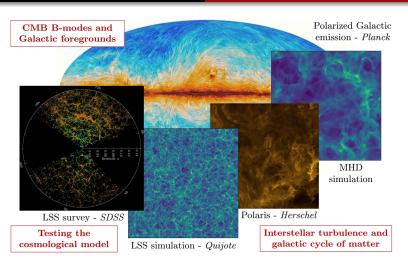
Scattering transforms, recent applications in astrophysics and cosmology

Erwan Allys LPENS & ENS Center for Data Sciences, Paris

> IFPU focus week Triestre, June 29th 2022

Outline

- Which statistics for non-Gaussian astrophysics?
- 2 Cosmological parameter estimation from LSS
- 3 Generative models and components separation



Common difficulty : non-linearity \Rightarrow non-Gaussianity \rightarrow Important lever arm for a lot of astrophysical objectives

Which statistics for non-Gaussian astrophysics?

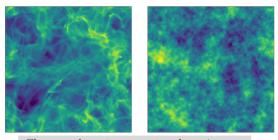
- (Additional) Requirements for summary statistics
 - ▶ Being expressive
 - → To model/characterize a process (sufficient statistics)
 - → To classify/infer parameters (e.g. Fisher information)
 - ▶ Low dimensional and low-variance
 - → Expressivity from a single image?
 - \rightarrow Carefully concatenate \neq statistics

(Park, EA+, 2022)

- Stability
 - \rightarrow To noise
 - \rightarrow To small deformations
- ▶ Physically interpretable

physical properties $\xrightarrow{\text{simplify characterization of}}$ statistical description $\xrightarrow{\text{guide the construction of}}$

Which role for the power spectrum?



Champs de même spectre de puissance

- Power Spectrum: not sufficient, but essential
 - ▶ Do not characterize structures
 - Still excellent physical tool to check
 - ▶ Provide benchmark and sandbox

Beyond PS \Rightarrow Fourier analysis must be abandoned

Which statistics for non-Gaussian astrophysics?

• Usual statistics reach their limits

- Very efficient for perturbative regime
- ▶ Non-perturbative non-Gaussian regime:
 - → High dimension/high variance
 - \rightarrow Lack of generic efficient methods
- ⇒ Active area of research
- ⇒ Increasing use of Machine Learning tools

Which statistics for non-Gaussian astrophysics?

• Usual statistics reach their limits

- Very efficient for perturbative regime
- ▶ Non-perturbative non-Gaussian regime:
 - → High dimension/high variance
 - \rightarrow Lack of generic efficient methods
- ⇒ Active area of research
- ⇒ Increasing use of Machine Learning tools

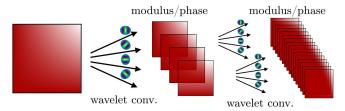
• Machine Learning for astrophysics?

- ► Impressive successes with non-Gaussian fields
- ► Require good quality dataset
 - \rightarrow often small amount of observational data
 - \rightarrow realistic simulations not always available
- ▶ Physical interpretation is problematic
- ⇒ A lot of application are still very difficult

→ Can we find a solution in-between?

Scattering transform statistics

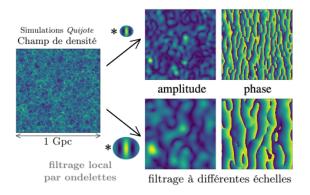
- Scattering Transform (ST) statistics (Mallat+, 2010+)
 - Developed in data sciences
 - Inspired from neural networks constructions
 - \rightarrow efficient characterization and reduced variance
 - Do not need any training stage
 - → explicit mathematical form and interpretability



- → Wavelet filters separating the different scales
- → Coupling between scales with non-linearities

Scattering Transform statistics

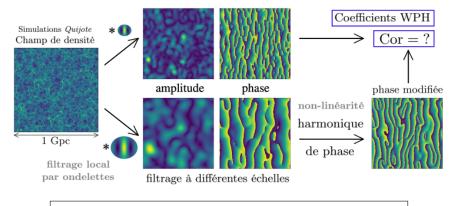
• Correlations/successive convolutions unusable



