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Minimal Problem setup

» We have N equal weight data points labeled by their —
position in d-dimensional Space of Volume V *

 Goals: |

e Describe their spatial distribution in a way that -
facilitates the comparison between multiple such |

realizations

» Also allow to ask whether the point distribution is
a fair sample of continuous density field for which
we know its statistics



Metrics [design goals] of useful summary statistics

Informative

« Predictable No binning/averaging

Complete with respect to

* Robust symmetries

 Minimal number of nuisance
parameters (cut off scale, bin
widths, smoothing, power, mark,
etc.)

Discuss: What is Missing?
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We consider a set of tracers of a underlying continuous field, with C(z|V) = Z Pyt = Z Z Pyt
k=0

mean number density 77 and connected N-point correlation functions k=0 m=k+1
denoted by ¢V, €@ = ( by definition, and £V = 1 to correctly = (Pyy + Pyyv +..)+ (Poyy + Pyy +..)z2
normalize the distribution. The generating function, P(z|V), of the +(Pyyy + Py + ..025 + ...
dis.ttrtibutior(l V(\)]{l File 10;);1;111?3 oidat;a& pé)h}llts Elcl({séegd9 inS Volur(rjl.egi/ ;anlbe = —Pyy + (Poyy + Py + Poyy 4 ..) +
written as ite ; Balian & Schaeffer ; Szapudi & Szala
1993): P Y —(Poyy + Pyy)z + (Poyy + Py + Py + ...z
o —(Poyy + Py + Pyy)z* + (Poyy + Py + .02 + ...
PIV) =Y Py = —PEV)1+z+2+.)+U+z+2+..)
i _1-PEV) 3)
ey | S @D b=z
= &Xp Z k! where we have used the fact >~ Py = lL,and 1/(1 —2) = (1 + z
= + z%2 + ...). Therefore, the generating function for the distribution of
P v 1s fully specified by the generating function of Py y. Note that
i | Bri dPriEV@, )] 1 >kl y sp ythe g g KV :
X/v /V " e i) 1) by definition
The probability of finding a count of k € {0, 1, 2, ...} data points Pav = Por—riy = Pony Vk = L. )

in a volume V can be computed from the generating function by
computing various derivatives,

re=g[()7ev] . Measure all Pxy or Psky or £
to characterize all counts in cell



Measure volume enclosed by sphere with radius
given by the distance to the nearest data point from
a very large number of random points R.

Fraction of points for which the volume of the
sphere to the nearest neighbors is less than V is the
empirical cumulative distribution function we use.

l.e. we sort resulting volume values which yields the

1NN empirical cumulative distribution function. No
binning, no averaging!
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Peaked CDFs

Or

» To visualize both tails at small and large distances/

—p

volumes we plot the peaked CDF

PCDF(r) = (IZ?IJC(;))IJ(r)

CDF(r) < 0.5
CDF(r) > 0.5
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Figure 1. Peaked CDF (described in the text) of the nearest neighbor dis-
tribution (as defined in the text) for 10° random points distributed over a
(1h~'Gpc)3 volume (solid curve). The dot-dashed curve is the analytic pre-
diction for the distribution. The empirical CDF measured from the data is
plotted using the dashed curve, while the Void Probability Function (VPF)
is plotted using the dotted line.
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Figure 2. Left: Peaked CDF as a function of scale for 1st (INN), 2nd (2NN), 3rd (3NN), and 4th (4NN) nearest neighbor distributions (solid lines) for a set
of 10° Poisson distributed data points distributed over a (12~'Gpc)? volume from a set of volume filling randoms (see text for details). The dashed lines
represent the analytic expectations for the distribution. Right: Probability of finding N points in a sphere with radius r given 10° Poisson distributed data points
over a (1h~'Gpc)? volume. Solid lines represent the probabilities computed using the CDFs from the left panel, while the dashed lines represent the analytic
expectation.



