An efficient reduced basis method for the stochastic Darcy flow model

Craig Newsum

University of Manchester

craig.newsum@manchester.ac.uk

July, 2017
Goal: **Efficient** numerical methods for **PDEs with uncertain data**.

In **groundwater flow** modelling, the permeability coefficient is often **uncertain**: model the coefficient as \(a_M^{-1}(x, y) \).

Given \(y \in \Gamma \), find \(p(\cdot, y) : D \to \mathbb{R} \) and \(\vec{u}(\cdot, y) : D \to \mathbb{R}^2 \) such that

\[
\begin{align*}
 a_M^{-1}(x, y)\vec{u}(x, y) + \nabla p(x, y) &= 0, \quad x \in D, \\
 \nabla \cdot \vec{u}(x, y) &= f(x), \quad x \in \partial D, \\
 p(x, y) &= g(x), \quad x \in \partial D_D, \\
 \vec{u}(x, y) \cdot \vec{n} &= 0, \quad x \in \partial D_N.
\end{align*}
\]

Approximations to \(p(\cdot, y) \) and \(\vec{u}(\cdot, y) \) for each \(y \in \Gamma \) can be obtained using **mixed finite element methods**, however, this can be expensive.

Using reduced basis methods we can approximate \(p(\cdot, y) \) and \(\vec{u}(\cdot, y) \) for any \(y \in \Gamma \) at a significantly **cheaper** cost.
We develop an efficient reduced basis method that we combine with a sparse grid stochastic collocation method.

This allows us to cheaply perform forward UQ.

We demonstrate significant computational savings over standard finite element methods.

Please come and visit our poster!

See also our preprint: