�

���

�

��

���

� [����-�]

�(
�)

��-� ��-� ��� �

��-�

��-�

��-�

���

�

��

���

� [����-�]

�(
�)

��-� ��-� ��� �

��-�

��-�

��-�

���

�

��

���

� [����-�]

�(
�)

��-� ��-� ��� �

��-�

��-�

��-�

���

�

��

���

� [����-�]

�(
�)

��-� ��-� ��� �

��-�

��-�

��-�

���

�

��

���

� [����-�]

�(
�)

��-� ��-� ��� �

��-�

��-�

��-�

���

�

��

���

� [����-�]

�(
�)

��-� ��-� ��� �

��-�

��-�

��-�

���

�

��

���

� [����-�]

�(
�)

��-� ��-� ��� �

��-�

��-�

��-�

���

�

��

���

� [����-�]

�(
�)

��-� ��-� ��� �

��-�

��-�

��-�

���

�

��

���

� [����-�]

�(
�)

��-� ��-� ��� �

��-�

��-�

��-�

���

�

��

���

� [����-�]

�(
�)

z = 10

z = 2
z = 1
z = 0.5
z = 0

PNL(k) = PL(k) +�PNL(k)

nonlinear 
corrections!



The growth of matter perturbations
lin

ea
r 

gr
ow

th
, D

(z
)

0.01 0.1 1 10

0.01

1

100

k @hMpc-1D

D
HkL

N-body
nonlinear fit
linear

z = 2

z = 0
�(k) = 4⇡k3P (k)



The growth of matter perturbations
lin

ea
r 

gr
ow

th
, D

(z
)

0.01 0.1 1 10

0.01

1

100

k @hMpc-1D

D
HkL

N-body
nonlinear fit
linear

z = 2

z = 0
�(k) = 4⇡k3P (k)Linear & mildly nonlinear regime:

Analytical, Perturbation Theory

tions alone, and construct a physical model based on the
coherent infall of pairs to understand their origin.

This state of affairs is perhaps not too surprising given
that the effects involved are small, and require great accu-
racy from analytic and numerical methods. In this paper we
consider this issue by using renormalized perturbation
theory (RPT [18,19]), a new approach to follow nonlinear
clustering that includes in a systematic way all nonlinear
effects in the fluid approximation around a given scale
[20]. Here we concentrate on fundamental questions such
as (1) can nonlinear effects generate shifts in indicators of
the acoustic scale large enough to bias determinations of
cosmological parameters, and (2) if so, what physics is
responsible for this? Is it related to large-scale nonlineari-
ties that we can hope to model accurately, or more com-
plicated physics related to virialized dark matter halos? We
shall see that the answer to the first question is ‘‘yes,’’ and
the answer to the second question involves large-scale
physics, which we discuss in detail. Our discussion em-
phasizes the shifts generated by mode coupling, which
constitutes a new result (see also [16]). In [19] we have
already discussed in detail the effects of random motions in
terms of large-scale physics; we briefly discuss these here
as well in more accessible terms. That large-scale random
motions are responsible for the damping of the linear
power spectrum has also been recognized in [8,13,21].

In the present paper we concentrate on predictions from
RPT for the power spectrum and the two-point correlation
function. A detailed account of the technicalities involved
in calculating two-point statistics in RPT and their com-
parison with numerical simulations is left for a separate
publication [22]. Here we present the main results regard-
ing BAO for dark matter in real space and discuss how RPT
can shed some light on practical parametrizations of these
nonlinear effects in a more general situation when redshift
distortions and galaxy bias are also present. No familiarity
with RPT is assumed; the main ideas behind RPT and
results on two-point statistics are explained in simple terms
in the following section, while the analytic expressions for
the power spectrum are presented in the Appendix.

II. RPT AND TWO-POINT STATISTICS

A. Basics of RPT

Standard perturbation theory (PT, see [23] for a review)
is an expansion of the equations of motion around their
linear solution, assuming fluctuations are small.
Schematically, for the power spectrum this expansion reads

 P!k; z" # D2
$!z"P0!k" $ P1 loop!k; z" $ P2 loop!k; z" $ . . .

(1)

where D$!z" is the growth factor at redshift z; P0!k" is the
initial power spectrum (at high redshift) so that linear
evolution reads Plin!k; z" # %D$!z"&2P0!k". In Eq. (1),
P1 loop 'O!Plin!lin", P2 loop 'O!Plin!

2
lin", and so on,

where !lin ( 4!k3Plin measures the amplitude of fluctua-
tions at scale k in linear theory. For scales approaching the
nonlinear regime where !lin * 1, truncation at any finite
order in PT is not meaningful, as neglected higher-order
contributions are important.

In RPT [18], the main idea is to get around this limita-
tion of PT, by making a resummation of an infinite subset
of contributions to the PT expansion. As a result of this
process of resummation, where terms of different order
have been grouped together into physical objects, what
remains is a new series expansion which is not a perturba-
tive expansion in the amplitude of fluctuations and, most
importantly, exhibits a very different behavior: truncation
at finite order in RPT does take into account all nonline-
arities from the largest scales down to a given scale; the
impact of smaller scales described by the neglected terms
is highly suppressed. One of the main insights that follows
from RPT is that, if we write the growth factor as

 D$!z" #
h"lin!k; z""0!k0"i
h"0!k""0!k0"i ; (2)

where " denotes the density contrast, and "lin!k; z" #
D$!z""0!k" is linear evolution (with D$ ( 1 at the initial
condition), then a whole set of nonlinear contributions to
Eq. (1) (or any correlation function) effectively ‘‘renormal-
ize’’ the growth factor to the following, fully nonlinear
quantity:

 D$!z" ! G!k; z" # h"!k; z""0!k0"i
h"0!k""0!k0"i ; (3)

where "!k; z" is the fully nonlinear density contrast. The
function G!k; z" is known as the propagator, which can be
thought of as a measure of the memory of initial condi-
tions, since it gives the time ‘‘propagation’’ of the cross
correlation between initial and final density contrasts,
h"!k; z""0!k0"i # G!k; z"h"0!k""0!k0"i. Note that this
property means that all the terms in Eq. (1) that are
proportional to P0 (including those in the loop contribu-
tions) are resummed into G2P0, whereas in the remaining
loop terms the time dependence is dictated by the propa-
gator instead of the growth factor, which essentially means
using Eq. (3) to replace the linear propagation in between
nonlinear interactions that make up the loop contributions
[24].

The asymptotics of the propagator are easy to under-
stand: at large scales, linear perturbation theory becomes a
good approximation and thus

 G!0; z" # D$!z": (4)

On the other hand, at small scales where nonlinear effects
are dominant the cross correlation must be driven to zero,
as the final density field resembles very little what it was at
the beginning. Thus, we expect on physical grounds that

 G!k; z" ! 0 as k ! 1: (5)
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In RPT [18], the main idea is to get around this limita-
tion of PT, by making a resummation of an infinite subset
of contributions to the PT expansion. As a result of this
process of resummation, where terms of different order
have been grouped together into physical objects, what
remains is a new series expansion which is not a perturba-
tive expansion in the amplitude of fluctuations and, most
importantly, exhibits a very different behavior: truncation
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from RPT is that, if we write the growth factor as

 D$!z" #
h"lin!k; z""0!k0"i
h"0!k""0!k0"i ; (2)

where " denotes the density contrast, and "lin!k; z" #
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where "!k; z" is the fully nonlinear density contrast. The
function G!k; z" is known as the propagator, which can be
thought of as a measure of the memory of initial condi-
tions, since it gives the time ‘‘propagation’’ of the cross
correlation between initial and final density contrasts,
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property means that all the terms in Eq. (1) that are
proportional to P0 (including those in the loop contribu-
tions) are resummed into G2P0, whereas in the remaining
loop terms the time dependence is dictated by the propa-
gator instead of the growth factor, which essentially means
using Eq. (3) to replace the linear propagation in between
nonlinear interactions that make up the loop contributions
[24].