The distribution of Py can similarly be worked out by consid-
ering the derivatives of C(z|V) from Eq. 3:

[ k
1[(a
Poav = | (5] cGv)
L z=0
_1|(d k(1 —-exp [ﬁ(z—l)V])
- (£ .
k!'|\dz 1-z2 220
1| & k! d\™
- — ‘ 2 (1=expla(z=1)V
k! r;)m!(k—m)!(dz) ( xp [7(z )])

(d)k—m 1
az 1=z z=0

K oonm
— Z nV) exp(-iV), (12)

m:

where we use the fact that (d/dz)"™(1/(1 - z)) = m!/(1 — 7)™+,
The form of Py derived in Eq. 12 can also be anticipated by
simply noting that P>k|V = 1-P__k|v,and using leg

Copy Select All

of Eq. 12 is known in the literature as the CumulattV

Knowing Poyv
enough to
predict

all of them In
the Poisson
Case



P v for a general value of k, the individual terms are easy to
compute, especially for low values of k. For example,

1
Poojy = 1 —exp \ —aV + EﬁZV%‘% , (18)
Psyv = Psov
1
- (ﬁV - ﬁszo"z,) exp [ —iAV+SitVioy | (19)

and so on. Note that just by measuring the first two cumulative

- . . 2
distributions, P ¢y and P 1|y, one can constrain 77 and o, . Con-
cretely,

| Pooly — P
iV = -2 log (1 = Poqpy) + = — =1V} (20)
2 1_P>O|V
and
Pooyv =Psyv | [,
o2 ==2|log (1 - Pogyy) + — | /(nV)z. @1)
1_P>O|V

https://github.com/yipihey/kNN-CDFs

probability

Knowing Psoyv and Psqv
enough to predict
all of them for a

Gaussian random field
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Figure 4. Comparison of the Peaked CDF for nearest neighbor (1NN) distri-
butions of @) a Poisson distribution, b) particles from the z = 0 snapshot of
an N -body simulation, and c¢) the most massive halos from the same simula-
tion. In each case, 107 points were selected over a (12~'Gpc)? volume. For
the particles, these were randomly selected from all the simulation particles,
while for the halos, a cut was made on the 10° most massive halos in the
box.

100 INN s 3NN

Peaked CDF

Figure 5. The Peaked CDFs for the first, second, third, and fourth nearest-
neighbor distributions for 10> simulation particles in a (12~'Gpc)? volume.
The solid lines represent these distributions at z = 0, while the dotted lines
represent the distributions computed at z = 0.5.
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Figure 6. Left: The darker line represents the ratio of correlation function of the 10° most massive halos in a (12~ 'Gpc)? box at redshifts z = 0, and z = 0.5.
The lighter shaded lines represent the ratio of the correlation functions at z = 0 for 15 different realizations of the same cosmology, divided by the mean
correlation function at that cosmology. Center: The darker line represents the ratio of the nearest neighbor CDF of the 10°> most massive halos ina (12~'Gpc)?
box at redshifts z = 0, and z = 0.5. The lighter shaded lines represent the ratio of the nearest neighbor CDFs at z = 0 for 15 different realizations of the same
cosmology, divided by the mean nearest neighbor CDF at that cosmology. Right: Same measurements as the center panel, except with second nearest neighbor
distances instead of the first. Even though the correlation function of the two samples at different redshifts are almost indistinguishable within sample variance
uncertainties, the NN CDFs are clearly separated.
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Figure 12. Constraints on the cosmological parameters derived from the Fisher analysis of the monopole of clustering of the 10°> most massive halos in redshift
space, combining information from z = 0 and z = 0.5, and using scales in the range 10k~ Mpc to 40h~'Mpc. Similar to Fig. 11, the constraints from the kNN
analysis are much tighter than those from the & (r) analysis.
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Figure 7. The derivative of the data vector with respect to the cosmological
parameter og. The different colored curves represent the portions of the data
vectors coming from k = {1,2,4, 8} nearest neighbor CDF distributions.
The solid lines represent the derivative at z = 0, while the dotted lines
represent the derivative at z = 0.5.
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Figure 9. The posterior distribution for og, marginalized over all other
parameters. The different colors represent different kNN combinations from
which the constraint was obtained. The constraints improve as more nearest
neighbor distributions are added, but the gain saturates by the time we add
all four CDFs that are computed from the data.
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ABSTRACT

