Scalable Hierarchical Sampling of Gaussian Random Fields for Large-Scale Multilevel Monte Carlo Simulations

Quantification of Uncertainty: Improving Efficiency and Technology

LLNL-PRES-734783

Sarah Osborn¹ Panayot Vassilevski¹ Umberto Villa²

Center for Applied Scientific Computing, Lawrence Livermore National Laboratory
 Institute for Computational Engineering and Sciences (ICES), University of Texas at Austin

July 19, 2017

Forward Propagation Uncertainty Quantification

- When modeling some physical phenomena, inputs are often subject to uncertainty.
- Example: Uncertainty in Groundwater Flow with Darcy's Law
 - Permeability coefficient k is subject to uncertainty.
 - Model k as a spatially correlated log-normal random field.
 - $-k(x,\omega)=\exp[\theta(x,\omega)]$ where θ is a Gaussian random field with known mean and covariance.
- **Goal**: Given prior assumptions about uncertainty in input data, quantify uncertainty in the solution for *large-scale simulations* using Monte Carlo sampling methods.

Key Computational Challenges for Large-Scale Monte Carlo Sampling Methods

Many samples are necessary with a fine spatial discretization.

Multilevel Monte Carlo

 Use specialized element-based agglomeration technique to construct hierarchy.

Scalable generation of random input coefficient realizations

SPDE Sampling Technique

- Solve a stochastic PDE (SPDE) with mixed finite element method.
- Requires solution of *saddle point* problem with random right hand side.

Efficient solution of forward problem

Specialized preconditioners

- Discretization leads to matrices with saddle point structure.
- Employ methods from element-based multigrid.

Key Computational Challenges for Large-Scale Monte Carlo Sampling Methods

Many samples are necessary with a fine spatial discretization.

Multilevel Monte Carlo

 Use specialized element-based agglomeration technique to construct hierarchy.

Scalable generation of random input coefficient realizations

SPDE Sampling Technique

- Solve a stochastic PDE (SPDE) with mixed finite element method.
- Requires solution of *saddle point* problem with random right hand side.

Efficient solution of forward problem

Specialized preconditioners

- Discretization leads to matrices with saddle point structure.
- Employ methods from element-based multigrid.

Monte Carlo Method

• **Goal**: Estimate $\mathbb{E}[Q]$, the expected value of a quantity of interest $Q(X(x,\omega))$ where $X(x,\omega)$ is the solution of a PDE with random field coefficient.

$$\mathbb{E}[Q] \approx \widehat{Q}_h^{MC} = \frac{1}{N} \sum_{i=0}^{N} Q_h(\omega_i)$$

where $Q_h(\omega_i)$ is the *i*-th sample of Q approximated with spatial discretization h.

Mean Square Error (MSE) of method:

$$\underbrace{\frac{1}{N}\mathbb{V}[Q_h]}_{\text{Estimator Variance}} + \underbrace{\left(\mathbb{E}[Q-Q_h]\right)^2}_{\text{Bias: Discretization Error}}$$

Multilevel Monte Carlo Method

- This variance reduction technique uses a sequence of spatial approximations Q_{ℓ} , $\ell=L,\ldots,1$ which approximate $Q_0=Q_h$ with increasing accuracy (and cost).
- Linearity of expectation implies

$$\mathbb{E}[Q] \approx \mathbb{E}[Q_h] = \mathbb{E}[Q_L] + \sum_{\ell=0}^{L-1} \mathbb{E}[Q_\ell - Q_{\ell+1}].$$

The **multilevel MC estimator** is

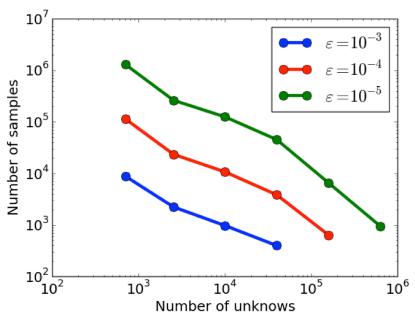
$$\widehat{Q}_{h}^{MLMC} = \frac{1}{N_L} \sum_{i=0}^{N_L} Q_L(\omega_i) + \sum_{i=0}^{L-1} \left[\frac{1}{N_\ell} \sum_{i=0}^{N_\ell} (Q_\ell(\omega_i) - Q_{\ell+1}(\omega_i)) \right].$$

M. **Giles**. Oper. Res. (2008)

K. Cliffe, M. Giles, R. Scheichl, and A. Teckentrup. Comput. Vis. Sci., (2011)

Multilevel Acceleration of Monte Carlo Method

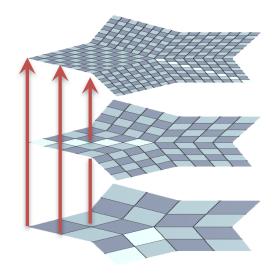
The MSE of the MLMC Estimator is

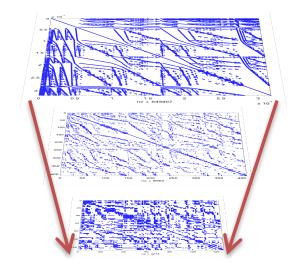


For a desired tolerance, the number of samples on each level is chosen to minimize the total computational cost.

Generation of Hierarchy of Spatial Discretizations with Element-Based Multigrid (AMGe)

Recall pros/cons of multigrid (MG) methods:





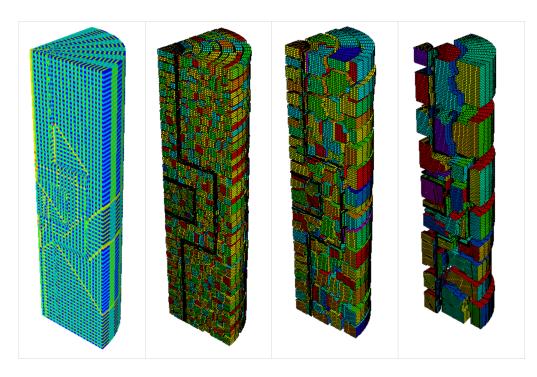
- Geometric Multigrid (GMG)
 - Scalable for many regular/semistructured grid problem
 - Requires a nested hierarchy of grids
 - Uses information from discretization
 - Infeasible to implement for arbitrary unstructured-grid problems

- Algebraic Multigrid (AMG)
 - Optimal and effective solver for many PDEs on arbitrary grids
 - Requires only the fine-grid matrix; no spatial mesh needed
 - Closer to a black-box method

Element-based Multigrid (AMGe)

AMGe methods aim to leverage the advantages of the two approaches and to mitigate their shortcomings.

- GMG with nonstandard elements (agglomerates of fine-grid ones) and operator-dependent coarse finite element spaces.
- By using some "extra" information, AMGe can handle effectively a broader class of problems than classical AMG.
- Coarse spaces have guaranteed approximation properties.



Hierarchy of agglomerated meshes

Coarsening de Rham Complexes on Agglomerated Elements

The de Rham complex plays an important role in analysis and discretization of PDEs.

- Generate a coarse sequence such that
 - The sequence is exact.
 The commutativity property is preserved.
 - The spaces are conforming. The approximation properties of the original spaces are preserved.
 - J. Pasciak, P. Vassilevski. SISC. (2008)
 - I. Lashuk, P. Vassilevski. CMAM. (2011)

One hierarchy, many uses.....

The hierarchy of de Rham sequences with operator-dependent coarse spaces with approximation properties can be used for

- Robust multilevel preconditioners
- Discretization on a hierarchy of levels
 - Numerical upscaling
 - Multilevel Monte Carlo simulations
 - Scalable Generation of Gaussian Random Fields

A parallel distributed memory C++ library for an AMGe framework to coarsen a wide class of PDEs on general unstructured meshes developed at LLNL.

https://github.com/LLNL/parelag

Key Computational Challenges for Large-Scale Monte Carlo Sampling Methods

Many samples are necessary with a fine spatial discretization.

Multilevel Monte Carlo

 Use specialized element-based agglomeration technique to construct hierarchy.

Scalable generation of random input coefficient realizations

SPDE Sampling Technique

- Solve a stochastic PDE (SPDE) with mixed finite element method.
- Requires solution of *saddle point* problem with random right hand side.

Efficient solution of forward problem

Specialized preconditioners

- Discretization leads to matrices with saddle point structure.
- Employ methods from element-based multigrid.

Scalable Sampling of a Gaussian Random Field

Challenge: How to generate realizations of a Gaussian field (GF) on a hierarchy of spatial discretizations??

We consider a stationary isotrophic field with Matérn covariance function

$$\operatorname{cov}(x,y) = \frac{\sigma^2}{2^{\nu-1}\Gamma(\nu)} (\kappa \|y - x\|)^{\nu} K_{\nu}(\kappa \|y - x\|) \text{ where } x, y \in \mathbb{R}^d.$$

Karhunen-Loève Expansion:

- Dense eigenvalue computation
 Bottleneck
- State of the art methods exploit Fast Multipole Methods and randomized eigensolvers to alleviate this issue.

Scalable Sampling of a Gaussian Random Field

Gaussian Markov random field representation:

GFs with Matérn covariance functions are solutions of the *stochastic* PDE

$$(\kappa^2 - \Delta)^{\alpha/2}\theta(x,\omega) = g\mathcal{W}(x,\omega), \quad x \in \mathbb{R}^d, \alpha = \nu + \frac{d}{2}$$

- $\mathcal{W}(x,\omega)$: spatial Gaussian white noise with unit variance
- g: scaling factor to impose unit marginal variance
- $\kappa \in \mathbb{R}$: inversely proportional to correlation length

Special case:

In 3D, realizations of a Gaussian random field with exponential covariance function are solutions of the **stochastic reaction diffusion problem**.

F. Lindgren, H. Rue, J. Lindstrom. J R Stat Soc Series B Stat Methodol. (2011)

Stochastic PDE (SPDE) Sampler

Let $\nu = 1$ (2D) or $\nu = \frac{1}{2}$ (3D), then the realizations of the GF solve

$$(\kappa^2 - \Delta)\theta(x,\omega) = g\mathcal{W}(x,\omega), \quad x \in \mathbb{R}^d$$

Using the mixed finite element method, let

$$\Theta_h \subset L^2(D)$$
 piecewise constant functions $R_h \subset H(\mathrm{div},D)$ lowest-order Raviart-Thomas elements

Find $(\mathbf{u}_h, \theta_h) \in (R_h, \Theta_h)$ such that

$$\begin{cases} (\mathbf{u}_h, \mathbf{v}_h) + (\theta_h, \operatorname{div} \mathbf{v}_h) = 0 & \forall \mathbf{v}_h \in R_h \\ (\operatorname{div} \mathbf{u}_h, q_h) - \kappa^2(\theta_h, q_h) = g(\mathcal{W}(\omega), q_h) & \forall q_h \in \Theta_h \end{cases}$$

with boundary conditions $\mathbf{u}_h \cdot \mathbf{n} = 0$.

Stochastic PDE (SPDE) Sampler

Noting that
$$\int_{D_i} \mathcal{W}(\omega) \sim \mathcal{N}(0,|D_i|)$$
 we obtain

$$\begin{bmatrix} M_h & B_h^T \\ B_h & -\kappa^2 W_h \end{bmatrix} \begin{bmatrix} u_h \\ \theta_h \end{bmatrix} = \begin{bmatrix} 0 \\ -gW_h^{\frac{1}{2}} \xi \end{bmatrix}, \quad \xi \sim \mathcal{N}(0, I)$$

where

- M_h is the mass matrix for the space R_h
- W_h is the (diagonal) mass matrix for space Θ_h
- B_h stems from the divergence constraint.

Able to leverage existing scalable solvers and preconditioners!

Hierarchical SPDE Sampler

- For MLMC, the same realization $\theta(\omega_i)$ must be computed at different spatial resolutions $\theta_h(\omega_i)$ (fine) and $\theta_H(\omega_i)$ (coarse).
- Recall the AMGe coarse spaces:

$$\Theta_H \subset \Theta_h \subset L^2(D)$$
 and $R_H \subset R_h \subset H(\operatorname{div}, D)$

Define interpolation operators as

$$P_{\theta}:\Theta_{H} o\Theta_{h}$$
 and $P_{\mathbf{u}}:R_{H} o R_{h}$

Define the block interpolation operator as

$$\mathcal{P} = egin{bmatrix} P_{\mathbf{u}} & 0 \ 0 & P_{ heta} \end{bmatrix}$$
 so that $\mathcal{A}_H = \mathcal{P}^T \mathcal{A}_h \mathcal{P}.$

Hierarchical SPDE Sampler

Then the Gaussian field θ_h admits the two-level decomposition

$$\theta_h(\omega) = P_\theta \theta_H(\omega) + \delta \theta_h(\omega),$$

where θ_H is a coarse representation of a Gaussian field from the same distribution, and

$$\begin{bmatrix} \mathcal{A}_h & \mathcal{A}_h \mathcal{P} \\ \mathcal{P}^T \mathcal{A}_h & 0 \end{bmatrix} \begin{bmatrix} \delta \mathcal{U}_h \\ \mathcal{U}_H(\omega) \end{bmatrix} = \begin{bmatrix} \mathcal{F}_h \\ 0 \end{bmatrix},$$

where

$$\delta U_h = \begin{bmatrix} \delta \mathbf{u}_h \\ \delta \theta_h(\omega) \end{bmatrix}, \ U_H = \begin{bmatrix} \mathbf{u}_H \\ \theta_H(\omega) \end{bmatrix}, \ \text{and} \ \mathcal{F}_h = \begin{bmatrix} 0 \\ -gW_h^{1/2}\xi_h(\omega) \end{bmatrix}.$$

Hierarchical SPDE Sampler: Numerical Solution

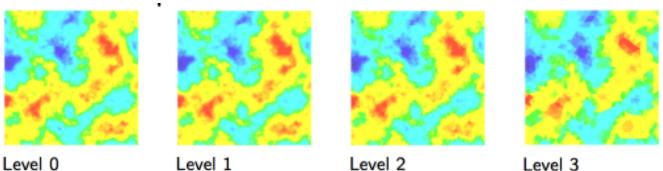
• Given $\xi_h(\omega_i)$, solve the saddle point system

$$\mathcal{A}_H \begin{bmatrix} \mathbf{u}_H \\ \theta_H(\omega_i) \end{bmatrix} = \mathcal{P}^T \begin{bmatrix} 0 \\ -gW_h^{1/2}\xi_h \end{bmatrix}, \xi_h \sim \mathcal{N}(0, I)$$

to generate $\theta_H(\omega_i)$ (coarse representation of $\theta_h(\omega_i)$ on Θ_H).

• Then solve $\mathcal{A}_h U_h = F_h$ with $\mathcal{P} U_H$ as the initial guess.

Sample realizations of Gaussian random field

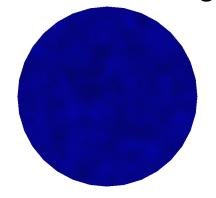


S.O., U. **Villa**, P. **Vassilevski**. *A multilevel, hierarchical sampling technique for spatially correlated random fields*. To appear SIAM SISC (2017).

Mesh Embedding with Non-Matching Meshes to Mitigate Artificial Boundary Effects

Sample marginal variance Embed the original (unstructured) mesh in a regular, structured mesh.

