Data Assimilation for Cardiovascular Modeling with Applications to Optimal Flow Control

Z. Zainib¹, Z. Chen², F. Ballarin¹,
 P. Triverio², L. Jimenez-Juan³,
 A. Crean⁴ and G. Rozza¹

 mathLab, Mathematics Area, SISSA-International School for Advanced Studies, Trieste, Italy
 ²University of Toronto, Canada
 ³Sunnybrook Health Sciences Centre, Toronto, Canada
 ⁴University Health Network, Toronto, Canada

Poster Blitz, QUIET 2017

19 July, 2017

MOTIVATION & INTRODUCTION

Figure: Normal and blocked artery

Figure: Bypass grafts

RESEARCH WORK

- Geometry reconstruction and mesh generation from CT scan or MRI.
- Solving the mathematical model,

$$a\left(oldsymbol{v}\left(oldsymbol{\mu}
ight),oldsymbol{w}
ight)+b\left(oldsymbol{w},oldsymbol{p}\left(oldsymbol{\mu}
ight)
ight)=\langle f,oldsymbol{w}
angle \;\;orall\,oldsymbol{v}\in H$$

subject to the constraint,

and appropriate boundary conditions, using finite-element and reduced-order methods for velocity ($\mathbf{v}(\mu) \in H$) and pressure $(p(\mu) \in Q)$, of the blood.

• Solving an optimal flow control problem: For $\mu \in \mathcal{D} \subset \mathbb{R}$, find $y(\mu) = (\mathbf{v}(\mu), p(\mu)) \in Y_{ad} = H_{ad} \times Q_{ad}$, $u(\mu) \in U_{ad}$ such that,

 $\mathcal{J}(y(\mu), u(\mu))$ is minimized, subject to $\mathcal{F}(y(\mu), u(\mu)) = 0$ using one-shot approach, to address the clinical queries.

THANK YOU!