→ Need non-linearity to characterize scale interactions

Scattering Transform statistics

• Wavelet Phase Harmonics (WPH) and phase alignment



→ Efficient characterization of scale interactions

Scattering Transform statistics

- Coming back at the requirements
 - ▶ Being expressive
 - \rightarrow We'll see!:-)
 - ▶ Low dimensional and low-variance
 - \rightarrow We'll see!:-)
 - ► Stability
 - → Linearize noise and small deformations
 - \rightarrow Logarithmic bins in Fourier + contractive operators
 - Physically interpretable
 - $\rightarrow Natural$ notion of interaction between scales

Different scientific objectives

- Different methodological objectives (with increasing subjective difficulty...)
 - ► Estimate physical parameters
 - ▶ Model an astrophysical process
 - ► Separate different components
 - ► Constraint a physical model

Different scientific objectives

- Different methodological objectives (with increasing subjective difficulty...)
 - ► Estimate physical parameters
 - ▶ Model an astrophysical process
 - ► Separate different components
 - ► Constraint a physical model

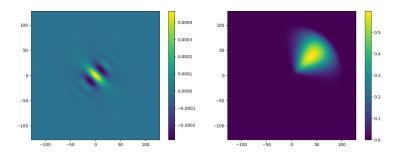
→ ST reached or improved state-of-the-art on each topic

Outline

- Which statistics for non-Gaussian astrophysics?
- 2 Cosmological parameter estimation from LSS
- 3 Generative models and components separation

Wavelet transform and multiscale analysis

- Set of wavelets $\psi_{i,\theta}(x,y)$
 - ▶ Localized wave packet, probing a given spectral domain
 - ▶ Set of wavelets obtained by discrete dilations and rotations

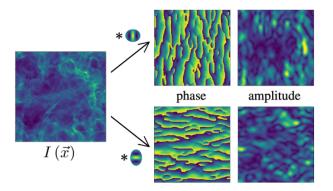


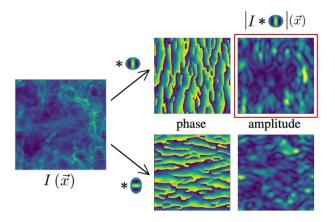
- $\rightarrow \psi_{i,\theta}$ probe the 2^j scale with orientation θ
 - → Spectral analysis of localized features

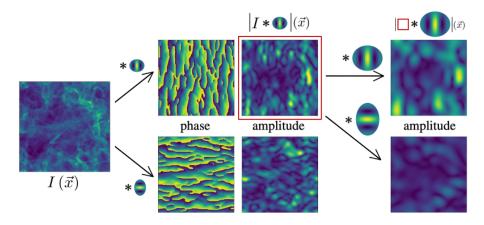
Wavelet transform and multiscale analysis

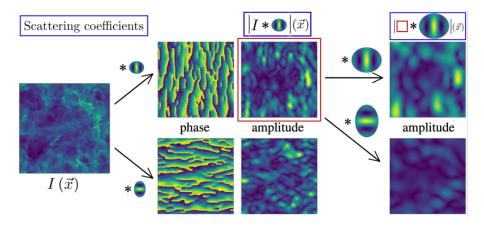
• Convolution of a LSS density field $\rho(\vec{x})$ with $\psi_{j,\theta}(\vec{x})$:

$$(\rho \star \psi_{i,\theta}) (\vec{x})$$









- Computation of the scattering coefficients
 - ▶ From an image $I(\mathbf{r})$

$$\rightarrow \boxed{S_0 = \int I(\boldsymbol{r}) \, \mathrm{d}^2 r}$$

- Computation of the scattering coefficients
 - ▶ From an image I(r)

$$ightarrow \int S_0 = \int I(m{r}) \; \mathrm{d}^2 r$$

Filtering at a first scale with ψ_{i_1,θ_1}

$$|I*\psi_{j_1,\theta_1}|(\boldsymbol{r})$$

$$\rightarrow$$
 one image for each (j_1, θ_1) $\rightarrow S_1(j_1, \theta_1) = \int |I * \psi_{j_1, \theta_1}| (\mathbf{r}) d^2 \mathbf{r}$

• Computation of the scattering coefficients

▶ From an image I(r)

$$\to \boxed{S_0 = \int I(\boldsymbol{r}) \, \mathrm{d}^2 r}$$

Filtering at a first scale with ψ_{i_1,θ_1}

$$|I*\psi_{j_1,\theta_1}|(\boldsymbol{r})$$

- \rightarrow one image for each (j_1, θ_1) $\rightarrow S_1(j_1, \theta_1) = \int |I * \psi_{j_1, \theta_1}|(\mathbf{r}) d^2r$
- ▶ Filtering at a second scale with ψ_{j_2,θ_2}

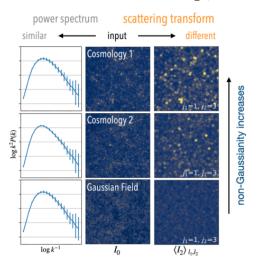
$$|I*\psi_{j_1,\theta_1}|*\psi_{j_2,\theta_2}|(\boldsymbol{r})$$

 \rightarrow one image for each $(j_1, \theta_1, j_2, \theta_2)$

$$\rightarrow S_2(j_1, \theta_1, j_2, \theta_2) = \int \left| \left| I * \psi_{j_1, \theta_1} \right| * \psi_{j_2, \theta_2} \right| (\boldsymbol{r}) \, \mathrm{d}^2 r$$

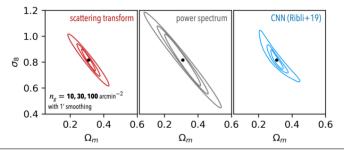
Application to weak lensing convergence fields

• Cosmological inference and weak lensing (Cheng+, 2020)



Application to weak lensing convergence fields

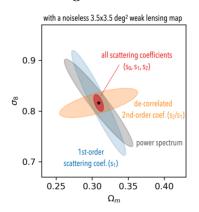
- Cosmological inference and weak lensing (Cheng+, 2020)
 - Simulated weak-lensing convergence maps
 - ▶ Power spectrum, WST (\sim 100 coeffs), and neural networks
 - $ightharpoonup \Omega_m$ and σ_8 , from Fisher estimates

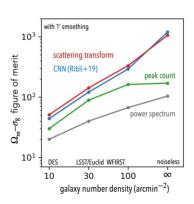


→ Results on par with state-of-the-art neural networks

Application to weak lensing convergence fields

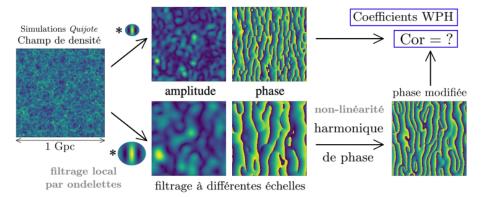
• Cosmological inference and weak lensing (Cheng+, 2020)





→ Non-Gaussian features identification + stable under noise

• Wavelet Phase Harmonics (WPH) schematic computation



- Coherent structures from wavelet transform $\rho \star \psi_{\vec{k}}$
 - ► Covariance of wavelet transforms:

$$C_{\vec{k}_1,\vec{k}_2} = \operatorname{Cov}\left[\rho \star \psi_{\vec{k}_1}(\vec{x}), \rho \star \psi_{\vec{k}_2}(\vec{x})\right]$$

- ▶ Vanishing if $\vec{k}_1 \neq \vec{k}_2$ since maps band-passed at \neq frequencies
- Non-linearities required to couple different wavelet bands

- Phase harmonics of wavelet coefficients
 - ▶ Take $z = |z|e^{i \cdot \arg(z)} \in \mathbb{C}$, its p^{th} phase harmonic is:

$$[z]^p = |z|e^{i \cdot p \cdot \arg(z)}$$

- Phase harmonics of wavelet coefficients
 - ▶ Take $z = |z|e^{i \cdot \arg(z)} \in \mathbb{C}$, its p^{th} phase harmonic is:

$$[z]^p = |z| e^{i \cdot p \cdot \arg(z)}$$

- $ightharpoonup
 ightharpoonup
 ho \star \psi_{\vec{k}_1}$ contains the \vec{k}_1 spatial frequency
 - $\rightarrow \left[\rho \star \psi_{\vec{k}_1}\right]^p$ contains the $p \cdot \vec{k}_1$ spatial frequency

• Phase harmonics of wavelet coefficients

▶ Take $z = |z|e^{i \cdot \arg(z)} \in \mathbb{C}$, its p^{th} phase harmonic is:

$$[z]^p = |z| e^{i \cdot p \cdot \arg(z)}$$

- $ightharpoonup
 ightharpoonup
 ho \star \psi_{\vec{k}_1}$ contains the \vec{k}_1 spatial frequency
 - $\rightarrow \left[\rho \star \psi_{\vec{k}_1}\right]^p$ contains the $p \cdot \vec{k}_1$ spatial frequency
- ▶ ⇒ Non-vanishing covariance terms with:

$$\operatorname{Cov}\left(\left[\rho\star\psi_{\vec{k}_1/2}\right]^2,\rho\star\psi_{\vec{k}_1}\right)$$