Sample marginal variance with mesh embedding



- Solve SPDE on enlarged (structured) grid.
- Transfer the piecewise-constant solution to the original finite element space in parallel.
 - Meshes can be arbitrarily distributed!

S.O., P. **Zulian**,T. **Benson**, U. **Villa**, R. **Krause**, P. **Vassilevski**. *Scalable hierarchical PDE sampler for generating spatially correlated random fields using non-matching meshes*. Submitted (2017)

Model Problem: Uncertainty in Subsurface Flow

We solve the mixed Darcy equations

$$\begin{cases} \mathbf{k}^{-1}\mathbf{q} + \nabla p = 0 & \text{in } D \\ \nabla \cdot \mathbf{q} = 0 & \text{in } D, \end{cases} \longrightarrow \begin{bmatrix} M_{k,h} & B_h^T \\ B_h & 0 \end{bmatrix} \begin{bmatrix} \mathbf{q}_h \\ p_h \end{bmatrix} = \begin{bmatrix} f_h \\ 0 \end{bmatrix}$$

where k is subject to uncertainty with boundary conditions

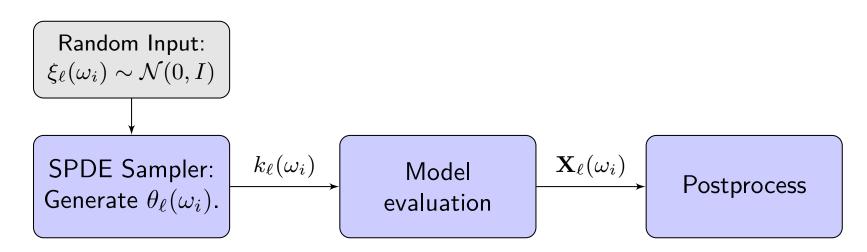
$$\mathbf{q} \cdot \mathbf{n} = 0 \text{ on } \Gamma_N \text{ and } p = p_D \text{ on } \Gamma_D.$$

Model k as a log-normal random field $k(x, \omega) = \exp[\theta(x, \omega)]$ where θ where is a Gaussian field with Matérn covariance function.

Multilevel Monte Carlo Simulation Workflow

$$\widehat{Q}_h^{MLMC} = \sum_{\ell=0}^{L} (\widehat{Q_\ell - Q_{\ell+1}})^{MC} \text{ where } \widehat{Q}_h^{MC} = \frac{1}{N} \sum_{i=1}^{N} Q_h(\omega_i)$$

To generate a sample on level ℓ :



Solve saddle point problem on level ℓ of structured hierarchy. Compute

$$k_{\ell}(\omega_i) = \exp[\theta_{\ell}(\omega_i)]$$
 and transfer to original FE space.

Solve forward model problem on level ℓ of original, unstructured hierarchy.

Compute quantity of interest $Q_{\ell}(\mathbf{X}_{\ell}(\omega_i))$.

Key Computational Challenges for Large-Scale Monte Carlo Sampling Methods

Many samples are necessary with a fine spatial discretization.

Multilevel Monte Carlo

 Use specialized element-based agglomeration technique to construct hierarchy.

Scalable generation of random input coefficient realizations

SPDE Sampling Technique

- Solve a stochastic PDE (SPDE) with mixed finite element method.
- Requires solution of *saddle point* problem with random right hand side.

Efficient solution of forward problem

Specialized preconditioners

- Discretization leads to matrices with saddle point structure.
- Employ methods from element-based multigrid.

Efficient Solvers for Saddle Point Problems

• We need to solve a large, sparse saddle point system of the form:

$$\begin{bmatrix} A & B^T \\ B & -C \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} f \\ g \end{bmatrix} \quad \text{(where C=0 for mixed Darcy eqns)}$$

- Possible preconditioning strategies:
 - Block factorization preconditioners:
 - Build MG-based approximations for A^{-1} and inverse of approximate Schurcomplement where $S = -C B \operatorname{diag}(A)^{-1}B^T$.
 - Monolithic AMGe preconditioners
 - Treat whole system simultaneously with one MG method.
 - Blocked grid transfers from de Rham sequence.