The asymptotics of the propagator are easy to under-
stand: at large scales, linear perturbation theory becomes a
good approximation and thus

 G!0; z" # D$!z": (4)

On the other hand, at small scales where nonlinear effects
are dominant the cross correlation must be driven to zero,
as the final density field resembles very little what it was at
the beginning. Thus, we expect on physical grounds that
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�(k) ⌘ 4⇡k3P (k)



  Galaxies

[Orsi et al. (2009)]

Hα versus H-band selection in future redshift surveys 9

Figure 8. The spatial distribution of galaxies and dark matter in the Bow06(r)model at z = 1. Dark matter is shown in grey, with the densest regions shown
with the brightest shading. Galaxies selected by their Hα emission with log(FHα[erg s−1 cm−2]) > −16.00 and and EWobs > 100Å are shown in red
in the left-hand panels. Galaxies brighter than HAB = 22 are shown in green in the right-hand panels. Each row shows the same region from the Millennium
simulation. The first row shows a slice of 200h−1Mpc on a side and 10h−1Mpc deep. The second row shows a zoom into a region of 50h−1Mpc on a side
and 10h−1Mpc deep, which corresponds to the white square drawn in the first row images. Note that all of the galaxies which pass the selection criteria are
shown in these plots.

tion. First, a form must be adopted for the distribution of sources
in redshift. Second, some papers quote results in terms of proper
separation whereas others report in comoving units. Lastly, an evo-
lutionary form is sometimes assumed for the correlation function
(Groth & Peebles 1977). In this case, the results obtained for the
correlation length depend upon the choice of evolutionary model.

Estimates of the correlation length of Hα emitters are avail-
able at a small number of redshifts from narrow band sur-
veys, as shown in Fig. 9 (Morioka et al. 2008; Shioya et al. 2008;
Nakajima et al. 2008; Geach et al. 2008). These surveys are small
and sampling variance is not always included in the error bar quoted
on the correlation length (see Orsi et al. 2008 for an illustration of
how sampling variance can affect measurements of the correlation
function made from small fields). The models are in reasonable
agreement with the estimate by Geach et al. (2008) at z = 2.2, but
overpredict the low redshift measurements. The z = 0.24 measure-
ments are particularly challenging to reproduce. The correlation

length of the dark matter in the ΛCDM model is around 5h−1Mpc
at this redshift, so the z = 0.24 result implies an effective bias of
b < 0.5. Gao & White (2007) show that dark matter haloes at the
resolution limit of the Millennium Simulation,M ∼ 1010h−1M",
do not reach this level of bias, unless the 20% of the youngest
haloes of this mass are selected. In the Bow06(r) model, the Hα
emitters populate a range of halo masses, with a spread in forma-
tion times, and so the effective bias is closer to unity. Another possi-
ble explanation for the discrepancy is that the observational sample
could be contaminated by objects which are not Hα emitters and
which dilute the clustering signal.

The bottom panel of Fig. 9 shows the correlation length evo-
lution for different H-band selections, compared to observational
estimates from Firth et al. (2002). Note that the samples analysed
by Firth et al. are significantly brighter than the typical samples
considered in this paper (HAB = 20 versus HAB = 22). Firth
et al. use photometric redshifts to isolate galaxies in redshift bins



If galaxies form in regions of large 
dark matter density, I can at least 
expect a direct dependence of the 
galaxy overdensity on the 
matter overdensity
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ng(x)� n̄g

n̄g
= f [�(x)]local galaxy bias

A very simple assumption …



�g(x) ⌘
ng(x)� n̄g

n̄g
= f [�(x)]

A very simple assumption …

  Local galaxy bias

At large scales, we can expand it in 
a Taylor series

linear bias nonlinear bias corrections

⇠g(x) ' b2⇠(x)

Pg(k) ' b2P (k)

�g(x) = b �(x) +
1

2
b2 �

2(x) + . . .

h�g�gi = b2 h��i

local galaxy bias

At large scales, we expect a 
very simple, linear relation 
between galaxy and matter 
correlation functions the value of the bias 

parameter depends 
on the galaxy type



  Non-linear bias and non-linear gravitational instability 

at small scales, non-
linear bias is degenerate 
with non-linear 
corrections to the matter 
power spectrum!

at small scales we also 
have better statistics 
(smaller error bars)



Baryonic Acoustic Oscillations
in the galaxy distribution



BarBaryonic Acoustic Oscillations

This is corresponds a 
“spherical ring” 
around a large 
overdensity 

Baryon Oscillation 
Spectroscopic Survey
BOSS

1.5 million galaxies
up to z = 0.7

Anderson et al. (2012)



A standard ruler

SDSS LRG sample:
first detection of the BAO peak
Eisenstein et al. (2005)

we know the size of 
the “oscillation ring” 
very well from CMB 
observations

!8 to 1.0 for the halofit calculation changes the corrections at
r > 10 h!1 Mpc by less than 2%.

We stress that while galaxy clustering bias does routinely
affect large-scale clustering (obviously so in the LRG sample,
with bias b " 2), it is very implausible that it would mimic the
acoustic signature, as this would require galaxy formation phys-
ics to have a strong preferred scale at 100 h!1 Mpc. Galaxy for-
mation prescriptions that involve only small-scale physics, such
as that involving dark matter halos or even moderate-scale radia-
tion transport, necessarily produce smooth effects on large scales
(Coles 1993; Fry&Gaztanaga 1993; Scherrer &Weinberg 1998).
Even long-range effects that might be invoked would need to
affect 100 h!1 Mpc scales differently from 80 or 130. Our detec-
tion of the acoustic peak cannot reasonably be explained as an
illusion of galaxy formation physics.

4.3. Measurements of the Acoustic and Equality Scales

The observed LRG correlation function could differ from that
of the correct cosmological model in amplitude, because of
clustering bias and uncertain growth functions, and in scale, be-
cause we may have used an incorrect cosmology in converting
from redshift into distance. Our goal is to use the comparison
between observations and theory to infer the correct distance
scale.

Note that in principle a change in the cosmological model
would change the distances differently for different redshifts, re-
quiring us to recompute the correlation function for each model
choice. In practice, the changes are small enough and the redshifts
close enough that we treat the variation as a single dilation in scale
(similar to Blake & Glazebrook 2003). This would be a superb
approximation at low redshift, where all distances behave inversely
with the Hubble constant. By z ¼ 0:35, the effects of cosmolog-
ical acceleration are beginning to enter. However, we have checked
explicitly that our single-scale approximation is good enough
for !m between 0.2 and 0.4. Relative to our fiducial scale at
z ¼ 0:35, the change in distance across the redshift range 0:16 <
z < 0:47 is only 3% peak to peak for!m ¼ 0:2 compared to 0.3,
and even these variations largely cancel around the z ¼ 0:35 mid-
point where we will quote our cosmological constraints.

The other error in our one scale parameter approximation is to
treat the line-of-sight dilation equivalently to the transverse di-
lation. In truth, the Hubble parameter changes differently from
the angular diameter distance (the Alcock-Paczyński [1979] ef-
fect). For small deviations from !m ¼ 0:3 and !" ¼ 0:7, the
change in the Hubble parameter at z ¼ 0:35 is about half that of
the angular diameter distance. We model this by treating the di-
lation scale as the cube root of the product of the radial dilation
times the square of the transverse dilation. In other words, we
define
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where H(z) is the Hubble parameter and DM(z) is the comoving
angular diameter distance. As the typical redshift of the sample is
z ¼ 0:35, we quote our result for the dilation scale as DV(0.35).
For our fiducial cosmology of !m ¼ 0:3, !" ¼ 0:7, and h ¼
0:7, DV (0:35) ¼ 1334 Mpc.

We compute parameter constraints by computing "2 (using
the full covariance matrix) for a grid of cosmological models. In
addition to cosmological parameters of !mh

2, !bh
2, and n, we

include the distance scaleDV(0.35) of the LRG sample and mar-
ginalize over the amplitude of the correlation function. Param-

eters such as h,!m,!K, and w(z) are subsumed withinDV(0.35).
We assume h ¼ 0:7 when computing the scale at which to apply
the nonlinear corrections; having set those corrections, we then
dilate the scale of the final correlation function.

The WMAP data (Bennett et al. 2003), as well as combina-
tions of WMAP with large-scale structure (Spergel et al. 2003;
Tegmark et al. 2004b), the Ly# forest (McDonald et al. 2004;
Seljak et al. 2005), and big bang nucleosynthesis (e.g., Burles
et al. 2001; Coc et al. 2004), constrain !bh

2 and n rather well,
and so to begin, we hold these parameters fixed (at 0.024 and
0.98, respectively), and consider only variations in !mh

2. In
practice, the sound horizon varies only as (!bh

2)!0.08, which
means that the tight constraints fromWMAP (Spergel et al. 2003)
and big bang nucleosynthesis (Burles et al. 2001) make the
uncertainties in the baryon density negligible.