→ Statistics of relative phase shifts between wavelet bands

• Constructing WPH statistics

$$\boxed{C_{\vec{k}_1,p_1,\vec{k}_2,p_2} = \operatorname{Cov}\left(\left[\rho \star \psi_{\vec{k}_1}(\vec{x})\right]^{p_1}, \left[\rho \star \psi_{\vec{k}_2}(\vec{x})\right]^{p_2}\right)}$$

"WPH moments"

- One moment for each $(\vec{k}_1, \vec{k}_2, p_1, p_2)$ set
- ▶ Different couplings between pairs of scales
- ▶ WPH statistics built from a set of WPH moments

• Constructing WPH statistics

$$C_{\vec{k}_1, p_1, \vec{k}_2, p_2} = \operatorname{Cov}\left(\left[\rho \star \psi_{\vec{k}_1}(\vec{x})\right]^{p_1}, \left[\rho \star \psi_{\vec{k}_2}(\vec{x})\right]^{p_2}\right)$$

"WPH moments"

- One moment for each $(\vec{k}_1, \vec{k}_2, p_1, p_2)$ set
- Different couplings between pairs of scales
- ▶ WPH statistics built from a set of WPH moments

• Naturally extended to cross-statistics

$$C_{\vec{k}_1, p_1, \vec{k}_2, p_2}\left(\mathbf{A}, \mathbf{B}\right) = \operatorname{Cov}\left(\left[\mathbf{A} \star \psi_{\vec{k}_1}(\vec{x})\right]^{p_1}, \left[\mathbf{B} \star \psi_{\vec{k}_2}(\vec{x})\right]^{p_2}\right)$$

• Constructing WPH statistics

$$C_{\vec{k}_1, p_1, \vec{k}_2, p_2} = \operatorname{Cov}\left(\left[\rho \star \psi_{\vec{k}_1}(\vec{x})\right]^{p_1}, \left[\rho \star \psi_{\vec{k}_2}(\vec{x})\right]^{p_2}\right)$$

"WPH moments"

- One moment for each $(\vec{k}_1, \vec{k}_2, p_1, p_2)$ set
- ▶ Different couplings between pairs of scales
- ▶ WPH statistics built from a set of WPH moments
- Naturally extended to cross-statistics

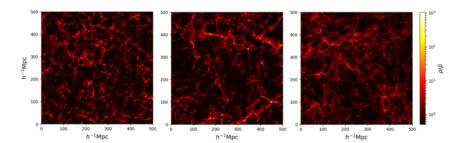
$$C_{\vec{k}_1, p_1, \vec{k}_2, p_2}\left(\mathbf{A}, \mathbf{B}\right) = \operatorname{Cov}\left(\left[\mathbf{A} \star \psi_{\vec{k}_1}(\vec{x})\right]^{p_1}, \left[\mathbf{B} \star \psi_{\vec{k}_2}(\vec{x})\right]^{p_2}\right)$$

Efficient multiscale interaction language: (e.g., EA+, 2019)

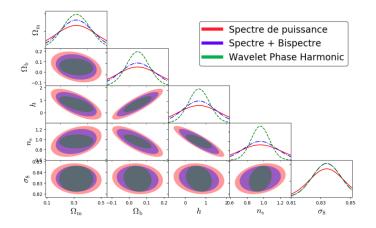
→ Scales selection, equivariance, symmetries, regularities...

Application to LSS matter density field

- Cosmological inference and weak lensing (EA+, 2020)
 - ▶ Quijote 2D matter density field, integrated thin slices
 - ▶ P_k (127 coeffs), $P_k + B_k$ (313 coeffs), WPH statistics (327 coeffs)
 - ▶ 5 cosmological parameters, from Fisher estimates



• Constraints from Fisher matrix (EA+, 2020)



→ Better that joint power spectrum and bispectrum

Other applications to LSS

- 3D cosmological matter density field (Quijote)
 - ▶ Wavelet Scattering Transform (WST)
 - \rightarrow comparable to Marked PS
 - ► Wavelets moments
 - \rightarrow comparable to Marked PS

