
Constraining Cosmology
with

Persistent Homology
Matteo Biagetti, Alex Cole, Gary Shiu and Jacky Yip

University of Wisconsin-MadisonUniversity of 
AmsterdamIFPU/SISSA

June 2022, Trieste



Overview of This Talk

2

Persistent Homology Basics

Persistence of the Large 
Scale Structures

Summary Statistics

Constraining Cosmology



Persistent Homology Basics

3



=       ≠
topologically 
equivalent

not
topologically 
equivalent

Topology and Homology

4

Persistent Homology Basics



=       ≠
topologically 
equivalent

not
topologically 
equivalent

Topology and Homology

ith homology 
group of X 

i-dim
holes

Betti number

5

Persistent Homology Basics



=       ≠
topologically 
equivalent

not
topologically 
equivalent

Topology and Homology

1 hole 1 hole 3 holes

(# of connected components)

(# of voids)

ith homology 
group of X 

i-dim
holes

Betti number

6

Persistent Homology Basics



 Homology of a Point Cloud
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Adding Simplices

n-simplices:

n = 0 n = 1

n = 3n = 2
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Changing Homology Across Length Scales

- Length scale parameter
- Decides which simplices are 

added along with a set of rules

a simplicial complex 9
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Tracking Persistent Features

describe the topological 
object as a whole

Apart from
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Tracking Persistent Features

Track individual features 
(n-dimensional holes / n-cycles) 
that persist across scales

describe the topological 
object as a whole
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http://www.youtube.com/watch?v=oGHp9K8sZlg
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Tracking Persistent Features

Track individual features 
(n-dimensional holes / n-cycles) 
that persist across scales

describe the topological 
object as a whole

Apart from

we can for each 
feature
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Tracking Persistent Features
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Tracking Persistent Features
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Tracking Persistent Features

just before they are trivialized
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Persistent Homology

a filtration

filtration parameter/time
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Persistent Homology
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filtration parameter/time
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Persistent Homology

a filtration

persistence diagrams, persistence images, data vectors…

filtration parameter/time

24

Persistent Homology Basics



Applications of Persistent Homology in Other Fields

Neuroscience Distribution of 
activities in the brain

What is the point cloud?Field Example?

Relating neuronal 
activities to image 

stimulations

Robotics
Mapping unknown 
environments by 

cockroaches

Positions of cyborg 
cockroaches

Sensor 
networks Signal coverage Locations of sensors

Computer 
vision

Shape 
characterization

Points sampled on the 
shape’s surface 

and bioinformation, signal analysis, genomics, language processing… 
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Persistence of the Large Scale Structure

26
(Photo credit: Villaescusa-Navarro et al., 2020)



Applying Persistent Homology to the Large Scale Structure

Persistence of the Large Scale Structures
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Optimal summary 
statistics from late-time 

observables

Persistent homology 
is interpretable

Information from non-linear 
scales, complimentary to 

momentum-space statisticsAs neural network 
input

LSS as a complex hierarchy
of multi-scale features

Coarse-graining 
process



More on coarse-graining:

Applying Persistent Homology to the Large Scale Structure

Persistence of the Large Scale Structures
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Defining the Filtration

1) The simplicial complex from which the n-simplices are taken
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Defining the Filtration

1) The simplicial complex from which the n-simplices are taken
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Delaunay
triangulation

Galaxy distribution (50 Mpc/h thick)

1 Gpc/h

1 Gpc/h
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Defining the Filtration

1) The simplicial complex from which the n-simplices are taken
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Delaunay
triangulation

1 Gpc/h

1 Gpc/h

Galaxy distribution (50 Mpc/h thick)
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2) The rules for adding the n-simplices that relates to     : the Vietoris-Rips filtration

Defining the Filtration
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a) All 0-simplices are added at             .
b) 1-simplices are added if the vertices are less than or equal to       apart.
c) Higher-dimensional simplices are added if all the faces are present. 



2) The rules for adding the n-simplices that relates to     : the Vietoris-Rips filtration

Defining the Filtration
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Persistence of the Large Scale Structures

a) All 0-simplices are added at             .
b) 1-simplices are added if the vertices are less than or equal to       apart.
c) Higher-dimensional simplices are added if all the faces are present. 

(Topaz et al., 2015)



Problem with Outliers
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a single galaxy

in the void



Problem with Outliers

41

Persistence of the Large Scale Structures

outlier
a single galaxy

in the void



Problem with Outliers
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Persistence of the Large Scale Structures

outlier
a single galaxy

in the void

reduced by ~half!
⇒ Filtration unstable  
    against addition of 
    outliers



Dealing with Outliers — The Radius Function
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Persistence of the Large Scale Structures

a) All 0-simplices are added at             .
b) 1-simplices are added if the vertices are less than or equal to       apart.
c) Higher-dimensional simplices are added if all the faces are present. 



      : a function of point     that measures its “unimportance”; impedes the ball’s growth
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Dealing with Outliers — The Radius Function
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Persistence of the Large Scale Structures

a) All 0-simplices are added at             .
b) 1-simplices are added if the vertices are less than or equal to       apart.
c) Higher-dimensional simplices are added if all the faces are present. 

b) 1-simplices are added if the two relevant balls with radius             touch or overlap.

      : a function of point     that measures its “unimportance”; impedes the ball’s growth
: a mixing parameter; 

uniform



What should         be? It measures the “unimportance”, i.e., how much of an outlier     is.

Dealing with Outliers — The DTM function
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What should         be? It measures the “unimportance”, i.e., how much of an outlier     is.

Employ the Distance-To-Measure (DTM) function:

Hence,     in a sparsely populated region ⇒     is an outlier ⇒           is substantial.