Figure 6 shows "2 as a function of the dilation for three dif-
ferent values of !mh

2, 0.11, 0.13, and 0.15. Scanning across all
!mh

2, the best-fit "2 is 16.1 on 17 degrees of freedom [20 data
points and three parameters: !mh

2, DV(0.35), and the amplitude].
Figure 7 shows the contours of equal "2 in !mh

2 and DV(0.35),
corresponding to 1 ! up to 5 ! for a two-dimensional Gauss-
ian likelihood function. Adopting a likelihood proportional to
exp(!"2/2), we project the axes to find !mh

2 ¼ 0:130 & 0:010
and DV (0:35) ¼ 1370 & 64 Mpc (4.7%), where these are 1 !
errors.

Figure 7 also contains two lines that depict the two physical
scales. The solid line is that of constant !mh

2DV , which would
place the (matter-radiation) equality scale at a constant apparent
location. This would be the degeneracy direction for a pure CDM
cosmology and would be a line of constant # ¼ !mh were the
LRG sample at lower redshift. The dashed line holds constant the

Fig. 6.—The "2 values of the models as a function of the dilation of the scale
of the correlation function. This corresponds to altering DV (0.35) relative to the
baseline cosmology of! ¼ 0:3,!" ¼ 0:7, and h ¼ 0:7. Each line (save the line
with open squares) in the plot is a different value of !mh

2, 0.11, 0.13, and 0.15
from left to right; !bh

2 ¼ 0:024 and n ¼ 0:98 are used in all cases. The am-
plitude of the model has been marginalized over. The best-fit "2 is 16.1 on
17 degrees of freedom, consistent with expectations. The line with open squares
shows the pure CDMmodel with!mh

2 ¼ 0:10; it has a best "2 of 27.8, which is
rejected at 3.4 !. Note that this curve is also much broader, indicating that the
lack of an acoustic peak makes the scale less constrainable. [See the electronic
edition of the Journal for a color version of this figure.]

DETECTION OF BARYON ACOUSTIC PEAK 567No. 2, 2005

the galaxy 2-point function 
provides an “isotropic” 
measurement of the feature 
(if we get the cosmology right!)



A standard ruler

�z

c�z

H(z)

comoving distance along the line-of-sight

� =

Z to

te

dt
0

a(t0)
=

Z ao

ae

da
0

H(a0)
=

Z z

0

dz
0

H(z0)

�� = �xs

!8 to 1.0 for the halofit calculation changes the corrections at
r > 10 h!1 Mpc by less than 2%.

We stress that while galaxy clustering bias does routinely
affect large-scale clustering (obviously so in the LRG sample,
with bias b " 2), it is very implausible that it would mimic the
acoustic signature, as this would require galaxy formation phys-
ics to have a strong preferred scale at 100 h!1 Mpc. Galaxy for-
mation prescriptions that involve only small-scale physics, such
as that involving dark matter halos or even moderate-scale radia-
tion transport, necessarily produce smooth effects on large scales
(Coles 1993; Fry&Gaztanaga 1993; Scherrer &Weinberg 1998).
Even long-range effects that might be invoked would need to
affect 100 h!1 Mpc scales differently from 80 or 130. Our detec-
tion of the acoustic peak cannot reasonably be explained as an
illusion of galaxy formation physics.

4.3. Measurements of the Acoustic and Equality Scales

The observed LRG correlation function could differ from that
of the correct cosmological model in amplitude, because of
clustering bias and uncertain growth functions, and in scale, be-
cause we may have used an incorrect cosmology in converting
from redshift into distance. Our goal is to use the comparison
between observations and theory to infer the correct distance
scale.

Note that in principle a change in the cosmological model
would change the distances differently for different redshifts, re-
quiring us to recompute the correlation function for each model
choice. In practice, the changes are small enough and the redshifts
close enough that we treat the variation as a single dilation in scale
(similar to Blake & Glazebrook 2003). This would be a superb
approximation at low redshift, where all distances behave inversely
with the Hubble constant. By z ¼ 0:35, the effects of cosmolog-
ical acceleration are beginning to enter. However, we have checked
explicitly that our single-scale approximation is good enough
for !m between 0.2 and 0.4. Relative to our fiducial scale at
z ¼ 0:35, the change in distance across the redshift range 0:16 <
z < 0:47 is only 3% peak to peak for!m ¼ 0:2 compared to 0.3,
and even these variations largely cancel around the z ¼ 0:35 mid-
point where we will quote our cosmological constraints.

The other error in our one scale parameter approximation is to
treat the line-of-sight dilation equivalently to the transverse di-
lation. In truth, the Hubble parameter changes differently from
the angular diameter distance (the Alcock-Paczyński [1979] ef-
fect). For small deviations from !m ¼ 0:3 and !" ¼ 0:7, the
change in the Hubble parameter at z ¼ 0:35 is about half that of
the angular diameter distance. We model this by treating the di-
lation scale as the cube root of the product of the radial dilation
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dilate the scale of the final correlation function.

The WMAP data (Bennett et al. 2003), as well as combina-
tions of WMAP with large-scale structure (Spergel et al. 2003;
Tegmark et al. 2004b), the Ly# forest (McDonald et al. 2004;
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et al. 2001; Coc et al. 2004), constrain !bh

2 and n rather well,
and so to begin, we hold these parameters fixed (at 0.024 and
0.98, respectively), and consider only variations in !mh

2. In
practice, the sound horizon varies only as (!bh

2)!0.08, which
means that the tight constraints fromWMAP (Spergel et al. 2003)
and big bang nucleosynthesis (Burles et al. 2001) make the
uncertainties in the baryon density negligible.
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corresponding to 1 ! up to 5 ! for a two-dimensional Gauss-
ian likelihood function. Adopting a likelihood proportional to
exp(!"2/2), we project the axes to find !mh

2 ¼ 0:130 & 0:010
and DV (0:35) ¼ 1370 & 64 Mpc (4.7%), where these are 1 !
errors.

Figure 7 also contains two lines that depict the two physical
scales. The solid line is that of constant !mh

2DV , which would
place the (matter-radiation) equality scale at a constant apparent
location. This would be the degeneracy direction for a pure CDM
cosmology and would be a line of constant # ¼ !mh were the
LRG sample at lower redshift. The dashed line holds constant the

Fig. 6.—The "2 values of the models as a function of the dilation of the scale
of the correlation function. This corresponds to altering DV (0.35) relative to the
baseline cosmology of! ¼ 0:3,!" ¼ 0:7, and h ¼ 0:7. Each line (save the line
with open squares) in the plot is a different value of !mh

2, 0.11, 0.13, and 0.15
from left to right; !bh

2 ¼ 0:024 and n ¼ 0:98 are used in all cases. The am-
plitude of the model has been marginalized over. The best-fit "2 is 16.1 on
17 degrees of freedom, consistent with expectations. The line with open squares
shows the pure CDMmodel with!mh

2 ¼ 0:10; it has a best "2 of 27.8, which is
rejected at 3.4 !. Note that this curve is also much broader, indicating that the
lack of an acoustic peak makes the scale less constrainable. [See the electronic
edition of the Journal for a color version of this figure.]
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Figure 17. Parameter constraints for the owCDM (left) and w0waCDM (right) cosmological models, comparing the results from BAO and BAO+FS to those
with JLA SNe. One sees that the galaxy clustering results are particularly strong in the !K–w space and are comparable to the SNe in the w0–wa space.

the dark energy was within "w ∼ 10−1 of a cosmological constant
at some epoch in the fairly recent past, but our knowledge of w(z)
remains limited.

Using our constraints to compute the Dark Energy Task Force
Figure of Merit (Albrecht et al. 2006), we find a result of 32.6 with
SNe and 22.9 without SNe for [σ (w(zp))σ (wa)]−1. For comparison,
the BAO-only analysis of Cuesta et al. (2016b) found a Figure of
Merit of 24.3 with Planck+BAO+SN and only 8.3 without SNe.
These comparisons show that the present analysis with three redshift
bins and including the FS fits has notably improved the Figure of
Merit. If we construct the Figure of Merit while assuming flatness
(and thereby different from the Dark Energy Task Force), we find
75.4 with SNe and 44.6 without.

Our results are consistent with the distance–redshift relation from
the JLA SNe. For example, adding the SNe does not significantly
alter the best-fitting model parameters. But the errors on a constant
w do continue to improve, to 0.04 in both the flat case and in the joint
fit with curvature. Fig. 17 shows a comparison for both owCDM
and w0waCDM for galaxy clustering and SN results separately as
well as the combination. We see that in owCDM, the dark energy
constraints even without SNe are now very tight, but the SN results
are consistent and decrease the errors. It is notable that the two
data sets have sharply different degeneracy directions and therefore
will continue to be good partners in our cosmological constraints.
For w0waCDM, the two data sets are of more comparable power,
again with different degeneracy directions, so that the combination
is substantially tighter.