 $(Valogiannis+,\ 2021)$

 $(Eickenberg,\ EA+,\ 2022)$

Other applications to LSS

- 3D cosmological matter density field (Quijote)
 - ▶ Wavelet Scattering Transform (WST)
 - \rightarrow comparable to Marked PS
 - ► Wavelets moments
 - \rightarrow comparable to Marked PS

- (Valogiannis+, 2021)
- $(Eickenberg,\ EA+,\ 2022)$

- Actual galaxy surveys
 - ▶ WST on BOSS data
 - \rightarrow substantial improvement w.r.t. PS

(Valogiannis+, 2022)

Other applications to LSS

- 3D cosmological matter density field (Quijote)
 - ► Wavelet Scattering Transform (WST)

(Valogiannis+, 2021)

→ comparable to Marked PS

Wavelets moments

(Eickenberg, EA+, 2022)

→ comparable to Marked PS

- Actual galaxy surveys
 - WST on BOSS data

(Valogiannis+, 2022)

- → substantial improvement w.r.t. PS
- Examples on other fields
 - Classification of MHD simulations.

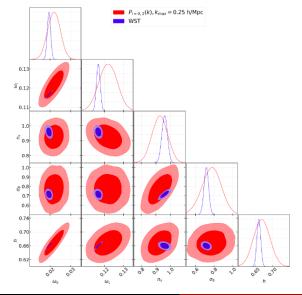
(EA + 2019, Saydjari+, 2020)

▶ 21cm Epoch or Reionization spectroscopic data

(Greig+, 2022)

- → Very informative tool (sometimes on par with CNN!)
 - → Wide range of applicability (generic, training-less)

• Constraints from BOSS survey (Valogiannis+, 2022)



Outline

- Which statistics for non-Gaussian astrophysics?
- 2 Cosmological parameter estimation from LSS
- 3 Generative models and components separation

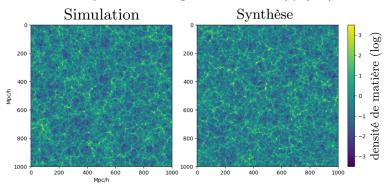
- Generative model from ST statistics (Bruna, Mallat, 2019)
 - Maximum entropy model under statistical constraints
 - ▶ New realizations of a process from its ST statistics
 - Non-gaussian properties quantitatively reproduced

- Generative model from ST statistics (Bruna, Mallat, 2019)
 - Maximum entropy model under statistical constraints
 - ▶ New realizations of a process from its ST statistics
 - ▶ Non-gaussian properties quantitatively reproduced

• Practical implementation

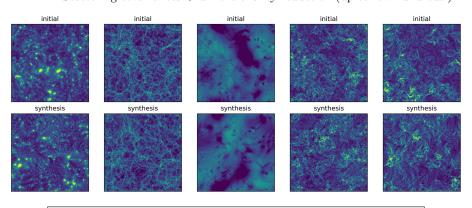
- ightharpoonup Constraints $\Phi(x)$ from a (set of) realization(s) x
- ▶ Sampled with a gradient-descent algorithm
 - \rightarrow from a white noise
 - \rightarrow optimizing \tilde{x} such that $\Phi(\tilde{x}) \simeq \Phi(x)$
- ▶ 10-30 seconds on a GPU for a 256² map

- Quantitative validation of syntheses (EA+, 2020)
 - ▶ Wavelet Phase Harmonics (WPH 5k coefficients)
 - ▶ Matter density field of the large scale structures (Quijote)



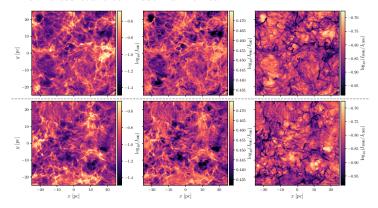
→ Usual statistics very well reproduced (up to 1-10 %)

- Syntheses from a single image (Cheng, EA+, in prep.)
 - ► Scattering covariances + dimensionality reduction (up to few hundreds!)



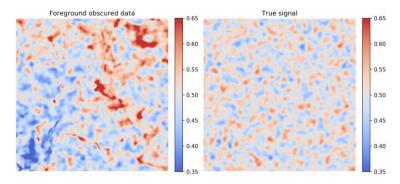
→ Realistic syntheses from a single input image!