Cross-correlations between data sets are used in many different contexts in cosmological analyses. Recently, k-nearest neighbour
cumulative distribution functions (kNN-CDF) were shown to be sensitive probes of cosmological (auto) clustering. In this paper,
we extend the framework of NN measurements to describe joint distributions of, and correlations between, two data sets. We
describe the measurement of joint KNN-CDFs, and show that these measurements are sensitive to all possible connected N-point
functions that can be defined in terms of the two data sets. We describe how the cross-correlations can be isolated by combining
measurements of the joint KANN-CDFs and those measured from individual data sets. We demonstrate the application of these
measurements in the context of Gaussian density fields, as well as for fully non-linear cosmological data sets. Using a Fisher
analysis, we show that measurements of the halo-matter cross-correlations, as measured through NN measurements are more
sensitive to the underlying cosmological parameters, compared to traditional two-point cross-correlation measurements over the
same range of scales. Finally, we demonstrate how the NN cross-correlations can robustly detect cross-correlations between
sparse samples — the same regime where the two-point cross-correlation measurements are dominated by noise.



Usiﬁg the same formalism, it is also possible to write down the .
generating function C(z1, z2|V) for the joint cumulative counts, i.e. P ( >k1 ’ >k2 |V) - Pl (>kl |V) Pz ( >k2 I V) ’

the probability of finding more than k| tracers from set 1 and more /ﬁ
than ko tracers in volume V. /

com - LP BRI o s gD (ASE

where P;(z;|V) represent the generating function for the counts of
each individual set of tracers. Note that in the absence of cross-
correlations, i.e. when P(zy, z2|V) = P1(z1|V)P2(z2]V), this gen-
erating function also factorizes into a product of the generating
functions for the cumulative counts for each distribution individu-

ally:
_ 1 =Pi(z1|V) = Pa(22]V) + P1(21|V) P2(22]V)
ClarlV) = (-1 - )
_(1=Pi(zilV) | [ L= P2(22]V)
1 -2 )
= C1(21IV)Ca(22lV) . “)

Just as in Eq. 2, one can compute the individual terms P (>k, >
k,|V) for any value of k, kp from the derivatives of C(zy, z2|V):

d d

1 2
1 1
P(>ky, >ka|V) = k_l'k_z'[(a) (E) C(z1,221V)

21,22=0

)



For each random point, we can associate two distances - one to the
nearest neighbor data point from the first set, and the other to the
nearest neighbor data point from the second set. Now, for every
random point, we choose the larger of the two distances. These
distances are then sorted to get the empirical Cumulative
Distribution Function (CDF) of the distances chosen in this manner.

We will refer to this distribution as the joint Nearest Neighbor CDF,
CDFuike
TN

(ki,k>) : (1) (2)
Yy "2 (r) = CDFy, k, () — CDF (r )CDF (r), (9)

TEsTs STATITICAL TOEPENDEAME
CTRONGER TEST THAN Falil
‘) (NEM e’ (offEL-ATIOA/

/ﬁ




0.20
zN
0.15 ~~ [onne LKTED AN
0.015 / \
0.10} / \
i = 5 /
—~ 0.05f My 5 ée?
G ‘" i \W/s A / = \ S
/ | 0.00 I:flv"' \' A= NG == | 0.005F \ .
S = I = , \ N
N —0.050 = -, N
Q® ' = 0.000= kN
, —0.10p "
(-§ —0.15) “ Ai(;ch-un& Ma\@\'-LqL"OM> —0.005F
_O 20 | | | ] | | | |
: 20 40 60 20 100 20 40 60 20 100

r (h~tMpc)

r (h~Mpc)