9.3 Cosmological parameter results: dark radiation

We next consider models with variations in the relativistic energy
density. These are parametrized by Neff, the effective number of neu-
trino species. Any new density above the 3.046 expected from stan-
dard model neutrino decoupling (Mangano et al. 2005) is assumed
to be a massless species, sometimes referred to as ‘dark radiation’
(e.g. Archidiacono et al. 2011; Calabrese et al. 2011), which may
or may not result from the neutrino sector (Steigman, Schramm &
Gunn 1997; Seljak, Slosar & McDonald 2006; Ichikawa, Kawasaki
& Takahashi 2007; Mangano et al. 2007). Such models are im-

portant in BAO studies because the extra density in the early
Universe results in a higher Hubble parameter before recom-
bination, which in turn produces a smaller sound horizon rd.
Since the BAO method actually measures the ratio of distance to
the sound horizon, this results in smaller inferred distances and
larger low-redshift Hubble parameters (Eisenstein & White 2004;
Archidiacono et al. 2011; Mehta et al. 2012; Anderson et al. 2014b;
Aubourg et al. 2015). This is of substantial current interest be-
cause several high-precision direct measurements of H0 yield val-
ues about 10 per cent higher than that inferred from combina-
tions of Planck and BOSS BAO data (Riess et al. 2011, 2016;
Freedman et al. 2012).

However, the Planck 2016 results appear to largely close the
window for altering the sound horizon enough to reconcile the
BAO+SN ‘inverse distance ladder’ H0 with these higher direct
measurements. (Planck Collaboration XIII 2016). The physics un-
derlying this constraint is that Silk damping (Silk 1968) is a dif-
fusion process whose length-scale depends on the square root of
time, while the sound horizon depends linearly on time. The am-
plitude of the small-angle CMB fluctuations, when standardized by
the angular acoustic scale, thereby measures the Hubble parameter
at recombination and thus constrains Neff.

Table 11 shows our parameter results for models with free Neff,
for several model and data combinations. Like Planck Collaboration
XIII (2016), our chains for $CDM find tight constraints, Neff =
3.03 ± 0.18. As this central value matches that of the stan-
dard model, the central values of !m and H0 move negligibly;
however, the error on H0 with free Neff increases from 0.5 to
1.2 km s−1 Mpc−1. The error on !m increases only from 0.006 to
0.007, indicating that Neff is primarily degenerate with H0, not !m.
Fig. 18 shows the covariance between H0 and Neff. If we add Neff as
a degree of freedom to the owCDM model, then constraints on !K

and w are not substantially affected, as one can see by comparing
the owCDM lines in Tables 10 and 11. If SNe are added as an obser-
vational constraint, then owCDM constraints on Neff and H0 remain
tight, with Neff = 3.02 ± 0.21 and H0 = 67.8 ± 1.2 km s−1 Mpc−1

(see Fig. 18, right).
Riess et al. (2016) present a measurement of H0 of 73.2 ±

1.8 km s−1 Mpc−1 (2.4 per cent), while Freedman et al. (2012)
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difference, the forecasted improvement in the statistical power of
BOSS is 2.5 per cent and our attempts to employ such a weighting in
mock samples were unable to obtain even this improvement. There-
fore, we have chosen to not introduce this additional complexity
into our analysis.

We define the overall redshift range to consider for BOSS galaxies
as 0.2 < z < 0.75. Below z = 0.2, the sample is affected by the
bright limit of r > 16, and the BAO scale has been measured
for z < 0.2 galaxies in the SDSS-I/II main galaxy redshift survey
(Strauss et al. 2002) by Ross et al. (2015a). The upper limit of 0.75
is higher than in our previous analyses as we find no systematic
concerns associated with using the z > 0.7 data, but the number
density has decreased to 10−5 h3Mpc−3 at z = 0.75 (a factor of 40
below its peak at z ≈ 0.5; see Fig. 2) and any additional data at
higher redshift offer negligible improvement in the statistical power
of the BOSS sample.

We defined the redshift bins used in this analysis based on an
ensemble of 100 mock catalogues of the combined BOSS sample
in the range 0.2 < z < 0.75. We tested several binning schemes
by means of anisotropic BAO measurements on these mock cat-
alogues. For each configuration, we ran an Markov Chain Monte
Carlo (MCMC) analysis using the mean value and errors from the
BAO measurements, combining them with synthetic CMB mea-
surements (distance priors) corresponding to the same cosmology
of these mock catalogues. We chose the binning that provides the
strongest constraints on the dark energy equation-of-state parameter
wDE. It consists of two independent redshift bins of nearly equal
effective volume for 0.2 < z < 0.5 and 0.5 < z < 0.75. In order to
ensure we have counted every pair of BOSS galaxies, we also define
an overlapping redshift bin of nearly the same volume as the other
two, covering the redshift range 0.4 < z < 0.6. Using our mock
catalogues, with the original LOWZ and CMASS redshift binning
we obtain a 3.5 per cent (9.6 per cent) precision measurement of
the transverse (line-of-sight) BAO scale in the LOWZ sample and a
1.8 per cent (4.3 per cent) precision measurement for the CMASS
sample. With our chosen binning for the combined sample, we
instead obtain transverse (line-of-sight) precision of 2.5 per cent
(6.3 per cent) in our low-redshift bin and 2.3 per cent (5.6 per cent)
in our high-redshift bin, comparable for the two samples by de-
sign. Our results in Section 8.3 are consistent with these expected
changes of precision relative to the LOWZ and CMASS samples.
Measurements in the overlapping redshift bin are of course co-
variant with those in the two independent bins, and we take this
covariance (estimated from mock catalogues) into account when
deriving cosmological constraints. See Table 2 for a summary of
the combined sample.

2.4 The NGC and SGC sub-samples

The DR12 combined sample is observed across the two Galactic
hemispheres, referred to as the northern and southern galactic caps
(NGC and SGC, respectively). As these two regions do not overlap,
they are prone to slight offsets in their photometric calibration. As
described in the Appendix, we find good evidence that the NGC and
SGC sub-samples probe slightly different galaxy populations in the
low-redshift part of the combined sample, and that this difference
is consistent with an offset in photometric calibration between the
NGC and the SGC (first reported by Schlafly & Finkbeiner 2011).
Having established the reason for the observed difference in clus-
tering amplitude, we decide not to re-target the SGC but rather to
simply allow sufficient freedom when fitting models to the clus-
tering statistics in each galactic cap, as to allow for this slight

change in galaxy population. In particular, the different Fourier-
space statistics are modelled with different nuisance parameters in
the two hemispheres, as appropriate for each method. Using fits of
the MD-Patchy mocks, we find that this approach brings no penalty
in uncertainty of fitted parameters. We refer the reader to the indi-
vidual companion papers for details on how this issue was tackled
in each case.

3 M E T H O D O L O G Y

3.1 Clustering measurements

We study the clustering properties of the BOSS combined sample
by means of anisotropic two-point statistics in configuration and
Fourier space. Rather than studying the full 2D correlation function
and power spectrum, we use the information contained in their
first few Legendre multipoles or in the clustering wedges statistic
(Kazin, Sánchez & Blanton 2012).

In configuration space, the Legendre multipoles ξ"(s) are given
by

ξ"(s) ≡ 2" + 1
2

∫ 1

−1
L"(µ)ξ (µ, s) dµ, (4)

where ξ (µ, s) is the 2D correlation function, L" is the Legendre
polynomial or order " and µ is the cosine of the angle between
the separation vector s and the line-of-sight direction. The power-
spectrum multipoles P"(k) are defined in an analogous way in terms
of the 2D power spectrum P(µ, k)

P"(k) ≡ 2" + 1
2

∫ 1

−1
L"(µ)P (µ, k) dµ, (5)

and are related to the configuration-space ξ"(s) by

ξ"(s) ≡ i"

2π2

∫ ∞

0
P"(k)j"(ks) k2dk, (6)

where j"(x) is the spherical Bessel function of order ". We use
the information from the monopole, quadrupole and hexadecapole
moments (" = 0, 2 and 4), which are a full description of the
µ dependence of ξ (s, µ) in the linear regime and in the distant
observer approximation.