- Multi-channel syntheses (Regaldo, EA+, in prep.)
 - ► From cross Wavelet Phase Harmonics



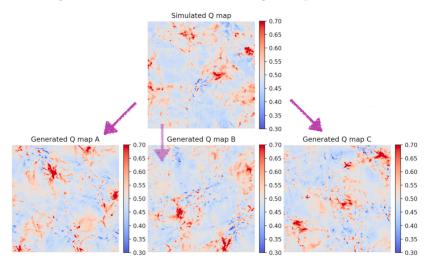
→ Multifrequency generative models can be constructed!

• CMB B-mode and galactic foregrounds (Jeffrey, EA+, 2021)

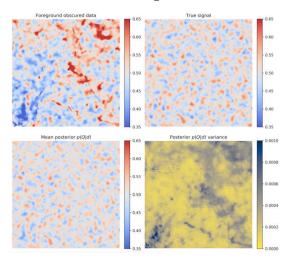


- 1. WPH generative model from one dust map
- 2. Training the moment network for foreground removal

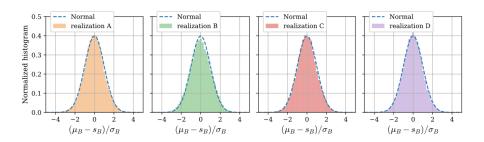
1. WPH generative model from one single map



2. Train moment network for foreground removal



- 2. Train moment network for foreground removal (Jeffrey, EA+, 2021)
 - → Validation for all pixels: (mean posterior truth)/(std posterior)



- \rightarrow Foreground removal from one single dust image
 - → Validates the ST generative model

Component separation from ST statistics

- Difficulty with astrophysical observations
 - \triangleright Process x of interest rarely isolated
 - ightharpoonup Mixed with other components y
 - \rightarrow How to proceed without specific prior on x?

Component separation from ST statistics

• Difficulty with astrophysical observations

- \triangleright Process x of interest rarely isolated
- ightharpoonup Mixed with other components y
- \rightarrow How to proceed without specific prior on x?

• General case study

- We observe a mixture d = x + y
- ightharpoonup Use knowledge on y to recover x
 - \rightarrow Statistically : ST or other statistics
 - * allows for generative model
 - \rightarrow Deterministically : More difficult a priori
 - * other methods available if ST known
- ⇒ Synthesis from indirect constraints

Synthesis from indirect constraints

- Direct constraint case : x available
 - $\blacktriangleright \Phi(x)$ known
 - Generate \tilde{x} such that

$$\Phi(\tilde{x}) \simeq \Phi(x)$$

Synthesis from indirect constraints

- Direct constraint case : x available
 - \bullet $\Phi(x)$ known
 - ightharpoonup Generate \tilde{x} such that

$$\Phi(\tilde{x}) \simeq \Phi(x)$$

- Indirect constraint case : d = x + y available
 - ▶ $\Phi(d)$ and $\Phi(y)$ known
 - Generate \tilde{x} such that (for instance)

$$\langle \Phi(\tilde{x} + y_i) \rangle_i \simeq \Phi(d)$$
 and $\Phi(d - \tilde{x}) = \Phi(y)$

 \rightarrow Do we recover a map \tilde{x} with correct statistics?

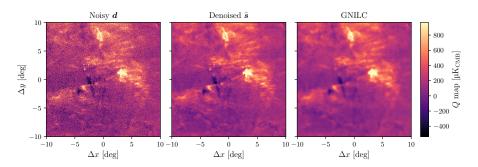
- Separation of dust polarized microwave emission and noise
 - ▶ Allows for an accurate model of polarized dust emission
 - ► Important for separation CMB/foreground

- Separation of dust polarized microwave emission and noise
 - ▶ Allows for an accurate model of polarized dust emission
 - ► Important for separation CMB/foreground
- First conceptual application (Regaldo, EA+ 21)
 - d = s + n
 - ▶ 300 realistic noises including scanning strategy
 - ▶ One single indirect constraint

$$\langle \Phi(u+n_i) \rangle_i \simeq \Phi(d)$$

Separation of polarized dust emission and noise

• Results on observational data (Régaldo, EA+ 21)



- \rightarrow Transition btw. deterministic and statistical
 - → Conceptual validation of the method
 - → Clear room for improvement

