Constraining Cosmology with **Persistent Homology**

Matteo Biagetti, Alex Cole, Gary Shiu and Jacky Yip

IFPU/SISSA

University of Amsterdam

University of Wisconsin-Madison

Overview of This Talk

Topology and Homology

Topology and Homology

Topology and Homology

Homology of a Point Cloud

Adding Simplices

Changing Homology Across Length Scales

 $\nu = 5$

- Length scale parameter
- Decides which simplices are added along with a set of rules

Changing Homology Across Length Scales

 $\nu = 8$

Changing Homology Across Length Scales

Changing Homology Across Length Scales

$$\nu = 13$$

Changing Homology Across Length Scales

$$\nu = 13$$

Tracking Persistent Features

Apart from

describe the topological object as a whole

Tracking Persistent Features

ID	Dimension	$ u_{ m birth}$	$ u_{\mathrm{death}} $
1	0	0	0.5
2	0	0	0.707
3	0	0	1
100	0	0	inf
101	1	8.732	8.733
178	1	7.632	12.029
179	1	8.485	12.889
180	1	6.718	12.905

Tracking Persistent Features

 $\nu = 14.00$

	D	Dimension	$ u_{ m birth}$	ν_{i}	death
	1	0	0		0.5
	2	0	0		0.707
	3	0	0		1
1.4					
10	0	0	0		inf
10	1	1	8.732		8.733
17	8	1	7.632	1	2.029
17	9	1	8.485	1	2.889
18	0	1	6.718	1	2.905

Tracking Persistent Features

ID	Dimension	$ u_{\mathrm{birth}}$	ν_{death}	
1	0	0	0.5	
2	0	0	0.707	
3	0	0	1	
100	0	0	inf	
101	1	8.732	8.733	
178	1	7.632	12.029	
179	1	8.485	12.889	
180	1	6.718	12.905	

Persistent Homology

Persistent Homology

ID	Dimension	$ u_{ m birth}$	ν_{death}
1	0	0	0.5
2	0	0	0.707
3	0	0	1
100	0	0	inf
101	1	8.732	8.733
178	1	7.632	12.029
179	1	8.485	12.889
180	1	6.718	12.905

Persistent Homology

	ID	Dimension	$ u_{ m birth}$	$\nu_{\rm death}$
	1	0	0	0.5
	2	0	0	0.707
	3	0	0	1
	100	0	0	inf
	101	1	8.732	8.733
>	178	1	7.632	12.029
	179	1	8.485	12.889
	180	1	6.718	12.905

persistence diagrams, persistence images, data vectors...

24

Applications of Persistent Homology in Other Fields

Field	Example?	What is the point cloud?
Computer vision	Shape characterization	Points sampled on the shape's surface
Neuroscience	Relating neuronal activities to image stimulations	Distribution of activities in the brain
Robotics	Mapping unknown environments by cockroaches	Positions of cyborg cockroaches
Sensor networks	Signal coverage	Locations of sensors

and bioinformation, signal analysis, genomics, language processing...

Persistence of the Large Scale Structure

1) The simplicial complex from which the n-simplices are taken

1) The simplicial complex from which the n-simplices are taken

Galaxy distribution (50 Mpc/h thick)

1) The simplicial complex from which the n-simplices are taken

Galaxy distribution (50 Mpc/h thick)

Persistence of the Large Scale Structures

1) The simplicial complex from which the n-simplices are taken

Galaxy distribution (50 Mpc/h thick)

2) The rules for adding the n-simplices that relates to ν : the Vietoris-Rips filtration

- 2) The rules for adding the n-simplices that relates to ν : the Vietoris-Rips filtration
 - a) All 0-simplices are added at $\nu = 0$.
 - b) 1-simplices are added if the vertices are less than or equal to 2ν apart.
 - c) Higher-dimensional simplices are added if all the faces are present.
Defining the Filtration

- 2) The rules for adding the n-simplices that relates to ν : the Vietoris-Rips filtration
 - a) All 0-simplices are added at $\nu = 0$.
 - b) 1-simplices are added if the vertices are less than or equal to 2ν apart.
 - c) Higher-dimensional simplices are added if all the faces are present.

Persistence of the Large Scale Structures

 $-\nu_{\rm death}$

41

 $\nu = 333$

 $\nu = 175$

- a) All 0-simplices are added at $\nu = 0$.
- b) 1-simplices are added if the vertices are less than or equal to 2ν apart.
- c) Higher-dimensional simplices are added if all the faces are present.