Figure 5. Left panel: Difference of the two-point cross correlation measurements of two sets of dark matter halos (1000 halos each) from the mean of 1000
such measurements where the two sets are spatially uncorrelated (drawn from different realizations). The lighter solid lines represent the difference for 50 of
these uncorrelated samples, meant to serve as a visual measure of the spread in the measurements when there are no true correlations. The darker dashed line
represents the measurement of the same quantity in the case when the two sets of halos are from the simulation, and therefore, correlated. Right panel: Same
measurements as in the left panel, but using ¥ (!-1) (r) (see Eq. 9) to measure cross-correlations instead of the two-point cross-correlation. Using ¢ (-1 (r),
the correlated measurement is clearly separated from the uncorrelated ones. See Sec. 4.2 for more details.
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Figure 6. The solid lines represent the binned distribution of y? values
for 1000 measurements of cross-correlations between two samples of ha-
los (1000 halos each from a (12~ !Gpc)3 volume) which are spatially un-
correlated. The lighter shaded line represents the distribution when cross-
correlations are measured through the two-point function (&), while the
darker line represents the distribution when kNN measurements ((//(1’1))
are used to measure the cross-correlation. The dotted line represents the
value of y2 in the case when the two halo samples are spatially correlated,
and when the cross correlation is measured through &. The dashed line
represents the y2 value when the cross-correlation of these samples is mea-
sured via the nearest neighbor distribution. The cross-correlation is clearly
detected in the latter measurement, as seen by the y2 value being far to the
right of the distribution for the uncorrelated samples (p—value < 1073).
The two-point measurement, on the other hand, fails to detect a statistically
significant correlation.



Joint CDFs for Gaussian fields
Dotted lines: Analytic predictions
Solid lines: Measurements in sims

Dashed: 1NN and 2NN of individual fields
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Figure 1. Top panels: Solid lines represent the peaked CDF of the joint INN (top-left panel) and joint 2NN (top-right panel) distributions for two correlated
(darker lines) and two uncorrelated (lighter lines) sets, each composed 2 x 105 tracers of a Gaussian random field over a (lh‘lec)3 volume (see Sec. 3
for details). Dotted lines indicate the theoretical expectations for these measurements. The dashed lines represent the 1NN(left panel) and 2NN (right panel)
measurements for only one of the tracer sets, shown as a reference. Bottom panels: We plot the fractional differences of the predictions and measurements from
the upper panels with respect to the analytic predictions for the uncorrelated sets for the joint INN (bottom-left panel) and joint 2NN (bottom-right panel)
distributions. The differences in the joint CDFs between the correlated and uncorrelated datasets are especially clear on small scales, and match well with the
analytic expectations. The different scales plotted on the left and right panels indicate the range of scales over which the distributions are well measured with
the choice of measurement parameters mentioned in Sec. 3.
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Figure 2. Solid lines represent the peaked CDF of the joint INN (left panel) and joint 2NN (right panel) distributions for two correlated (darker lines) and
two uncorrelated (lighter lines) sets of simulation particles at z = 0, when the matter field is highly nonlinear on small scales. Each set has 10° particles
downsampled from a (lh‘lec)3 simulation with 5123 particles. The dashed line on each panel represents the first and second nearest neighbor peaked CDF
for a single set of particles for reference. The dotted line in each panel represents the expectation for the joint INN and 2NN CDFs of two uncorrelated sets
of particles given the measurements of their individual 1NN and 2NN distributions. Deviations from this dotted line in each panel represents the degree of

cross-correlation between the datasets. The range of scales on each panel represents the range over which the distributions are well measured for the specific
choice of parameters. See text for more details.
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Figure 3. /%K) () (see Eq. 9), which measures the spatial correlation
between two samples, for various k measured from the 107 most massive
halos and 10° randomly chosen particles from a (12 ~'Gpc)? simulation at
z = 0. These measurements are used in the Fisher matrix calculations in
Sec. 4.1. For each k we plot the measurements over the range of scales that
are used in the analysis for that particular k.
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Figure 4. Constraints on various cosmological parameters from the Fisher
analysis in Sec. 4.1. These are obtained from the cross-correlations of the 10°
most massive halos in the simulation volume (( 14! Gpc)3 ) with the matter
distribution. There is a marked improvement in the constraints when the
cross-correlations are measured through the nearest neighbor distributions
(kNN), compared to when measured through the two-point cross-correlation
& (r), over the same range of scales. The improvement is especially pro-
nounced in some of the parameters, such as og, and M,,. The individual



