QUIET 2017, TRIESTE, ITALIA, 18-21 JULY 2017

SISSA, INTERNATIONAL SCHOOL FOR ADVANCED STUDIES, TRIESTE, ITALY

M. TEZZELE, F. SALMOIRAGHI, A. MOLA, G. ROZZA

DATA-ASSIMILATION, PARAMETER SPACE REDUCTION AND REDUCED ORDER METHODS IN APPLIED SCIENCES AND ENGINEERING

Outline

Two different pipelines for parameter space reduction using Active Subspaces:

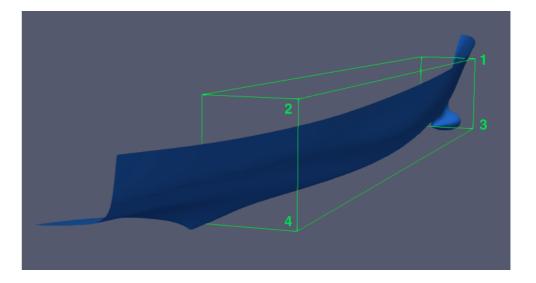
In the naval engineering problem we used Free Form Deformation to vary the shape of an hull and Response Surface method to make prediction

In the biomedical problem we used Radial Basis Functions interpolation technique to vary the shape of a carotid and Proper Orthogonal Decomposition method to reduce the model

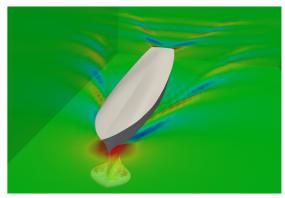
The naval engineering case

- The output is a derived function of the wave resistance of a DTMB hull advancing in calm water at fixed Froude number 0.28 and velocity ~2 m/s
- As parameter inputs we select 8 components of 4 different control points of a FFD lattice over one side wall of the hull. Then we apply the same deformation to the other side. y is the span of the hull, x its length and z its depth

Parameter	Nature	Lower bound	Upper bound
u_1	FFD Point 1 y	-0.2	0.3
u_2	FFD Point 2 y	-0.2	0.3
u_3	FFD Point $3 y$	-0.2	0.3
u_4	FFD Point 4 y	-0.2	0.3
u_5	FFD Point 3 z	-0.2	0.5
u_6	FFD Point 4 z	-0.2	0.5
u_7	weight (kg)	500	800
u_8	velocity (m/s)	1.87	2.70



Hull in a free surface



Flow across parametrized carotid bifurcations

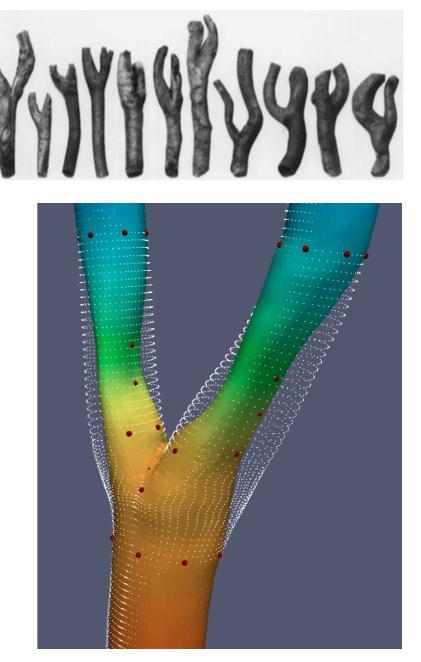
Vessels geometry strongly influences hemodynamics behaviour

Evaluation problem:

$$\begin{cases} -v\Delta\mathbf{v} + (\mathbf{v}\cdot\nabla)\mathbf{v} + \nabla p = \mathbf{f} \\ \nabla\cdot\mathbf{v} = 0 \\ \mathbf{v} = \mathbf{v}_g \\ -p\cdot\mathbf{n} + v\frac{\partial\mathbf{v}}{\partial\mathbf{n}} = \mathbf{0} \end{cases}$$

in
$$\Omega_o$$

in Ω_o
on $\Gamma_w^o := \partial \Omega_o \setminus \Gamma_{out}^o$,
on Γ_{out}^o



Deformed carotid with the deforming control points (red) and the undeformed state (white)