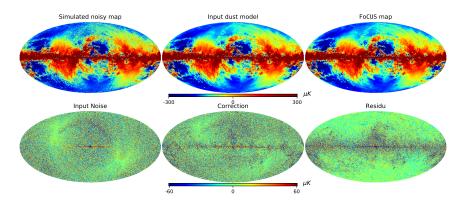
- With cross-statistics on the sphere (Delouis, EA+, in prep.)
 - Cross statistics between maps $\Phi(x_1, x_2)$
 - ► Set of data available:
 - $\rightarrow d = s + n$ full observation
 - $\rightarrow d_i = s + n_i$ half missions
 - $\rightarrow \{\tilde{n}, \tilde{n}_1, \tilde{n}_2\}$ 300 noise realisations

- With cross-statistics on the sphere (Delouis, EA+, in prep.)
 - Cross statistics between maps $\Phi(x_1, x_2)$
 - Set of data available:
 - $\rightarrow d = s + n$ full observation
 - $\rightarrow d_i = s + n_i$ half missions
 - $\rightarrow \{\tilde{n}, \tilde{n}_1, \tilde{n}_2\}$ 300 noise realisations
- Set of constraints

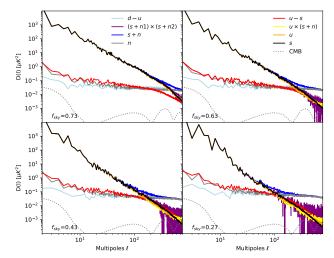
$$\Phi(d_1, d_2) \simeq \left\langle \Phi(u + \tilde{n}_1, u + \tilde{n}_2) \right\rangle_{\tilde{n}}$$
$$\Phi(d, u) \simeq \left\langle \Phi(u + \tilde{n}, u) \right\rangle_{\tilde{n}}$$

 \rightarrow with 5 different masks to deal with inhomogeneity

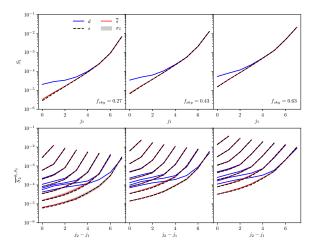
• Results on a test map



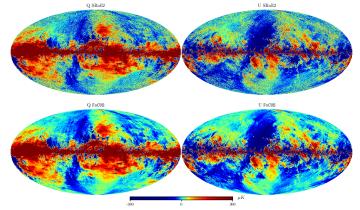
• Transition between deterministic and statistics



• Non-Gaussian features well recovered

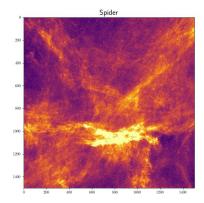


• Results on *Planck* observational data (Delouis, EA+, in prep)



- \rightarrow Cross-ST simple language for physical constraints
 - → ST statistics and cross-statistics well recovered

• Herschel infrared noisy dust observation with CIB



- \rightarrow No realistic noise or CIB models are available
 - \rightarrow Can we work only from obs. data?

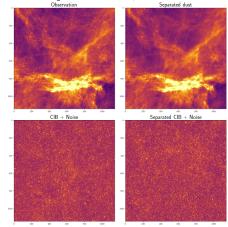
- Recovering the components (Auclair, EA+, in prep.)
 - d = s + cib + n
 - ▶ CIB from *Lockman Hole* field
 - ▶ Noise from half-missions observations
 - → Generative model for the contamination!

- Recovering the components (Auclair, EA+, in prep.)
 - d = s + cib + n
 - ► CIB from *Lockman Hole* field
 - ► Noise from half-missions observations
 - → Generative model for the contamination!
- Set of constraints

$$\langle \Phi(u + \tilde{n} + \widetilde{\text{cib}}) \rangle_{\tilde{n}, \widetilde{\text{cib}}} \simeq \Phi(d)$$

 $\Phi(d - u) \simeq \Phi(n + \text{cib})$

Application on the spider field (Auclair, EA+, in prep)



→ Components separation solely from obs. data!

Conclusion

• Scattering Transform statistics

- ► Very generic and efficient
- Allows for new applications
 - → Realistic syntheses from a single image
 - → Components separation from limited data
- Check our software:
 - \rightarrow PyWST
 - \rightarrow PyWPH

Conclusion

- Scattering Transform statistics
 - ► Very generic and efficient
 - Allows for new applications
 - \rightarrow Realistic syntheses from a single image
 - → Components separation from limited data
 - Check our software:
 - \rightarrow PyWST
 - \rightarrow PyWPH

Thanks for your attention!