The configuration- and Fourier-space wedges, ξµ2
µ1

(s) and P µ2
µ1

(k)
correspond to the average of the 2D correlation function and power
spectrum over the interval #µ = µ2 − µ1, that is

ξµ2
µ1

(s) ≡ 1
#µ

∫ µ2

µ1

ξ (µ, s) dµ (7)

and

P µ2
µ1

(k) ≡ 1
#µ

∫ µ2

µ1

P (µ, k) dµ. (8)

Here, we define three clustering wedges by splitting the µ range
from 0 to 1 into three equal-width intervals. We denote these mea-
surements by ξ 3w(s) and P3w(k).

The information content of the multipoles and the wedges is
highly covariant, as they are related by

ξµ2
µ1

(s) =
∑

"

ξ"(s) L̄", (9)

where L̄" is the average of the Legendre polynomial of order " over
the µ-range of the wedge,

L̄" ≡ 1
#µ

∫ µ+#µ

µ

L"(µ) dµ. (10)
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Figure 15. Left-hand panel: comparison of fσ 8(z) measurements across previous BOSS measurements in DR11 (Beutler et al. 2014a; Samushia et al. 2014;
Sánchez et al. 2014; Alam et al. 2015b) and DR12 (Chuang et al. 2016; Gil-Marı́n et al. 2016a, 2017) samples. The agreement among measurements at better
than 1σ reflects the fact that many points are obtained from overlapping data sets. Right-hand panel: the fσ 8(z) results from this work compared with the
measurements of the 2dfGRS (Percival et al. 2004b) and 6dFGS (Beutler et al. 2012), the GAMA (Blake et al. 2013), the WiggleZ (Blake et al. 2012), the
VVDS (Guzzo et al. 2008) and the VIPERS (de la Torre et al. 2013) surveys, as well as the measurements from the SDSS-I and -II MGS (Howlett et al. 2015)
and the SDSS-II LRG sample (Oka et al. 2014, DR7). We have plotted conditional constraints on fσ 8 assuming a Planck "CDM background cosmology. This
is one of the best evidence of how growth rate measurements from BOSS again reaffirm the validity of GR in large scales.

(Blake et al. 2012), VVDS (Guzzo et al. 2008) and VIPERS (de la
Torre et al. 2013), as well as the measurements from the SDSS-I
and -II MGS (Howlett et al. 2015) and the SDSS-II LRG sample
(Oka et al. 2014, DR7). The measurements plotted are conditional
constraints on fσ 8 based on the Planck 2016 "CDM cosmological
model. This can be seen as a direct test of GR. We find that our results
confirm the validity of GR. We also find reassuring consistency
between our measurements and those by different surveys.

It is also interesting to compare this paper’s FS results (Table 7)
with the FS analysis of the DR12 LOWZ and CMASS samples, done
in Fourier space by Gil-Marı́n et al. (2016a, scaled again by

√
Veff

factors). Approximating LOWZ to our low-redshift bin and CMASS
to our high-redshift bin, we find a DM measurement of 1.7 per cent in
the low-redshift bin and 1.8 per cent in the high-redshift bin, which
compares to 2.3 per cent and 1.8 per cent in Gil-Marı́n et al. (2016a),
respectively. Regarding H(z), our measurement of 2.8 per cent in
both the low- and high-redshift bins compares to 3.8 per cent and
3.6 per cent in Gil-Marı́n et al. (2016a), again showing a clear
improvement in the precision when using our new methodology.
Finally, our fσ 8 constraint of 9.5 per cent and 8.9 per cent in the
low- and high-redshift bin compares to the LOWZ constraint of
12.1 per cent and 9.6 per cent in Gil-Marı́n et al. (2016a), which
similarly to DM and H, shows a clear improvement in the low-
redshift bin.

Additionally, we display the results based on the combination
of the pre-reconstructed power-spectrum, bispectrum and post-
reconstruction BAOs (from Gil-Marı́n et al. 2016a,b, 2017), which
is presented in Table 9 and denoted as G-M et al. (2016 a+b+c).
The combination of these three sets of results is presented at the
end of Gil-Marı́n et al. (2017). As before, this case is compared
to our FS column of Table 7, approximating LOWZ to our low-
redshift bin and CMASS to our high-redshift bin, where the volume
difference factor has been taken into account. Our DM measure-
ment of 1.7 per cent in the low-redshift bin and 1.8 per cent in
the high-redshift bin compares to 1.5 per cent and 1.1 per cent,
respectively, in Gil-Marı́n 2016 a+b+c. Regarding H(z), our mea-
surement of 2.8 per cent in both the low- and high-redshift bins
compares to 2.5 per cent and 1.8 per cent in Gil-Marı́n 2016 a+b+c.
Finally, our fσ 8 constraint of 9.5 per cent and 8.9 per cent in the

low- and high-redshift bin compares to the LOWZ and CMASS
measurements of 9.2 per cent and 6.0 per cent by Gil-
Marin 2016a+b+c. One can attribute the improvement in Gil-
Marı́n 2016a+b+c when compared to our measurement to the use
of the bispectrum, which has not been used in our analysis.

9 C O S M O L O G I C A L PA R A M E T E R S

9.1 Data sets

We now turn to cosmological interpretation of our results. We will
use the consensus measurements, including our estimated system-
atic error contribution to the covariance matrix, from the BAO-only
and BAO+FS columns of Table 3. In our subsequent figures and
tables, the former case is simply labelled ‘BAO’.

Following Aubourg et al. (2015), we include the 6dFGS and
SDSS MGS BAO measurements and the BOSS DR11 Lyα forest
BAO measurements (see Fig. 14 and Section 8.3). These are largely
independent and have utilized similar methodologies. We opt not to
include other BAO measurements, notably those from photometric
clustering and from the WiggleZ survey (Blake et al. 2011a, 2012),
as the volumes partially overlap BOSS and the errors are sufficiently
large that a proper inclusion would not substantially affect the re-
sults. As shown in Aubourg et al. (2015), these measurements are
in good agreement with those from BOSS. We note in particular the
good match to the WiggleZ results, as this was a sample of strongly
star-forming galaxies in marked contrast to the red massive galaxies
used in BOSS. The dual-tracer opportunity was studied extensively
with a joint analysis of the overlap region of WiggleZ and BOSS
(Beutler et al. 2016).

We further opt not to include other RSD measurements beyond
BOSS, as they come from a variety of analysis and modelling ap-
proaches. One can see from Fig. 15 that the measurements from
other surveys are consistent with those from BOSS within their
quoted errors, and the error bars in all cases are large enough that
there are potential gains from combining multiple measurements.
However, in contrast to BAO measurements, systematic errors as-
sociated with non-linear clustering and galaxy bias are a major
component of the error budget in any RSD analysis, and these
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Figure 7. Histogram of (α − 〈α〉)/σα measured from ξ (r) of the post-
reconstruction mocks, where 〈α〉 is the mean. This quantity is a proxy
for the signal-to-noise ratio of our BAO measurement. We see that this
distribution is close to Gaussian as indicated by the near-zero K-S Dn. The
corresponding p-value indicates that we are 90 per cent certain our values
are drawn from a Gaussian distribution, indicating that the values of σα we
measure from the χ2 distribution are reasonable descriptors of the error on
α measured by fitting ξ (r).

also makes our distance estimates more robust to parameter choices
in our fitting algorithms and reduces the scatter between the distance
estimates from the the correlation function and the power spectrum.
We quantify these improvements further in the following sections.

We next compare the observed scatter in the best-fitting α in
the mocks to the σα estimated in each fit from the χ2(α) curve.
In Fig. 7, we plot a histogram of (α − 〈α〉)/σα from the mocks
and compare the result to the unit normal distribution. We find
excellent agreement; a Kolmogorov–Smirnov (K-S) test finds a
high likelihood that the observed distribution is drawn from a unit
normal. Hence the Gaussian probability distribution obtained from
the χ2 statistic is an appropriate characterization of the error on α.

6 TH E P OW E R SP E C T RU M

6.1 Measuring the power spectrum

The power spectra recovered from the CMASS DR9 data are shown
in Fig. 8 before (left) and after (right) reconstruction. The inset
shows the oscillations in these data, calculated by dividing by a
smooth model (see Section 6.2 for details). The effect of the re-
construction algorithm is clear – the large-scale power is decreased
corresponding to the removal of RSD effects, with the small-scale
power being further reduced by the reduction in non-linear power.
These data represent the most accurate measurement of a redshift-
space galaxy power spectrum ever obtained.