Numerical Results: Implementation and Solver Specifics for SPDE Sampler and Forward Problem

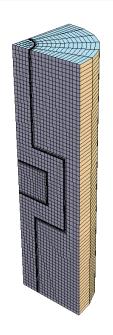
Scalable linear solvers and multigrid methods

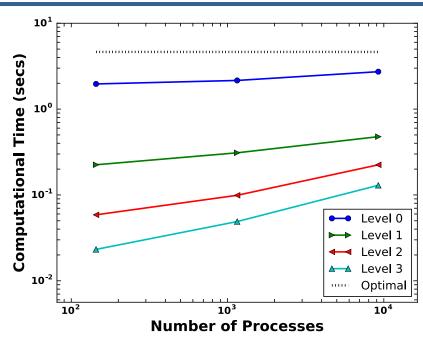
MFEM: *scalable* C++ library for finite element methods

- Solve saddle point systems with preconditioned GMRES:
 - Monolithic AMGe:
 - Block LDU smoother using a single sweep of point Gauss-Seidel to approximate A^{-1} .
 - Blocked grid transfers from hierarchy of de Rham sequence.
 - Block + AMGe:
 - A^{-1} approximated by a single AMGe V-cycle using a sweep of point Gauss-Seidel as a smoother.
 - Block + GS:
 - A⁻¹ approximated by a single sweep of point Gauss-Seidel

 S^{-1} is approximated by a single BoomerAMG V-cycle for each preconditioner.

Weak Scaling of SPDE Sampler: Crooked Pipe Problem

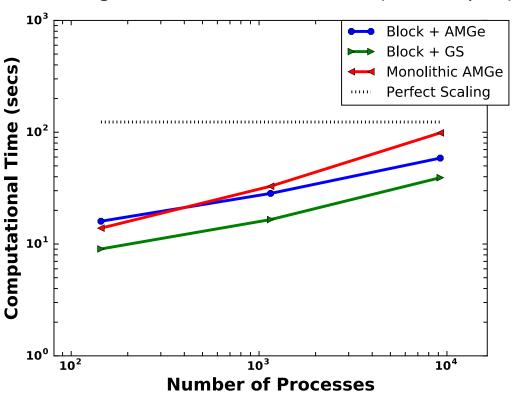




- Finite element level (Level = 0) has \approx 51K stochastic dofs per process, largest problem has approximately 4.7x10⁸ stochastic degrees of freedom.
- The saddle point system is solved with GMRES preconditioned with 'Monolithic AMGe'.

Weak Scaling of Mixed Darcy Equations with Random Permeability: Crooked Pipe Problem

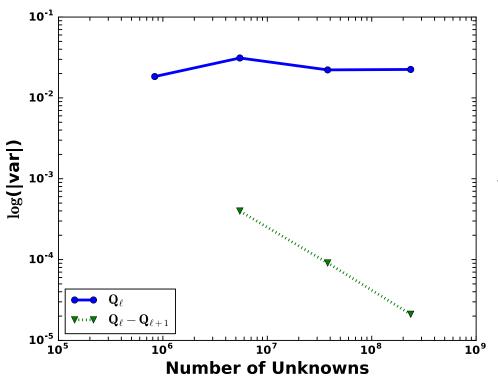
Average Solve Time – Fine Level 0 (100 samples)



Finite element level (Level = 0) has \approx 209K velocity/pressure dofs per process, largest problem has \approx 1.9x10⁹ dofs.

