

Reduced-order modeling for cardiac conductivity estimation

A.Barone, A.Veneziani (*Emory University*) F.Fenton (*GA Tech*), H.Yang (*Florida State University*)

Models in electrocardiology strongly sensitive to the cardiac conductivities
Inverse problem <u>challenging</u> due to high computational burden

MODEL-ORDER-REDUCTION TECHNIQUES TO(a) LIGHTEN THE COMPUTATIONAL COST(b) SPEED UP THE INVERSEOF FORWARD SOLVERCONDUCTIVITY PROBLEM

POD: solution represented with few DOFs +

DEIM: tackle the nonlinearity

Terrific reduction of computational cost!

	Exact cond.	Est. cond.	Exe. time
Full order	[5.5,3]	[5.53,3.06]	12870 s
POD+ DEIM	[5.5,3]	[5.38,3.05]	246.6 s

References

(1) H.Yang, A.Veneziani. "*Efficient estimation of cardiac conductivities via POD-DEIM model order reduction*." Applied Numerical Mathematics 115 (2017): 180-199. Ackn.: NSF Grant DMS 1412963