Pyv = Poj—1yv — Poyv Vk > 1.
Counts in Cell

Predictability Vo0

- Analytic predictions by - V/V =01
Uhlemann, Codis, et al, Cataneo o e = V/V =03
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value statistics NN et e V/V=30
- Use analytic models of the PDF I A U R —e V/V =100
such as Lam & Sheth 2008ab, TN e N e V/V =300
2010, Klypin, Prada et al 2018 NN \’(ﬂ- NV =1000
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- Spherical collapse modeling A

(Banerjee & Abel in prep.) N

- Build emulators from simulations \

(McLaughlin et al 2021, Yuan, 107 ERST 102

Abel et al in prep.)
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Py = Pox—1jv — P-yjv Vk > 1.
Predictability
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paper ) for Ggussmn field 10~ .
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. . , P4
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P v for a general value of k, the individual terms are easy to 104
compute, especially for low values of k. For example,
Pooyy =1—exp [ — AV + %ﬁszo"z, , (18) 10-5
Poylv =Psov
~ (ﬁV - fzzvzo"z,) exp [ — iV + %ﬁzvza‘% , (19 10 pre 1 -t

and so on. Note that just by measuring the first two cumulative viv

. . . . — 2
distributions, Py and Py, one can constrain 72 and o7y, . Con-
cretely,

https://github.com/yipihey/kNN-CDFs



“All theories are legitimate, no matter.
What matters is what you do with them.”

—Jorge Luis Borges
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ABSTRACT

We use the k-nearest neighbor probability distribution function (kNN-PDF, Banerjee & Abel 2021)
to assess convergence in a scale-free N-body simulation. Compared to our previous two-point analysis,
the kNN-PDF allows us to quantify our results in the language of halos and numbers of particles, while
also incorporating non-Gaussian information. We find good convergence for 32 particles and greater
at densities typical of halos, while 16 particles and fewer appears unconverged. Halving the softening
length extends convergence to higher densities, but not to fewer particles. Our analysis is less sensitive
to voids, but we analyze a limited range of underdensities and find evidence for convergence at 16
particles and greater even in sparse voids.
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ABSTRACT

We investigate the application of hybrid effective field theory (HEFT) — which combines a Lagrangian bias expansion with
subsequent particle dynamics from N-body simulations — to the modelling of k-nearest neighbour cumulative distribution
functions (KNN-CDFs) of biased tracers of the cosmological matter field. The ANN-CDFs are sensitive to all higher order
connected N-point functions in the data, but are computationally cheap to compute. We develop the formalism to predict the
kKNN-CDFs of discrete tracers of a continuous field from the statistics of the continuous field itself. Using this formalism, we
demonstrate how KNN-CDF statistics of a set of biased tracers, such as haloes or galaxies, of the cosmological matter field
can be modelled given a set of low-redshift HEFT component fields and bias parameter values. These are the same ingredients
needed to predict the two-point clustering. For a specific sample of haloes, we show that both the two-point clustering and the
kKNN-CDFs can be well-fit on quasi-linear scales (= 20h~'Mpc) by the second-order HEFT formalism with the same values of
the bias parameters, implying that joint modelling of the two is possible. Finally, using a Fisher matrix analysis, we show that
including kNN-CDF measurements over the range of allowed scales in the HEFT framework can improve the constraints on o'g
by roughly a factor of 3, compared to the case where only two-point measurements are considered. Combining the statistical
power of kNN measurements with the modelling power of HEFT, therefore, represents an exciting prospect for extracting greater
information from small-scale cosmological clustering.
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| when kNN measurements are included.
: : ; § The Lagrangian bias models that are central to HEFT assume that at
i the initial, Lagrangian, coordinates g, the tracer density is related to
| - - the large-scale dark matter operators by a linear combination of all
contributions allowed by Newtonian symmetries (Vlah et al. 2016)
—— —l H— ox (q) = F[5(q),sij(q)] (20)
2 2
! | ~ 1+b16(g) +by (5%(9) - (62)) +
- - g , , ,
_ | bz (2(a) — (s2)) + b2 V25(g) + -
: : : : — A +e(q).
i T 1 where we have expanded the functional F to second order. Addi-
- — © < tionally, we have defined the traceless tidal tensor field s;j(q) =
0;0; . . .
- T 1 ( 62] - %6,- j) 6(q). The field e(q) describes the stochastic contri-
: : : : : : : : : : bution to the expansion. The stochastic term generally describes the
- T T 1 fact the bias expansion describes a statistical relationship, and there
| : 1 ‘ 1 | can be deviations from this in any given realization. The stochas-
@ @ i @ @ tic fields are, by construction, uncorrelated with the bias operators
| 1 1 | (€(9)0;) = 0. In the limit of e(g) being distributed as Gaussian
. ' ' , . . . . . . v white noise, its auto-correlation is constant even after advection to
082  0.84 030 032 0.80 0.85 00 01 1.0 15 -1 0 1 g
late-times.
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Comparing a number of Modified gravity
HOD catalogs with matching two point
functions with KNN-CDFs shows their
potential to break degeneracies.
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Figure 2. Fractional differences between the kNN CDFS (non-peaked) measured in redshift space between the fiducial MG and GR HOD catalogs. Liness
show the average of five realizations for each MG simulated compared to the average of the five GR boxes, and the shaded regions show the standard deviation
between the five realizations (also relative to the GR average).



