COSMOLOGY BEYOND THE AVERAGE WITH 1PT STATISTICS

Cora Uhlemann (see also Oliver Friedrich's talk) many others in Paris, Munich, Durham, Bonn, ...

IFPU Focus Week, June 2022

Cosmology & Observational Astro

blogs.ncl.ac.uk/cosmology/

blogs.ncl.ac.uk/astro-obs/

Lectureship in Astrophysics open

COSMIC LABORATORY

beginning nearly uniform

today rich structure

AFTERGLOW early universe

> SKELETON Dark Matter

COSMIC WEB galaxies

COSMIC LABORATORY

Euclid

~1 billion €, 1/3 sky
10 billion years look-back
galaxy positions,
redshifts & shapes

DESI

COSMIC LABORATORY

dark energy & gravity, dark matter, neutrinos, early universe

Predict Clustering nonlinear dynamics

Extract Information non-Gaussian statistics

GOOD OLD DAYS

CMB: one snapshot linear, almost Gaussian

captured by 2-point statistics

GOOD OLD DAYS -> FUTURE

CMB: one snapshot linear, almost Gaussian

LSS: motion picture nonlinear, non-Gaussian

TRADITIONAL STATISTICS

Gaussian: 2-pt correlation

$$\xi(r) = \langle \delta(\boldsymbol{x}) \delta(\boldsymbol{x} + \boldsymbol{r}) \rangle$$

nonlinear → non-Gaussian

Higher N-pt correlations

N≥3 hard to measure

STATISTICS WISHLIST

powerful statistics

beyond 2pt correlation

interesting regime

beyond average

predictive dynamics

beyond perturbative

STATISTICS COMPROMISE

powerful statistics

1-point density PDF

interesting regime

large deviations

predictive dynamics

spherical collapse

RETRO STATISTICS: 1-POINT

long history

first: Hubble `34 many thereafter

links to moments, void probability, kNN

Leap in predictions

Leap in observations

DES & KiDS, Euclid, LSST, DESI

MATTER 1-POINT STATISTICS if we only could observe dark matter

1-POINT STATISTICS IDEA

Recapture lost information

smooth & plot histogram

1-POINT STATISTICS IDEA

matter density in symmetric cells symmetry statistics ↔ dynamics

1-POINT STATISTICS IDEA

Large-deviation statistics

large deviations exponentially unlikely

1-POINT STATISTICS THEORY

Large-deviation statistics

most likely path dominates $ho = 1 + \delta_{
m NL}$

spherical collapse

$$\mathcal{P}_{R,z}(\rho) \sim \exp$$

Bernardeau 94 CU++ 16

$$-\frac{\delta_L(\rho)^2}{2\sigma_L^2(z,r(R,\rho))}\frac{\sigma_L^2}{\sigma_{\rm NL}^2}\bigg]$$

linear variance & growth

nonlinear variance

SPHERICAL COLLAPSE

mass conservation
$$r = \rho^{1/3} R$$

fixed final radius R mixes scales!

SPHERICAL COLLAPSE

density mapping
$$\delta_L(\rho) \simeq \frac{21}{13} \left(1 - \rho^{-\frac{13}{21}} \right)$$

~ cosmology independent

LARGE-DEVIATION STATISTICS

Goal: final density PDF

- 3. Inverse Laplace
- **3. Inverse Laplace** $P(\rho)$ $P(\rho) = \int_{-i\infty}^{+i\infty} \frac{d\lambda}{2\pi i} \exp\left[-\lambda\rho + \varphi_R(\lambda\sigma^2)/\sigma^2\right]$
- 2. Large deviation principle

$$\varphi(\lambda) = \sup_{\rho} [\lambda \rho - \Psi(\rho)] \qquad \varphi(\lambda)$$

- **1.** Contraction principle
 - $\Psi(\rho)$ $\delta_L = \delta_L(\rho)$ $r = \rho^{1/3} R$

Knowledge: initial density PDF $\Psi(\delta_L) = \frac{\delta_L^2}{2\sigma_r^2(r)}$

MATTER 1-POINT PDF

MATTER 1-POINT PDF

MATTER 1-POINT PDF

accurate PDF from first principles, not lognormal

 $\mathcal{P}(\rho),$ R=10 Mpc/h

1-POINT PDF COSMOLOGY

matter content $\sigma_8 \& \Omega_m$: width & tilt

1-POINT PDF COSMOLOGY

massive neutrinos M_v: partial clustering

fixed σ_8

sims: Quijote

 $\ln \rho$

1-POINT PDF COSMOLOGY

prim. non-Gaussianity f_{NL}: extra tilt

Friedrich, CU ++ 19

CU, Friedrich ++ 19

Quijote simulations

F. Villaescusa-Navarro ++ (incl CU) 19

15.000x fiducial cosmo

500x derivative cosmo

 σ_8 , Ω_m , Ω_b , h, ns, Mv, w₀

>1 million PDFs

Fisher matrix

summary stats: PDF bins

derivatives w.r.t. cosmo

marginalised errors $\delta \theta_i \ge \sqrt{(F^{-1})_{ii}}$

Covariance: PDF bin correlation

determined by density-dependent clustering

width: clustering amplitude σ_8

environment-dependence: Mv

prim. non-Gaussianity f_{NL}: extra tilt

sims: Oriana (LasDamas)

Friedrich, CU ++ 19

modified gravity: growth & skewness

MATTER 1-POINT STATISTICS extensions

DENSITY-SPLIT CLUSTERING

$$\frac{P(\rho(x),\rho'(x+r))}{P(\rho)P(\rho')} = 1 + \xi(r)b(\rho)b(\rho')$$

average density at separation r

$$b_R(\rho) = \frac{\langle \rho'_R(r) | \rho_R \rangle - 1}{\xi_R(r)}$$

separation independent

Gaussian ICs + spherical collapse

DENSITY-SPLIT CLUSTERING

DENSITY-SPLIT CLUSTERING

local primordial non-Gaussianity

analogue of scale-dependent halo & void bias

CU++ `18c

COSMO WITH 1-PT STATISTICS

Powerful statistics

non-Gaussian, beyond PT

robust & accurate predictions

Cosmology & fundamental physics

 $\Omega_m, \sigma_8, M_v, f_{NL}$ CU, Friedrich ++ 19 Friedrich, CU ++ 19

DE: $W_{0,a}$, MG: Ω_{rc} , f_{R0} Cataneo, CU, Arnold, AG++ 21

Reality: no 3D matter field (see Oliver's talk)

weak lensing: projected matter

galaxy clustering: bias & stochasticity