Power spectra were calculated using the Fourier method first de-
veloped by Feldman et al. (1994), as described in Percival et al.
(2007b) and Reid et al. (2010). We work in redshift-space as if ob-
served recession velocities solely arise from the Hubble expansion.
As we focus on measuring angle-averaged baryon acoustic oscilla-
tions, we do not convert from a galaxy density field to a halo density
field as in Reid et al. (2010), or apply corrections for Finger-of-God
effects. Given a weight wi for galaxy i at location r i , the overdensity
field can be written

F (r) = 1
N

[
∑

i

wiδD(r i − r) − 〈w(r)n(r)〉
]

, (31)

where N is a normalization constant

N ≡
{∫

d3r〈w(r)n(r)〉2
}1/2

, (32)

and 〈w(r)n(r)〉 is the expected weighted distribution of galaxies at
location r in the absence of clustering, and n(r) is the galaxy density.
The quantity δD is the standard Dirac-δ function. We do not apply
luminosity-dependent weights (as applied by Percival et al. 2007b
and Reid et al. 2010), as we are only interested in the BAO, and not
the overall shape of the power spectrum.

We chose to model the expected distribution of galaxies using a
random catalogue with points selected at the mean galaxy density

Figure 8. The CMASS DR9 power spectra before (left) and after (right) reconstruction with the best-fitting models overplotted. The vertical dotted lines
show the range of scales fitted (0.02 < k < 0.3 h Mpc−1), and the inset shows the BAO within this k-range, determined by dividing both model and data by
the best-fitting model calculated (including window function convolution) with no BAO. Error bars indicate

√
Cii for the power spectrum and the rms error

calculated from fitting BAO to the 600 mocks in the inset (see Section 4.2 for details).
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We should have a systematic-free model of the nonlinear galaxy power spectrum 
in redshift space

Full-shape analysis

In Fig. 6 the team shows that the data are well fitted by
the theoretical model with the best-fit parameters, with
−2 logL=dof ¼ 16=ð24 − 6Þ, corresponding to a very
good p-value.8 In the lower panel, different contributions
to the best-fit power spectra are shown to check the
self-consistency of the perturbative expansion. It is apparent
that the one-loop term is safely less than 10%of the linear one
at all k’s. In addition to the one-loop term, an estimate of the
two-loop contribution, i.e., P2

1−loop=Plin, is shown: clearly, at
least for the quadrupole, this estimate is of the order of the
error on the data at the highest k. This is an additional
indication that, for roughly kmax ≳ 0.12 − 0.14 hMpc−1, the
one-loop model will not be an accurate description of the
data, and parameter estimation will suffer from theory
systematics.
After unblinding, the West Coast team submitted addi-

tional results at kmax ¼ 0.14; 0.16; 0.18; 0.20 hMpc−1

because it was subsequently decided that it was interesting
to explore the kmax dependence of the theory-systematic
error. In fact, though this was already analyzed by the team
in both their original papers [28,30], the challenge simu-
lation is different and its volume is larger. At the higher

FIG. 4. Upper panel: comparison of the data for the monopole and the quadrupole (with error bars, albeit they are barely visible) with
the best-fit model (left panel) obtained by the East Coast team. The residuals for the monopole and the quadrupole for the best-fit model
with χ2=dof ¼ 12=ð24 − 9Þ are shown in the right panel. Note that the quadrupole data points are slightly shifted for better visibility.
Lower panel: different contributions to the monopole (left panel) and quadrupole (right panel) power spectra. The data errors and the
two-loop estimate are also displayed. We plot the absolute values; some terms are negative.

TABLE I. Baseline results obtained by the East Coast team for
kmax ¼ 0.12 hMpc−1 at z ¼ 0.61. Only the cosmological param-
eters and b1 are shown. Note that Ωm, lnð1010AsÞ, and σ8 in the
lower disjoint table show the results for the derived parameters.

kmax ¼ 0.12 hMpc−1 Best fit Mean $1σ

ΔA1=2=A1=2 × 102 −0.15 −0.16$ 1.0
Δh=h × 102 −0.55 −0.59$ 0.46
Δωm=ωm × 102 0.2 0.15$ 1.4
Δb1=b1 × 102 0.20 0.22$ 1.2
ΔΩm=Ωm × 102 1.3 1.2$ 0.9
Δ lnð1010AsÞ= lnð1010AsÞ × 102 −0.098 −0.11$ 0.69
Δσ8=σ8 × 102 −0.094 −0.022$ 0.928Notice that the likelihood of this team is not Gaussian.
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as above as biased tracers of the density and baryonic
fields [20].
Because of what we just discussed, the range over which

different implementations of the EFTofLSS can differ is
extremely limited: one may choose a different basis for the
EFT parameters; they may add an incomplete, and therefore
different, set of higher-order counterterms to partially
include the effect of some higher-order calculation that
was not performed; or they may have different implemen-
tations or approximations for the IR resummation. We list
these differences in detail next.

B. Group-dependent implementation

Although both teams use the same theoretical model,
there are several important methodological differences.
Moreover, the two groups have made very different choices
in the model implementation and numerical algorithms.
This section describes in detail the pipelines used by the
two teams.

1. East Coast team

The East Coast team used only the monopole and the
quadrupole in the analysis. The East Coast team analyzed
the challenge data with and without the hexadecapole
moment and found identical constraints.3 Thus, the East
Coast team refrained from using the hexadecapole moment
in the baseline analysis.
The theoretical model used by the East Coast team for

these two multipoles can be written schematically as

PlðkÞ ¼ Ptree
l ðkÞ þ Ploop

l ðkÞ þ Pctr
l ðkÞ þ P∇4

zδ
l ðkÞ: ð13Þ

The tree-level contribution is given by the Kaiser formula
[43]. The loop corrections are calculated using the standard
one-loop power spectra for dark matter and biased tracers
(see, e.g., [23,69,70] and references therein). The bias
model consists of the following bias operators [17,19,71],

δgðkÞ ¼ b1δðkÞ þ
b2
2
δ2ðkÞ þ bG2

G2ðkÞ; ð14Þ

where the momentum-space representation of the G2

operator is given by

G2ðkÞ ¼
Z

d3p
ð2πÞ3

!
ðp · ðk − pÞÞ2

p2jk − pj2
− 1

"
δðpÞδðk − pÞ: ð15Þ

The one-loop power spectrum has one extra bias operator
multiplied by an additional parameter bΓ3

. However, this
contribution is almost fully degenerate with the counter-
terms and the G2 operator on the scales of interest. Given
this strong degeneracy, the East Coast team set bΓ3

¼ 0 in
the baseline analysis. Running the Markov chain
Monte Carlo (MCMC) chains with and without bΓ3

, it
was checked that this choice does not affect constraints on
cosmological parameters.
The standard one-loop counterterms for the monopole

and the quadrupole are [20]

Pctr
0 ðkÞ¼−2c20k2P11ðkÞ; Pctr

2 ðkÞ¼−
4f
3
c22k

2P11ðkÞ; ð16Þ

where f ¼ d lnDþ=d ln a is the logarithmic growth rate,
Dþ denotes the linear growth factor, and P11ðkÞ is the linear
power spectrum. The purpose of these counterterms is to fix
the UV dependence of the loops and to partly take into
account the effects of the fingers of God [42]. The East
Coast team also added an extra k4 term shared between the
multipoles,

P∇4
zδðk; μÞ ¼ −cðμkfÞ4ðb1 þ fμÞ2P11ðkÞ: ð17Þ

This new counterterm takes into account the next-to-
leading order of the fingers of God. Note that on general
grounds, one also expects the presence of the stochastic
contribution of the form [20,72]

PRSD;stoch ¼ −cϵk2μ2: ð18Þ

This contribution is very degenerate with the counterterm
(17) on the scales of interest for the analysis, and it was not
included in the model by the East Coast team.
The East Coast team implemented IR resummation and

the Alcock-Paczynski effect as explained in detail in
Refs. [73,74]. Importantly, the East Coast team used the
IR-resummation algorithm based on the wiggly smooth
decomposition directly in Fourier space [64,67,75], which
allowed for a significant boost of computational speed. This
scheme is efficient and numerically stable. Moreover, it is
based on solid systematic parametric expansion that guar-
antees that the error is under control at every order of IR
resummation. It was explicitly checked that the residuals
introduced by our procedure are much smaller than the two-
loop contributions which are not included in the model, in
full agreement with theoretical expectations [67,75]. The
labels that indicate IR resummation and the AP effect were
omitted in all equations in this section to avoid clutter.
However, the reader should keep in mind that they are
always included in the model.