First Application
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ABSTRACT

Distances to the k-nearest-neighbor (kNN) data points from volume-filling query points are a sensitive probe of spatial
clustering. Here we present the first application of kNN summary statistics to observational clustering measurement,
using the 1000 richest redMaPPer clusters (0.1 < z < 0.3) from the SDSS DRS catalog. A clustering signal is defined
as a difference in the cumulative distribution functions (CDFs) or counts-in-cells functions (CICs) of kNN distances
from fixed query points to the observed clusters versus a set of unclustered random points. We find that the & = 1, 2-
NN CDFs (and CICs) of redMaPPer deviate significantly from the randoms’ across scales of 35 to 155 Mpc, which is
a robust signature of clustering. In addition to kNN, we also measure the two-point correlation function for the same
set of redMaPPer clusters versus random points, which shows a noisier and less significant clustering signal within the
same radial scales. Quantitatively, the x? distribution for both the kNN-CDFs and the two-point correlation function
measured on the randoms peak at x? ~ 50 (null hypothesis), whereas the kNN-CDFs (x2? ~ 300, p = 1.54 x 1073)
pick up a much more significant clustering signal than the two-point function (x? ~ 100, p = 1.16 x 1076) when
measured on redMaPPer. Finally, the measured 3NN and 4NN CDFs deviate significantly from the predicted k& = 3, 4-
NN CDFs assuming an ideal Gaussian field, indicating that redMaPPer clusters trace a non-Gaussian density field
which is sensitively picked up by kNN summary statistics. Therefore, the kNN method serves as a more sensitive
probe of clustering complementary to the two point correlation function in sparse (beyond-Gaussian) observational
data sets at large scales, providing a novel approach for constraining cosmology and galaxy—halo connection.