Multilevel Variance Reduction: Crooked Pipe Problem

MLMC Simulation with hierarchical SPDE sampler with non-matching mesh embedding



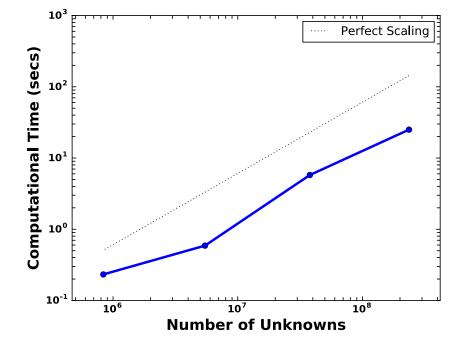
The QoI is the effective permeability given by

$$\frac{1}{|\Gamma_{out}|} \int_{\Gamma_{out}} \mathbf{q}(\cdot, \omega) \cdot \mathbf{n} \, dS.$$

MLMC Performance: Crooked Pipe Problem

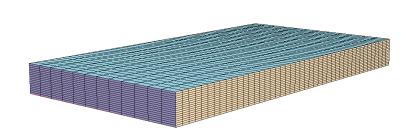
- MSE: $\epsilon^2 = 2.5e^{-5}$
- 240M velocity/pressure unknowns on fine level
- 59M stochastic dimensions
- 1.2K processors/sample generation
- Preconditioner:
 - Sampler: Monolithic AMGe
 - Darcy: Block + GS

Average time to compute a sample $Q_{\ell}(\omega_i) - Q_{\ell+1}(\omega_i)$

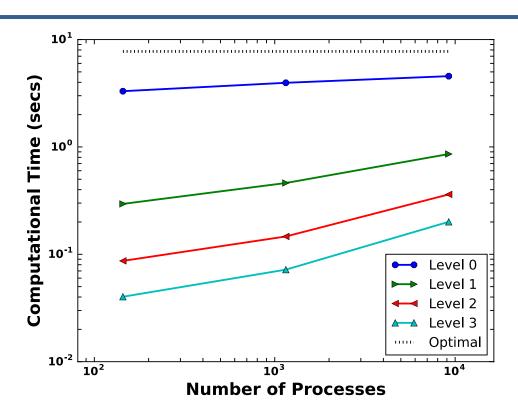


	MC (estimated)	MLMC
N_0	1799	12
Total samples	1799	3147
Wall Time	12.2 hours	0.4 hours

Weak Scaling of SPDE Sampler: SPE10 Problem



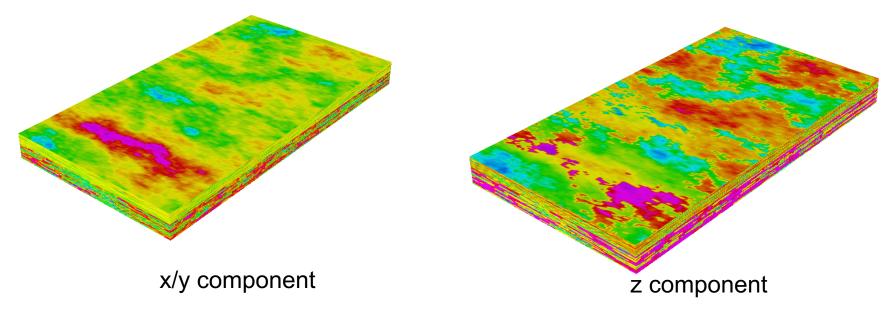
SPE10 model: 1200x2200x170(ft) regular cartesian grid (highly stretched elements)



- Finite element level (Level = 0) has $\approx 32 \text{K}$ stochastic dofs per process, largest problem has approximately 2.9×10^8 stochastic dofs.
- Solver: GMRES preconditioned with 'Monolithic AMGe'

MLMC for SPE10 Problem

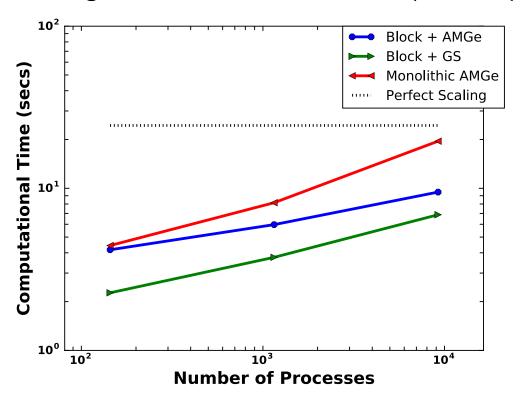
Random permeability coefficient $k(x, \omega)$ is modeled as lognormal random field where $\exp[\log[k_{SPE10} \ (x)] + \theta(x, \omega)]$.



