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Motivation

● Is there a problem-adaptable way of constructing filtrations and persistent 
summaries?

● How to quantify if the persistence diagram is a good summary of the input? 

PD for spins on a lattice. [1] PD for LSS of universe. [2]



Problem Statement

● Given a point set drawn X from a distribution, in a scientific inference 

problem, find the filtration that is informative about 𝜃.

● Eg. Points drawn from a circle (radius), LSS (fNL), etc.

PC - Springel et al. 2015



Problem Statement

● Given a point set drawn X from a distribution, in a scientific inference 

problem, find the filtration that is informative about 𝜃.

● Eg. Points drawn from a circle (radius), LSS (fNL), etc. 

● Objective function - Fisher Information.

PC - Springel et al. 2015
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Persistent Homology  - The Physics Way

● PD keeps track 
of the multiscale 
topology of point 
sets.

● It stores the 
scales at which 
topological 
features born (b) 
and get 
destroyed (d).

Gif Credit (GC) - Persistent Homology: A Non-Mathy Introduction with Examples.



Persistent Homology  - The Math Way

● Filtrations  -

● Assigns a number to each simplex 

in K.

● PH keeps track of changes in 

topology of SubL(a). PC - Thomas Banchoff, Slicing 
Doughnuts and Bagels



Sublevel Sets - Example II

● Evolution of sublevel sets as 

the level “a” is varied. 

● Shaded region - sublevel sets.

● A simplex (s) is added at level

“a” if f(s) < a.  

GC - Alex Cole



Variational 
Filtrations

● Uniform growth of balls → 
Parametrized.

● The filtration f is parametrized by 
a variational family 𝜙.

● Right - DTM filtrations. 

○ Density controlled. 

○ Less dense implies late 
start of growth of balls.

GC - Raphaël Tinarrage



Persistence Pairs

● Adding a p-simplex to K always either creates a p cycle, or destroys a (p - 1)-cycle. 

○ Eg. Adding an edge (1-simplex) can create a loop (1 cycle) or destroy a 

component (0 cycle).

A B A B

Adding the edge AB
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Persistence Pairs

● Adding a p-simplex to K always either creates a p cycle, or destroys a (p - 1)-cycle. 

○ Eg. Adding an edge (1-simplex) can create a loop (1 cycle) or destroy a 

component (0 cycle).

● Persistence pairs are simplices that create (𝜎b) and destroy (𝜎d) topological features.

● The birth and death of a topological feature can be written in terms of the filtration “f” 

and the persistence pairs.



Let f(s) be the step at which ‘s’ was added. f(bc = 1), f(ac) = 2. 

PC - Ulderio Fugacci
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Fisher Information



Fisher Information - Motivation

● FI is used to quantify the 
information stored in a summary 
statistic.

● Is the summary sensitive to the 
model parameters (𝜃) as much as 
the raw data?

● Given a biased coin with P(H) = 𝜃, 
a summary statistic is the number 
of head. 

PC - Google



Mathematical Formulation of FI

● I(𝜃) measures the change in the functional form of the log-likelihood. 



Mathematical Formulation of FI

● I(𝜃) measures the change in the functional form of the log-likelihood. 

● Example - Coin Toss with P(H) =  𝜃, I(𝜃) = ((1 - 𝜃)𝜃)-1 . High information near 𝜃 = 0, 1. 

● The Fisher Information signifies how well we can contrast data drawn from P(X|𝜃) and 

P(X|𝜃 + 𝜀). 



FI for Gaussian Distributions

● When P(X|𝜃) = Gaussian (𝜇(𝜃), C),  



FI for Gaussian Distributions

● When P(X|𝜃) = Gaussian (𝜇(𝜃), C),  

● Two elements -

○ The summary is expected to be 

precise - low variance. 

○ The summary is sensitive to 𝜃. 

PC - Avan Al-Saffar, 
Eun-jin Kim



FI for Gaussian Distributions

● We would like the summary of the data to "move" as much as possible when we 

vary 𝜃, implying high          . 



FI for Gaussian Distributions

● We would like the summary of the data to "move" as much as possible when we 

vary 𝜃, implying high          . 
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FI for Gaussian Distributions 

● "Movement + spread" is measured covariantly using FI.

● I(𝜽) generalizes to the Fisher Determinant when 𝜽 is multidimensional.



FI for Gaussian Distributions 

● "Movement + spread" is measured covariantly using FI.

● I(𝜽) generalizes to the Fisher Determinant when 𝜽 is multidimensional.

● We use this expression  

○ To measure the information in the persistence summaries, making a Gaussian 

approximation.

○ As the loss function to learn the optimal filtration.



Vectorizing the Persistence Diagram



Vectorizing the Persistence Diagram

● For statistical analysis, it is 
easier to work with vectors 
than sets.

● Vec can be parametrized by 
a variational family and an 
optimal vectorization can be 
learnt [3]. 



Finding the Optimal
Filtration



● Estimating the diameter of the center hole in a torus.

Slicing Bagels < Dunkin’ Donuts



● Estimating the diameter of the center hole in a torus.

<
PC - Thomas Banchoff, Slicing 

Doughnuts and Bagels

d = ?

Slicing Bagels < Dunkin’ Donuts



The Pipeline



Pipeline Example

fNL



Why use Fisher Information to choose the filtration?

● Cramér–Rao Bound

○

○ Better estimators require more informative summary statistics.

● FI measures the relevance of the filtration for a specific task, facilitating customization.



Implementation Details

● Update equation for

● Chain rule to calculate the intermediate gradients.

● Differentiating the persistence diagram - Identify the persistence pairs, and their 

dependence on 𝜙. 

● Implemented using GUDHI, PyTorch.



Input Data

● Input points chosen with radius ~ 
Gaussian (1, 0.2). 

● Angles chosen uniformly randomly. 
● Some noisy background points.



Variational Family

● 𝜙 = (k, p, denWeight)



Variational Family

● 𝜙 = (k, p, denWeight)

● y = (b, d) of the most persistent pair. Need not be hand crafted generally. 



Performance Graphs

The dip in FI is due to standard gradient descent issues.

dWeight is learned to increase over 
iterations.



Performance Graphs



Initial Filtration



Learnt Filtration
Learns to filter the noisy 
background points.



Results

X axis - #bg noisy 
points.
Y axis - FI(filtration)/TFI



Outlook



Summary

Point set 
sampled 

from 
P(X|𝜃).

Antifragile PH

● Filtration that 

maximizes I(𝜃) using 

gradient descent.

● An informative 

vectorized persistence 

summary.



Upshots

● Customized PH for a given problem.

○ Adaptive filtration and vectorization.

● Can detect less persistent features that are informative.

● From the optimal filtration, we can

○ Learn about the sensitivity of the topological features to θ.

○ Interpret the higher order statistics in data.



Future Work

● Forecast ∆fNL using LSS data [2]. Study the effect of NG on geometry of LSS.

● Improvements on the pipeline -

○ More generalized variational family.

○ Improved loss function (FI→ swyft [4]).

○ Better vectorizations.

○ Automatic differentiation, better runtime. (Pytorch→ JAX)



Future Work

● Forecast ∆fNL using LSS data [2]. Study the effect of NG on geometry of LSS.

● Improvements on the pipeline -

○ More generalized variational family.

○ Improved loss function (FI→ swyft [4]).

○ Better vectorizations.

○ Automatic differentiation, better runtime. (Pytorch→ JAX)

● Can we reproduce RG transformations using PH by minimizing information loss in 

coarse graining? 



THANK YOU!
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