Key words: cosmology: large-scale structure of Universe — galaxies: clusters: general — methods: statistical
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Figure D1. The kNN distances to the 1000 richest redMaPPer clusters measured from 1.3 x 10® query points located at z = 0.2 (842.87
Mpc). The query points are all healpy pixels of the SDSS survey footprint with fgoo4 > 0.5 and zmax > 0.3 The color bars denote the
kNN distances plotted in each panel. Top left: INN distance. Top right: 2NN distance. Bottom left: The difference of the distance to the
2NN and 1NN clusters for every query point. Bottom right: The difference of the distance to the 3NN and 2NN clusters for every query
point.
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Figure 7. Upper panel: x? distribution for the joint k = 1,2 nearest neighbor CDFs, with the blue histograms showing the 2000 random
samples and the dashed vertical red line showing the x? of the 1000 richest redMaPPer clusters. Lower panel: x? distribution for the two
point correlation function &(r), with the blue histograms showing the 2000 random samples and the dashed vertical red line denoting the
x2 of the 1000 richest redMaPPer clusters. The x? distribution for the randoms in the top and bottom panels are almost identical, serving
as the null hypotheses for the clustering detection of the two summary statistics.
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Figure 8. Upper panel: The measured k = 1,2,3,4-NN CDFs
for the 1000 richest redMaPPer clusters are denoted by the solid
curves. The shaded regions around them indicate the lo Jack-
knife errors from 200 Jackknife samples. The dotted turquoise and
green curves denote the predicted 3NN(1,2) and 4NN(1,2) CDFs
assuming a random Gaussian field traced by the clusters, which
are derived from the measured 1NN and 2NN CDFs propagated
through equations 12 and 13. Lower panel: The x2 distribution of
the joint k = 3,4-NN CDFs. The blue histograms denote the x? of
200 Jackknife it measurements of the 3NN and 4NN CDFs, while
the dashed red line marks the x2 for the Gaussian field-prediction
of the 3NN and 4NN CDFs. The predicted CDFs deviate signifi-
cantly from the measurements, highlighting a robust detection of
non-Gaussianity in the redMaPPer clusters.
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Connection to other
statistics

Voronoi cell structure
Suggest map making technique

10%1()(V/V)



Py = Pox—1jv — P-yjv Vk > 1.

Counts in Cell

0
Counts in Cel/PDF/VPF Vv o0
From KNN-CDF you can V/V =01
construct counts in cell for any o =+* —> V/V =03
cell volume. NN T T VY=o
Compare this with standard \ ‘ \ : % jooo
approach of throwing a large S N NN VIV =300
number of spheres at random < ":(‘- e V)V =1000
position and counting how many A
galaxies are within them. 3 .

Void Probability Function (VPF)
(White 1978) is Pqy is the special o ,
case restricted to empty spheres. '

10" 10! 10?

https://github.com/yipihey/KNN-CDFs https://github.com/OliverFHD/CosMomentum https://github.com/mcataneo/pyLDT-cosmo



Pyy = Pog—1v — P-ijv
Counts in
Cylinders

analogous using
2D KNN-CDFs

From two-dimensional
KNN-CDF you can
construct counts in
cylinders for any disk area.

https://github.com/yipihey/kNN-CDFs

Counts in Cell
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kKNN-CDFs
Combines estimator
and Statistic

Perhaps this more useful
generally?
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Conclusions

* Developed a novel summary statistic: KNN-CDFs
» Informative; Interpretable; fast and robust to measure; straightforward to predict;
sensitive to all n-point functions and complementary to 2pt, 3pt functions; complete
statistic for isotropic fields; no averaging or binning; no nuisance parameters

« Shot noise is part of the modeling and applications to samples with low statistics is
more constraining with KNN-CDFs than with 2pt both for auto and cross-correlation

applications
» Applications suggest this approach is useful

* We provide some example code and implementation guidance and hope you will give it a
try and help to further develop this into a ubiquitous approach to characterize clustering.

» Looking forward to working with you this week to combine our approaches.
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Figure 12. Volume-weighted density distributions. The top panel shows the
histograms for the 2563 run, the bottom panel those for the 323 run. The
zeroth-order density estimated from a Voronoi tessellation is shown with
a dashed line and the total sheet DM density with a solid line. At both
resolutions, both the Voronoi and the stream density approach a p~! power
law at high densities. Also, the two methods produce different estimates
at intermediate densities of p/p ~ 10. The bottom panel also shows in
grey the density histograms from our method for all simulations to aid the
comparison.
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Figure 13. 2D histogram comparing the zeroth-order Voronoi density esti-
mate to the total sheet density. The correspondence is quite good. The largest
difference is observed for values between three times and 30 times the mean
density of DM. The zeroth-order Voronoi density estimators overestimate
the volumes in regions around filaments and sheets.



Some things easier to
predict than others

Intriguing:
643 simulation, 40 Mpc/h

tetrahedra with initial side length of
10 Mpc/h

Mass weighted final density
extraordinarily well predicted up to
over-densities of 1e3 or even 1e4!

/\ Xin, Mansfield, Abel, in progress
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