: # of nearest neighbours
        : the set of    -nearest neighbours of 
: a mixing parameter; 

Dealing with Outliers — The DTM function
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The Nearest-Neighbour Parameter 
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Persistence of the Large Scale Structures

Note that we didn’t fix   .

It turns out that     has an interesting effect on the filtration          
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http://www.youtube.com/watch?v=y-mgVTobgwY


more features; smaller scale
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Persistence of the Large Scale Structures

Note that we didn’t fix   .

It turns out that     has an interesting effect on the filtration                     tracks features of the    
  corresponding size

 is a hyperparameter of the filtration



Extract multi-scale information 
from all the filtrations 

from varying 

The Nearest-Neighbour Parameter 
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Note that we didn’t fix   .

It turns out that     has an interesting effect on the filtration                     tracks features of the    
  corresponding size

 is a hyperparameter of the filtration
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Dataset
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Molino Suite
galaxy catalogs

(Hahn & Villaescusa-Navarro, 2020)
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Molino Suite
galaxy catalogs

(Hahn & Villaescusa-Navarro, 2020)

Quijote Simulations
halo catalogs

(Villaescusa-Navarro et al., 2020)

Halo Occupation Distribution (HOD) model
- Places central & satellite galaxies based on 
  mass of the host halo

- 5 HOD parameters 

- N-body simulations

- 5 cosmological parameters
  & neutrino mass

- 5123 particles 
  in 1 (Gpc/h)3 box

Summary Statistics



- 75000 catalogs in total
   - Covariance & derivative estimates
   - Convergence checks

- ~150000 galaxies at z = 0 in each catalog
   - ~60000 0-cycles (clusters of galaxies)
   - ~30000 1-cycles (loops)
   - ~20000 2-cycles (voids)

- Total 11 parameters
   - Cosmological:
   - HOD: 
   - Catalogs for each varied one step above and below

- Redshift space displacement applied along each axis

Dataset
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Molino Suite
galaxy catalogs

(Hahn & Villaescusa-Navarro, 2020)

Quijote Simulations
halo catalogs

(Villaescusa-Navarro et al., 2020)

Halo Occupation Distribution (HOD) model
- Places central & satellite galaxies based on 
  mass of the host halo

- 5 HOD parameters 

- N-body simulations
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  & neutrino mass

- 5123 particles 
  in 1 (Gpc/h)3 box
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Data Vector for a single  
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Given    , compute the filtrationPoint cloud of a galaxy mock A list of birth and death times 

Summary Statistics
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A list of birth and death times 

Data Vector for a single  

Summary Statistics
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A list of birth and death times 

Data Vector for a single  

a distribution 
for 

1-cycles,

B1

a distribution 
for 

0-cycles,

B0

a distribution 
for 

2-cycles,

B2

a distribution 
for 

1-cycles,

D1

a distribution 
for 

0-cycles,

D0

a distribution 
for 

2-cycles,

D2
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A list of birth and death times 

Data Vector for a single  

a distribution 
for 

1-cycles,

B1

a distribution 
for 

0-cycles,

B0

a distribution 
for 

2-cycles,

B2

a distribution 
for 

1-cycles,

D1

a distribution 
for 

0-cycles,

D0

a distribution 
for 

2-cycles,

D2

averaged over 9000 (fiducial)
and 1500 (       ) mocks

Summary Statistics
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Varying   

Summary Statistics
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Full Data Vector

Data vectors from  
concatenate

Summary Statistics



Constraining Cosmology
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(Photo credit: Hubble Ultra Deep Field)



Fisher Information Matrix
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Constraining Cosmology

1-σ constraint for parameter     :

Covariance matrix:



Data vector derivative for      :

Fisher Information Matrix
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Covariance of the data vector at fiducial cosmology:

Fisher Information Matrix
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Constraining Cosmology

(correlation matrix here)



Covariance derivative term: conservatively omitted; information overlap

Other checks:
- Invertible covariance matrix
- Gaussianity of summary statistics
- Convergence of components and constraints

Fisher Information Matrix
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Power Spectrum Measurements
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Constraining Cosmology

We also compute the 
galaxy power spectra monopole and quadrupole
up to                                 ,
as the baseline for comparison.
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Constraining Cosmology

(marginalized over 
HOD parameters)
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Constraining Cosmology

(marginalized over 
HOD parameters)



1-σ constraints
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Constraining Cosmology

galaxy 
bispectrum 
monopole

(Hahn & Villaescusa-Navarro, 2020)
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Constraining Cosmology

HOD parameters

HOD parameters
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Constraining Cosmology

Robustness Against HOD Parameters



Robustness Against HOD Parameters
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“Cost of marginalization”:

Constraining Cosmology



Concluding Remarks

● Promising results and robustness over momentum-space statistics
○ Against marginalization over nuisance parameters
○ Despite the use of a very basic data vector
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Concluding Remarks

● Promising results and robustness over momentum-space statistics
○ Against marginalization over nuisance parameters
○ Despite the use of a very basic data vector

● Data vector excludes much information on the level of individual features
○ Limited by dataset, convergence requirements
○ Persistence diagrams, persistence images…
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Concluding Remarks

● Promising results and robustness over momentum-space statistics
○ Against marginalization over nuisance parameters
○ Despite the use of a very basic data vector

● Data vector excludes much information on the level of individual features
○ Limited by dataset, convergence requirements
○ Persistence diagrams, persistence images…

● Output of persistence computation as input of machine learning strategies
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Grazie mille !
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https://docs.google.com/file/d/10xs6YJHk3n6RwBYtzdvB2wC7u9YCK57t/preview


83

Persistence of the Large Scale Structures

https://docs.google.com/file/d/1Ic4qsIcuiPPEvOQHZUJNKkvApHEgtZpc/preview