- a) All 0-simplices are added at $\nu = 0$.
- b) 1-simplices are added if the vertices are less than or equal to 2ν apart.
- c) Higher-dimensional simplices are added if all the faces are present.

b) 1-simplices are added if the two relevant balls with radius $r_x(\nu)$ touch or overlap.

$$r_x(\nu) = (\nu^q - f(x)^q)^{1/q}$$

 $f(\boldsymbol{x})\!\!:$ a function of point \boldsymbol{x} that measures its "unimportance"; impedes the ball's growth $q\!\!:$ a mixing parameter; q=2

- a) All 0-simplices are added at $\nu = 0$.
- b) 1-simplices are added if the vertices are less than or equal to 2ν apart.
- c) Higher-dimensional simplices are added if all the faces are present.

b) 1-simplices are added if the two relevant balls with radius $r_x(\nu)$ touch or overlap.

$$r_x(\nu) = (\nu^q - f(x)^q)^{1/q}$$

 $f(\boldsymbol{x})$: a function of point \boldsymbol{x} that measures its "unimportance"; impedes the ball's growth q: a mixing parameter; q=2

) All 0-simplices are added at $\nu = \Re^{f(x)}$

b)

- 1-simplices are added if the vertices are less than or equal to 2
 u apart. -
- c) Higher-dimensional simplices are added if all the faces are present.

1-simplices are added if the two relevant balls with radius $r_x(
u)$ touch or overlap.

$$r_x(\nu) = (\nu^q - f(x)^q)^{1/q}$$

 $f(\boldsymbol{x})$: a function of point \boldsymbol{x} that measures its "unimportance"; impedes the ball's growth q: a mixing parameter; q=2

Dealing with Outliers — The DTM function

What should f(x) be? It measures the "unimportance", i.e., how much of an outlier x is.

Dealing with Outliers — The DTM function

What should f(x) be? It measures the "unimportance", i.e., how much of an outlier x is.

Employ the Distance-To-Measure (DTM) function:

$$f(x) = \text{DTM}(x) \equiv \left(\frac{1}{k} \sum_{X_i \in \mathcal{N}_k(x)} \|x - X_i\|^p\right)^{1/p}$$

k : # of nearest neighbours $\mathcal{N}_k(x)$: the set of k-nearest neighbours of x p : a mixing parameter; $p\,=\,2$

Hence, x in a sparsely populated region $\Rightarrow x$ is an outlier $\Rightarrow f(x)$ is substantial.

The Nearest-Neighbour Parameter k

Note that we didn't fix k_{-}

It turns out that k has an interesting effect on the filtration

The Nearest-Neighbour Parameter k

Note that we didn't fix k_{-}

It turns out that k has an interesting effect on the filtration

The Nearest-Neighbour Parameter k

Note that we didn't fix k_{\perp}

It turns out that k has an interesting effect on the filtration k tracks features of the

corresponding size

The Nearest-Neighbour Parameter k

Note that we didn't fix k_{\perp}

It turns out that k has an interesting effect on the filtration k tracks features of the

corresponding size

k is a hyperparameter of the filtration

The Nearest-Neighbour Parameter k

Note that we didn't fix k_{\cdot}

It turns out that k has an interesting effect on the filtration

 \boldsymbol{k} tracks features of the

corresponding size

k is a hyperparameter of the filtration

Extract multi-scale information from all the filtrations from varying k

Dataset

Molino Suite galaxy catalogs (Hahn & Villaescusa-Navarro, 2020)

Dataset

- N-body simulations

- 5 cosmological parameters & neutrino mass

- 512³ particles in 1 (Gpc/h)³ box

Quijote Simulations halocatalogs (Villaescusa-Navarro et al., 2020)

Molino Suite galaxy catalogs (Hahn & Villaescusa-Navarro, 2020)

Halo Occupation Distribution (HOD) model

- Places central & satellite galaxies based on mass of the host halo
- 5 HOD parameters

Dataset

- N-body simulations

5 cosmological parameters
 & neutrino mass

- 512³ particles
 in 1 (Gpc/h)³ box

Quijote Simulations halocatalogs (Villaescusa-Navarro et al., 2020) molino

Molino Suite galaxy catalogs

(Hahn & Villaescusa-Navarro, 2020)

- 75000 catalogs in total

- Covariance & derivative estimates
- Convergence checks
- ~150000 galaxies at z = 0 in each catalog
 - ~60000 0-cycles (clusters of galaxies)
 - ~30000 1-cycles (loops)
 - ~20000 2-cycles (voids)

- Total 11 parameters

- Cosmological: $\Omega_{
 m m}, \Omega_{
 m b}, h, n_s, \sigma_8, M_{
 m
 u}$
- HOD: $\log M_{\min}, \sigma_{\log M}, \log M_0, \alpha, \log M_1$
- Catalogs for each varied one step above and below
- Redshift space displacement applied along each axis