Logarithmic plots of relative permeability coefficient from SPE10 dataset which has large jumps between the mesh elements.

Weak Scaling of Mixed Darcy Equations with Random Permeability: SPE10 Problem

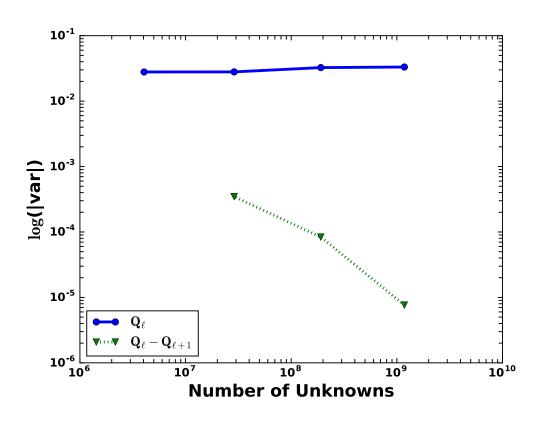
Average Solve Time – Fine Level 0 (100 samples)



Finite element level (Level = 0) has \approx 130K velocity/pressure dofs per process, largest problem has \approx 1.2x10⁹ dofs.

Multilevel Variance Reduction: SPE10 Problem

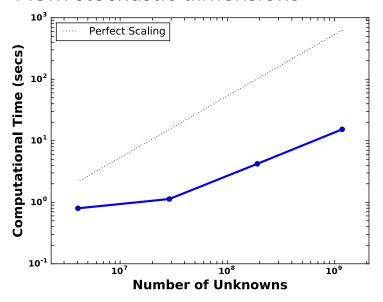
MLMC Simulation with hierarchical SPDE sampler with non-matching mesh embedding



The QoI is $p(x^*)$ for $x^* = (600,1100,85)$

MLMC Performance: SPE10 Problem

- MSE $\epsilon^2 = 6.25e^{-6}$
- 1.2B velocity/pressure unknowns on fine level
- 443M stochastic dimensions



Average time to compute a sample $Q_{\ell}(\omega_i) - Q_{\ell+1}(\omega_i)$.

- 9K processors/sample generation
- Preconditioner:

Sampler: Monolithic AMGe

— Darcy: Block + GS

	MC (estimated)	MLMC
N_0	10623	42
Total samples	10623	13690
Wall Time	41.9 hours	3.9 hours

MLMC with SPDE sampling makes largescale Monte Carlo simulations feasible!!

Concluding Remarks

- Scalable sampling of Gaussian random fields is necessary for largescale uncertainty quantification simulations.
 - Proposed Solution: Hierarchical SPDE sampler
 - Sampling strategy is based on solving a mixed discretization of stochastic PDE.
 - Use mesh embedding on non-matching meshes to mitigate artificial boundary effects with scalable transfer of data between meshes.
- Successfully applied the new sampling technique to large-scale
 MLMC simulations of subsurface flow problems.
 - Constructed hierarchy of coarse spaces using specialized element-based agglomeration techniques.
 - Able to leverage specialized preconditioners for saddle point problems.

Future Work/Remarks:

- Only leveraging parallelism in spatial dimension.
- Further parallelism possible within and across levels as investigated by
 B. Gmeiner, D. Drzisga, U. Rude, R. Scheichl, B. Wohlmuth (2016).

