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Why care about cosmological parameters?

Heymans et al. (2021)



What is cosmic shear?

Bell Labs/Lucent



Why use cosmic shear?

NASA/CXC/M. Weiss



Why do we need higher-oder statistics?

· Non-Gaussianities 
in LSS

Image credit: https://wwwmpa.mpa-garching.mpg.de/galform/virgo/millennium/



Why do we need higher-oder statistics?

· Non-Gaussianities 
in LSS

· Break 
degeneracies

      Takada & Jain (2004)



Why do we need higher-oder statistics?

· Non-Gaussianities 
in LSS

· Break 
degeneracies

· Control nuisance 
parameters

       Pyne & Joachimi (2021)
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Persistent homology of aperture masses

Signal-to-noise map of Aperture masses
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Persistent homology of aperture masses

Signal-to-noise map of Aperture masses
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Persistent homology of aperture masses

Signal-to-noise map of Aperture masses
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Persistent homology vs peak statistics

A peak in a sublevel filtration. Adapted from Heydenreich et al. (2021)
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Persistent homology vs peak statistics

A peak in a sublevel filtration. Adapted from Heydenreich et al. (2021)

Parameter constraints for Euclid-like 
mock data. Adapted from 
Heydenreich et al. (2021)
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Visualising persistent homology: 
the persistence diagram

A persistence diagram for one line-of-sight of DES-Y1-like
Mock data. Adapted from Heydenreich et al. (2022)
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Figure: Example persistence heatmap for one
     line-of-sight of DES-Y1-like mock data

Statistics on persistence diagrams:
the persistence heatmap
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Interpreting the data with PCA
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Figure: Example persistence heatmap for one
     line-of-sight of DES-Y1-like mock data

Statistics on persistence diagrams:
the persistence heatmap
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Shape of the data vector

Top: extracted data 
vector of the 
heatmaps

Bottom: extracted 
data vector 
normalised by the 
mean of the SLICS



  
18

Validating on mock data
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Analysis of DES-Y1
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Consistency of S
8 
measured in DES-Y1
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Regarding the Tension in Ω
m

● Stable to all tested analysis choices
● Training Set
● Scale cut-offs
● Emulator vs Theory
● Systematics marginalisation

● Confirmed by independent analysis from Harnois-
Deraps et al. (2021)
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Assessing the tension

Blue: Histogram of measured 
tension between persistent 
homology and 2pcf in mock 
simulations

Orange: Gaussian fit

Black dashed: Tension 
measured in DES-Y1
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Regarding the Tension in Ω
m

● Persistent Homology is sensitive to 
non-Gaussian information

● Pranav (2021): Anomalies in the 
CMB at super-horizon scales

● Biagetti et al. (2022): PH is 
sensitive to primordial non-
Gaussianities

Fisher-forecast for primordial NG
in PH. Taken from 

Biagetti et al. (2022)
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Regarding the Tension in Ω
m

● We measure a tension in  Ωm, but can we trust it?

● Improved confidence intervals are only as good as our 
confidence in the method
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Work in progress – third order lensing statistics
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Work in progress – third order lensing statistics

● Main advantage: direct modelling possible

       Pyne & Joachimi (2021)
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Direct modelling allows for 
consistency checks
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Tests for the 3pcf...

Figure: Three-point correlation functions
from the BiHalofit bispectrum
compared to Simulations
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… and third-order aperture masses

Third-order aperture mass statistics from a cosmological model
     compared to results from N-body simulations
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Combined analysis improves constraints
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Summary

persistent Homology
● Very powerful on its own
● Interpretable datavector
● Highly sensitive to non-

Gaussian effects
● Applicable to all kinds of 

data

Third-order statistics
● Most powerful in 

combination with 2nd-order 
statistics

● Direct modelling allows for 
more consistency checks 
and better nuisance 
parameter constraints

● E-/B-mode decomposition 
yields more robustness
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Impact of systematics

Top: Impact of un-
marginalised 
systematics

Bottom: Impact of 
marginalisation over 
systematics
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Combined analysis of full-scale map
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