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Improving Collocation Methods by Exploiting Structure

Uncertain input
parameters:

y ∈ Γ ⊂ Rd
−→

PDE model:
P(u, y) = 0

a.e. in D ⊂ Rn
−→

Quantity of
interest:

Q[u(·, y)]

Method 1: Exploit the hierarchy in deterministic approximation. Multilevel
methods reduce complexity by distributing computational costs among high and
low fidelity approximations.
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Key points:

• Provably reduce the complexity of constructing collocation approximations by
exploiting basic structure.

• Work practically even when we can’t choose a sparse grid with the “optimal”
number of points.
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Improving Collocation Methods by Exploiting Structure

Method 2: Exploit the hierarchy in the polynomial approximation. Sparse
grids with nested grid points provide a natural multilevel hierarchy which we can
use to accelerate each PDE solve.
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Solve Ajcj = fj
at all blue points

−→
Interpolate to
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Key points:

• Acceleration works with preconditioning and initial solutions to speed up
iterative solvers.

• Especially effective for non-linear iterative solvers

• Improves efficiency of iterative solvers even with the additional cost of
interpolation.
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