3On the scales of interest, the hexadecapole signal is domi-
nated by leakage contributions from the monopole and quadru-
pole. These contributions appear due to discreteness effects, i.e.,
because the monopole and quadrupole are not exactly orthogonal
to the hexadecapole on a finite grid. Even with the gigantic
volume of the challenge simulation and the wide binning, the
hexadecapole moment is dominated by the systematic leakage
from lower multipole moments.
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In Fig. 6 the team shows that the data are well fitted by
the theoretical model with the best-fit parameters, with
−2 logL=dof ¼ 16=ð24 − 6Þ, corresponding to a very
good p-value.8 In the lower panel, different contributions
to the best-fit power spectra are shown to check the
self-consistency of the perturbative expansion. It is apparent
that the one-loop term is safely less than 10%of the linear one
at all k’s. In addition to the one-loop term, an estimate of the
two-loop contribution, i.e., P2

1−loop=Plin, is shown: clearly, at
least for the quadrupole, this estimate is of the order of the
error on the data at the highest k. This is an additional
indication that, for roughly kmax ≳ 0.12 − 0.14 hMpc−1, the
one-loop model will not be an accurate description of the
data, and parameter estimation will suffer from theory
systematics.
After unblinding, the West Coast team submitted addi-

tional results at kmax ¼ 0.14; 0.16; 0.18; 0.20 hMpc−1

because it was subsequently decided that it was interesting
to explore the kmax dependence of the theory-systematic
error. In fact, though this was already analyzed by the team
in both their original papers [28,30], the challenge simu-
lation is different and its volume is larger. At the higher

FIG. 4. Upper panel: comparison of the data for the monopole and the quadrupole (with error bars, albeit they are barely visible) with
the best-fit model (left panel) obtained by the East Coast team. The residuals for the monopole and the quadrupole for the best-fit model
with χ2=dof ¼ 12=ð24 − 9Þ are shown in the right panel. Note that the quadrupole data points are slightly shifted for better visibility.
Lower panel: different contributions to the monopole (left panel) and quadrupole (right panel) power spectra. The data errors and the
two-loop estimate are also displayed. We plot the absolute values; some terms are negative.

TABLE I. Baseline results obtained by the East Coast team for
kmax ¼ 0.12 hMpc−1 at z ¼ 0.61. Only the cosmological param-
eters and b1 are shown. Note that Ωm, lnð1010AsÞ, and σ8 in the
lower disjoint table show the results for the derived parameters.

kmax ¼ 0.12 hMpc−1 Best fit Mean $1σ

ΔA1=2=A1=2 × 102 −0.15 −0.16$ 1.0
Δh=h × 102 −0.55 −0.59$ 0.46
Δωm=ωm × 102 0.2 0.15$ 1.4
Δb1=b1 × 102 0.20 0.22$ 1.2
ΔΩm=Ωm × 102 1.3 1.2$ 0.9
Δ lnð1010AsÞ= lnð1010AsÞ × 102 −0.098 −0.11$ 0.69
Δσ8=σ8 × 102 −0.094 −0.022$ 0.928Notice that the likelihood of this team is not Gaussian.
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as above as biased tracers of the density and baryonic
fields [20].
Because of what we just discussed, the range over which

different implementations of the EFTofLSS can differ is
extremely limited: one may choose a different basis for the
EFT parameters; they may add an incomplete, and therefore
different, set of higher-order counterterms to partially
include the effect of some higher-order calculation that
was not performed; or they may have different implemen-
tations or approximations for the IR resummation. We list
these differences in detail next.

B. Group-dependent implementation

Although both teams use the same theoretical model,
there are several important methodological differences.
Moreover, the two groups have made very different choices
in the model implementation and numerical algorithms.
This section describes in detail the pipelines used by the
two teams.

1. East Coast team

The East Coast team used only the monopole and the
quadrupole in the analysis. The East Coast team analyzed
the challenge data with and without the hexadecapole
moment and found identical constraints.3 Thus, the East
Coast team refrained from using the hexadecapole moment
in the baseline analysis.
The theoretical model used by the East Coast team for

these two multipoles can be written schematically as

PlðkÞ ¼ Ptree
l ðkÞ þ Ploop

l ðkÞ þ Pctr
l ðkÞ þ P∇4

zδ
l ðkÞ: ð13Þ

The tree-level contribution is given by the Kaiser formula
[43]. The loop corrections are calculated using the standard
one-loop power spectra for dark matter and biased tracers
(see, e.g., [23,69,70] and references therein). The bias
model consists of the following bias operators [17,19,71],

δgðkÞ ¼ b1δðkÞ þ
b2
2
δ2ðkÞ þ bG2

G2ðkÞ; ð14Þ

where the momentum-space representation of the G2

operator is given by

G2ðkÞ ¼
Z

d3p
ð2πÞ3

!
ðp · ðk − pÞÞ2

p2jk − pj2
− 1

"
δðpÞδðk − pÞ: ð15Þ

The one-loop power spectrum has one extra bias operator
multiplied by an additional parameter bΓ3

. However, this
contribution is almost fully degenerate with the counter-
terms and the G2 operator on the scales of interest. Given
this strong degeneracy, the East Coast team set bΓ3

¼ 0 in
the baseline analysis. Running the Markov chain
Monte Carlo (MCMC) chains with and without bΓ3

, it
was checked that this choice does not affect constraints on
cosmological parameters.
The standard one-loop counterterms for the monopole

and the quadrupole are [20]

Pctr
0 ðkÞ¼−2c20k2P11ðkÞ; Pctr

2 ðkÞ¼−
4f
3
c22k

2P11ðkÞ; ð16Þ

where f ¼ d lnDþ=d ln a is the logarithmic growth rate,
Dþ denotes the linear growth factor, and P11ðkÞ is the linear
power spectrum. The purpose of these counterterms is to fix
the UV dependence of the loops and to partly take into
account the effects of the fingers of God [42]. The East
Coast team also added an extra k4 term shared between the
multipoles,

P∇4
zδðk; μÞ ¼ −cðμkfÞ4ðb1 þ fμÞ2P11ðkÞ: ð17Þ

This new counterterm takes into account the next-to-
leading order of the fingers of God. Note that on general
grounds, one also expects the presence of the stochastic
contribution of the form [20,72]

PRSD;stoch ¼ −cϵk2μ2: ð18Þ

This contribution is very degenerate with the counterterm
(17) on the scales of interest for the analysis, and it was not
included in the model by the East Coast team.
The East Coast team implemented IR resummation and

the Alcock-Paczynski effect as explained in detail in
Refs. [73,74]. Importantly, the East Coast team used the
IR-resummation algorithm based on the wiggly smooth
decomposition directly in Fourier space [64,67,75], which
allowed for a significant boost of computational speed. This
scheme is efficient and numerically stable. Moreover, it is
based on solid systematic parametric expansion that guar-
antees that the error is under control at every order of IR
resummation. It was explicitly checked that the residuals
introduced by our procedure are much smaller than the two-
loop contributions which are not included in the model, in
full agreement with theoretical expectations [67,75]. The
labels that indicate IR resummation and the AP effect were
omitted in all equations in this section to avoid clutter.
However, the reader should keep in mind that they are
always included in the model.

3On the scales of interest, the hexadecapole signal is domi-
nated by leakage contributions from the monopole and quadru-
pole. These contributions appear due to discreteness effects, i.e.,
because the monopole and quadrupole are not exactly orthogonal
to the hexadecapole on a finite grid. Even with the gigantic
volume of the challenge simulation and the wide binning, the
hexadecapole moment is dominated by the systematic leakage
from lower multipole moments.
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Ivanov et al. (2020)
see also D’Amico et al. (2020)
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Figure 2. The 2d posterior distribution for cosmological parameters extracted from the BOSS DR12
power spectrum likelihood. We show results for four independent samples of the BOSS data separately
(left panel) and the combined likelihoods (right panel). In the latter case we also plot the posterior
distribution for the parameters of a similar model (⇤CDM with massive neutrinos) measured from
the final Planck 2018 CMB data. H0 is quoted in units [km/s/Mpc].

duced with the latest version of the getdist package,16 which is part of the CosmoMC

code [82, 83]. We monitor the convergence of our MCMC chains with the Brooks-Gelman
and Gelman-Rubin criteria [84, 85]

4 Constraints on base ⇤CDM

In this section we present measurements of parameters of the minimal flat ⇤CDM with
massive neutrinos. Our final results are quoted in terms of �8, H0 and ⌦m since these
parameters are most common in the large-scale structure literature. Another reason for the
use of these particular parameters is that they are close to the actual principal components
of the BOSS data.17 Our main analysis does not assume CMB priors on !cdm (equivalently,
rd). We use several di↵erent priors on !b. These are the CMB prior (3.21), a slightly weaker
BBN prior (3.23), and the CMB prior with a 30-times bigger variance. We impose the latter
prior in order to check to what extent the !b prior is crucial for our results.

We start with the first case (the CMB prior on !b). The reduced triangle plot with
the relevant cosmological parameters for four di↵erent BOSS datasamples are shown in the
left panel of figure 2. The full triangle plot and the 1d marginalized limits are given in
appendix C.1. There we also present results for parameters f�8(ze↵), H(ze↵), DA(ze↵) and
DV (ze↵), derived from our MCMC chains.

Let us first discuss the consistency of our results. The posterior distributions seen in
the left panel of figure 2 overlap within 1� regions. The observed scatter is compatible with

16https://getdist.readthedocs.io/en/latest/.
17E.g. the amplitude As is very correlated with the neutrino mass, which degrades the relative error on As

compared to �8. Moreover, the asymmetric priors on m⌫ make the posterior for As very asymmetric as well.
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Beyond the power spectrum



h�~k1
�~k2

�~k3
i ⌘ �D(~k1 + ~k2 + ~k3)B(k1, k2, k3)

Fourier space: correlation functions

Higher-order correlation functions:

The bispectrum and trispectrum are the lowest-order correlation functions 
to characterise the three-dimensional nature of matter perturbations

bispectrum

h�~k1
�~k2

�~k3
�~k4

i ⌘ �D(~k1 + ~k2 + ~k3 + ~k4)T (~k1,~k2,~k3,~k4) trispectrum



Perturbative solution for the matter density, in Fourier space

��k = �(1)�k
+ �(2)�k

+ ...

�(2)�k
=

Z
d3q F2(⇥k � ⇥q, ⇥q) �(1)�k��q

�(1)�q

quadratic correction

Perturbative solution for the 
matter 3-point function

h���i = h�(1)�(1)�(1)i+ h�(1)�(1)�(2)i+ ...

= 0 for Gaussian 
initial conditions

non-zero bispectrum 
induced by gravity

loop corrections

The matter bispectrum

linear solution



Btree
G (k1, k2, k3) = 2F2(�k1,�k2)P0(k1)P0(k2) + 2 perm.

Q(k1, k2, k3) =
B(k1, k2, k3)

P (k1)P (k2) + P (k1)P (k3) + P (k2)P (k3)
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The matter bispectrum
Testing the planarity of structures

The bispectrum represents the probability for three galaxies to be found forming a
triangle of a given size and shape:

reduced bispectrum : Q(k1, k2, k3) �
B(k1, k2, k3)

P(k1)P(k2) + P(k1)P(k3) + P(k2)P(k3)

! / "

!

[ES, Crocce & Desjacques, in preparation]
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Q(k1, k2, k3) =
B(k1, k2, k3)

P (k1)P (k2) + P (k1)P (k3) + P (k2)P (k3)

The galaxy bispectrum



�g(x) ⌘
ng(x)� n̄g

n̄g
= f [�(x)]local bias

expand it in a Taylor series …

Linear bias Quadratic bias correction

Perturbative solution for the 
galaxy 3-point function

matter bispectrum bispectrum induced by 
nonlinear bias

�g(x) = b1 �(x) +
1

2
b2 �

2(x) + ...

h�g�g�gi = b31 h���i+ b21 b2 h���2i+ ...

Bg(k1, k2, k3) = b31 B(k1, k2, k3) + b21 b2 P (k1)P (k2) + 2 perm.+ ...

The galaxy bispectrum



The galaxy bispectrum
Determining the bias parameters

A simple assumption: local galaxy bias,

�g (x) = f [�(x)] ⇥ b1�(x) + b2�
2(x)/2

with b1 and b2 constant parameters.

⇤ ⌅�g �g �g ⇧ ⇥ b3
1⌅���⇧ + b2

1b2⌅���2⇧+ ...

⇤ Bg (k1, k2, k3) ⇥ b3
1B(k1, k2, k3) + b2

1b2[P(k1)P(k2) + perm.] + ...

The power spectrum can only measure a
combination of ⇥8 and b1

Pg (k) ⇥ b2
1P(k) ⇤ ⇥g

8 � b1⇥8

For the reduced galaxy bispectrum we have

Qg (k1, k2, k3) =
1

b1
Q(k1, k2, k3) +

b2

b2
1

The dependence on the triangle shape breaks
the degeneracy between galaxy bias and the am-
plitude of dark matter fluctuations
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The galaxy bispectrum
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Figure 1: Triangle plots, best-fit values, and relative 68%-credible intervals of base cosmological parameters
measured from the analysis of BOSS power spectrum multipoles P`, ` = 0, 2, at one-loop, bispectrum monopole
B0 at tree or one-loop level, and bispectrum quadrupole B2 at tree-level. Planck ⌫⇤CDM results are shown
for comparison.

A note of warning: We end this section of the main results with a final note of warning. It
should be emphasized that in performing this analysis, as well as the preceding ones using the
EFTofLSS by our group [4, 6, 11, 17, 13, 7, 21], we have assumed that the observational data
are not affected by any unknown systematic error or undetected foregrounds. In other words,
we have simply analyzed the publicly available data: the two- and three-point functions of
the galaxy density in redshift space as measured from the public galaxy catalogues. Given the
additional cosmological information that the theoretical modeling by the EFTofLSS allows

5

Figure 1: Summary plot of the 68% confidence level (CL) constraints on primordial non-Gaussianities
obtained in this work. P and B represent the fact that the analysis uses either the power spectrum
or the power spectrum and bispectrum. We find no evidence of primordial non-Gaussianity.

acknowledged. For example, several authors cite Refs. [4, 5] for the ‘model’ to analyze the PS
FS, but the EFT model that is used in [4, 5] is essentially the same as the one in [21], which
is where it was first developed. We therefore find it fair to add the following footnote in every
paper where the EFTofLSS is used to analyze observational data. Even though some of the
mentioned papers are not strictly required to analyze the data, we, and we believe probably
anybody else, would not have applied the EFTofLSS to data without all these intermediate
results.1

An observable that has been so-far unexplored in galaxy-clustering data analyses from the
1The initial formulation of the EFTofLSS was performed in Eulerian space in [22, 23], and subsequently

extended to Lagrangian space in [24]. The dark matter power spectrum has been computed at one-, two-
and three-loop orders in [23, 25–34]. These calculations were accompanied by some theoretical developments
of the EFTofLSS, such as a careful understanding of renormalization [23, 35, 36] (including rather-subtle
aspects such as lattice-running [23] and a better understanding of the velocity field [25, 37]), of several
ways for extracting the value of the counterterms from simulations [23, 38], and of the non-locality in time
of the EFTofLSS [25, 27, 39]. These theoretical explorations also include an enlightening study in 1+1
dimensions [38]. An IR-resummation of the long displacement fields had to be performed in order to reproduce
the Baryon Acoustic Oscillation (BAO) peak, giving rise to the so-called IR-Resummed EFTofLSS [40–44].
Accounts of baryonic effects were presented in [45, 46]. The dark-matter bispectrum has been computed
at one-loop in [47, 48], the one-loop trispectrum in [49], and the displacement field in [50]. The lensing
power spectrum has been computed at two loops in [51]. Biased tracers, such as halos and galaxies, have
been studied in the context of the EFTofLSS in [39, 52–54, 21, 55, 56] (see also [57]), the halo and matter
power spectra and bispectra (including all cross correlations) in [39, 53]. Redshift space distortions have
been developed in [40, 58, 21]. Neutrinos have been included in the EFTofLSS in [59, 60], clustering dark
energy in [61, 33, 62, 63], and primordial non-Gaussianities in [53, 64–66, 58, 67]. Faster evaluation schemes
for the calculation of some of the loop integrals have been developed in [68]. Comparison with high-quality
N -body simulations to show that the EFTofLSS can accurately recover the cosmological parameters have
been performed in [4, 6, 69, 70]

3

D’Amico et al. (2022A, B)



Conclusions



Cosmological constraints from spectroscopic surveys

Future galaxy redshift surveys (e.g. DESI from the ground or Euclid from the sky) will 
continue an on-going effort to map the large-scale galaxy distribution

Different features of the galaxy power spectrum provide different constraint 
on the cosmological model:

• BAO are a standard ruler, a geometrical probe of the expansion history

• The anisotropy of the galaxy power spectrum (Redshift-Space Distortions) 
measure instead the growth of structure 

• The “shape” of the power spectrum provide an upper bound on neutrino 
masses  

Current efforts are aimed at extracting all available information in 2-point  
and higher-order correlation functions and extend PT predictions beyond the Standard 
Cosmological Model

But a lot more is brewing …