Halo Occupation Distribution (HOD) model

- Places central & satellite galaxies based on mass of the host halo
- 5 HOD parameters

Data Vector for a single k

Point cloud of a galaxy mock

Given k, compute the filtration

A list of birth and death times

Data Vector for a single k

ID	Dimension	$ u_{ m birth}$	$ u_{\mathrm{death}} $
1	0	0	0.5
2	0	0	0.707
3	0	0	1
100	0	0	inf
101	1	8.732	8.733
178	1	7.632	12.029
179	1	8.485	12.889
180	1	6.718	12.905

A list of birth and death times

Data Vector for a single k

Data Vector for a single k

Varying k

Full Data Vector

65

Constraining Cosmology

$$F_{ij} = D_{,i}^T C^{-1} D_{,j} + \frac{1}{2} \operatorname{Tr} \left[\left(C^{-1} C_{,i} \right) \left(C^{-1} C_{,j} \right) \right]$$

Covariance matrix:

$$F^{-1}$$

1- σ constraint for parameter θ_i : $\sigma_i = \sqrt{(F^{-1})_{ii}}$

$$F_{ij} = \underline{D_{,i}^T} C^{-1} \underline{D_{,j}} + \frac{1}{2} \operatorname{Tr} \left[\left(C^{-1} C_{,i} \right) \left(C^{-1} C_{,j} \right) \right]$$

Data vector derivative for θ_i : $D_{,i} = (D(\theta_i^+) - D(\theta_i^-))/2\theta_i$

$$F_{ij} = D_{,i}^T \underline{C^{-1}} D_{,j} + \frac{1}{2} \operatorname{Tr} \left[\left(C^{-1} C_{,i} \right) \left(C^{-1} C_{,j} \right) \right]$$

Covariance of the data vector at fiducial cosmology: $C_{ij} = \langle (D_i - D_{\text{mean}})(D_j - D_{\text{mean}}) \rangle$

$$F_{ij} = D_{,i}^T C^{-1} D_{,j} + \frac{1}{2} \operatorname{Tr} \left[\left(C^{-1} C_{,i} \right) \left(C^{-1} C_{,j} \right) \right]$$

Covariance derivative term: conservatively omitted; information overlap

Other checks:

- Invertible covariance matrix
- Gaussianity of summary statistics
- Convergence of components and constraints

Power Spectrum Measurements

We also compute the galaxy power spectra <u>monopole</u> and <u>quadrupole</u> up to $k_{\text{max}} = 0.4 \ h/\text{Mpc}$, as the baseline for comparison.

Constraining Cosmology

Constraining Cosmology

$1-\sigma$ constraints

				galaxy
		h = 0.4 h/Mpc	(Hahn & Villaescusa-Navarro, 2020) h = -0.2 h / Mpc	bispectrum
r		$\kappa_{\rm max} = 0.4 \ m/{\rm Mpc}$	$\kappa_{\rm max} = 0.2 \ h/{\rm Mpc}$	monopole
	PH	$P_0^{\rm g} + P_2^{\rm g}$	$P_0^{\rm g} + P_2^{\rm g} + B_0^{\rm g}$	
$\Omega_{\rm m}$	0.016	0.039	0.030	
$\Omega_{ m b}$	0.010	0.017	0.013	
h	0.089	0.208	0.157	
$n_{\rm s}$	0.062	0.243	0.165	
σ_8	0.018	0.113	0.053	
$M_{\nu} \ (\mathrm{eV})$	0.129	0.414	0.282	

Robustness Against HOD Parameters

Robustness Against HOD Parameters

Concluding Remarks

- Promising results and robustness over momentum-space statistics
 - Against marginalization over nuisance parameters
 - Despite the use of a very basic data vector

Concluding Remarks

- Promising results and robustness over momentum-space statistics
 - Against marginalization over nuisance parameters
 - Despite the use of a very basic data vector

- Data vector excludes much information on the level of individual features
 - Limited by dataset, convergence requirements
 - Persistence diagrams, persistence images...

Concluding Remarks

- Promising results and robustness over momentum-space statistics
 - Against marginalization over nuisance parameters
 - Despite the use of a very basic data vector

- Data vector excludes much information on the level of individual features
 - Limited by dataset, convergence requirements
 - Persistence diagrams, persistence images...

• Output of persistence computation as input of machine learning strategies

$\nu = 0.00$

Persistent Homology Basics

Persistence of the Large Scale Structures

