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Problem Definition

Dynamical system: ut = f (u), f = fν , parameter ν

Discrete (in space) form: Mut = f(u), f = fν

Steady discrete solution u(s) = u(s)(·, ν), ∂u(s)

∂t = 0

Question: Is u(s) stable with respect to perturbation?

Given a (small) perturbation δ

If u(s) + δ is specificied as an initial condition, does the resulting
u(·, t; ν)

– revert to u(s)(·, ν) (decay in time) =⇒ stable

– not revert to u(s)(·, ν) =⇒ unstable
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Stability Analysis

Jacobian J ≡ Jν(u(s)) = ∂f
∂u (u(s))

Eigenvalue problem Jv = λMv

Solution u(s)(·, ν) is linearly stable: Re(λ) < 0 for all λ
linearly unstable: Re(λ) > 0 for some λ

Linear instability =⇒ nonlinear instability
Implications of linear stability not as clear

Examples (Trefethen, Trefethen, Reddy & Driscoll):

– Linearly stable models that exhibit large transient growth
plane Couette flow, plane Poiseuille flow

– Explored using pseudospectra
(Trefethen, et al., Trefethen & Embree)
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Pseudospectra

Eigenvalue problem Jv = λMv

For M = I , perturbed problem

(J + E )v = λv

E a perturbation, ‖E‖ ≤ ε

Explore pseudospectra ∪‖E‖≤εσ(E )

More in sync with transient growth

Expensive

Cf. Embree & Keeler for M 6= I
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Use of Surrogate Models

Eigenvalue problem Jv = λMv, recalling J = J(u
(s)
ν )

Let u
(s)
ν + δ be a perturbation of the steady solution u

(s)
ν

Idea: consider perturbed eigenvalue problem Ĵ(u
(s)
ν , δ) v = λ̂Mv

Generate perturbation δ ≡ δ(ξ) in a systematic way,
depending on some (other) parameters ξ ≡ (ξ1, . . . , ξm)T

Ĵ(u(s)
ν , δ(ξ)) v = λ̂Mv (1)

Let g(ξ) ≡ rightmost eigenvalue of (1)

g (I )(ξ) ≡ surrogate approximation of g(ξ), cheaper to compute

Pseudo-spectral experiment: study values of g (I )(ξ)

Done by sampling ξ
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Background: Collocation for Surrogate Model

To approximate a function g(ξ) of m parameters ξ1, . . . , ξm:

Choose particular realizations of ξ : {ξ(k), k = 1, 2, . . . , nξ}
Evaluate {g(ξ(k))} =

{rightmost eigenvalues of Ĵ(u
(s)
ν , δ(ξ(k))) v = λ̂Mv}

Entails solving eigenvalue problems for realizations ξ = ξ(k)

N.B. Not cheap, but can use unperturbed eigenvalue as a shift

Surrogate g (I )(ξ) taken to be the interpolate

g (I )(ξ) =

nξ∑
k=1

g(ξ(k))Lξ(k)(ξ) — very cheap

For samples: use sparse grid points

Used to approximate functions on
high-dimensional spaces (Barthelmann,
Novak, & Ritter)
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Benchmark Problem: Incompressible Navier-Stokes

Navier-Stokes equations:

~ut − ν∇2~u + ~u · ∇~u +∇p = ~f in D
∇ · ~u = 0 in D

Posed on D ⊂ Rd with suitable boundary conditions
Steady velocity solution ~u (s), perturbation ~u (s) + ~δ

Equations of linear stability analysis: eigenvalue problem

−ν∇2~δ + ~u (s) · ∇~δ + ~δ · ∇~u (s) +∇η = −λ~δ in D
∇ · ~δ = 0 in D

Discrete version(
F (u(s)) BT

B 0

)
︸ ︷︷ ︸

(
u
p

)
︸ ︷︷ ︸ = λ

(
−Q αBT

αB 0

)
︸ ︷︷ ︸

(
u
p

)
︸ ︷︷ ︸

J(u(s)) v M v

Nonzero α (using α=−.1) makes M nonsingular (Cliff, Garrett & Spence)
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Perturbed Eigenvalue Problem

Steady flow ~u (s) gives(
F (u(s)) BT

B 0

)(
u
p

)
= λ

(
−Q αBT

αB 0

)(
u
p

)
Discrete perturbed flow u(s)+ δ −→ perturbed eigenvalue problem(

F (u(s)) + N BT

B 0

)(
u
p

)
= λ

(
−Q αBT

αB 0

)(
u
p

)
For the perturbation (E. Phillips): δ(ξ) ≡ curlh φ(·, ξ),

φ(x , ξ) ≡ σ
m∑
`=1

√
µ` φ`(x) ξ`, Karhunen-Loève expansion
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Perturbed eigenvalue problem(
F (u(s)) + N(ξ) BT

B 0

)(
u
p

)
= λ

(
−Q αBT

αB 0

)(
u
p

)

Key points:

The perturbation is (discrete) divergence free:
divh δ(ξ) = divh curlh φ(ξ) = 0 for any ξ

The perturbation is non-dissipative: N(ξ) = −N(ξ)T for any ξ

Compute pseudospectra using surrogate function (interpolant):

g (I )(ξ) =

nξ∑
k=1

g(ξ(k))Lξ(k)(ξ)

Collocation points {ξ(k)} chosen using sparse-grid collocation.
In experiments, using package spinterp (Klimke & Wohlmuth)

10 / 26 H. C. Elman Stochastic Collocation for Stability Analysis



Problem Statement
Use of Surrogate Models

Comparison: Eigenvalue Analysis and Simulation in Time

Flow in expanding step
Flow around obstacle

1 Problem Statement

2 Use of Surrogate Models

3 Comparison: Eigenvalue Analysis and Simulation in Time
Flow in expanding step
Flow around obstacle

11 / 26 H. C. Elman Stochastic Collocation for Stability Analysis



Problem Statement
Use of Surrogate Models

Comparison: Eigenvalue Analysis and Simulation in Time

Flow in expanding step
Flow around obstacle

Comparison: Eigenvalue Analysis and Simulation in Time

Two benchmark problems:

(1) Flow in expanding step

Critical viscosity ν ≈ 1/220.5
Real rightmost eigenvalue
Pitchfork bifurcation
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(2) Flow around square obstacle
Critical viscosity ν ≈ 1/186
Complex conjugate rightmost
eigenvalues, Hopf bifurcation
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Flow in expanding step
Flow around obstacle

Eigenvalues for
step problem

ν λ

1/210 −2.7× 10−3

1/220 −1.4× 10−4

1/250 5.8× 10−3

Subcritical: ν = 1/210 Near critical: ν = 1/220?

A
A
A
A
AU

Perturbed
eigenvalues

For this:
Solve 760 perturbed
eigenvalue problems
Sample surrogate
1M samples, ∼5 min
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Simulation in Time

Experiment: Simulate laboratory scenario

1. Start from quiescent state, integrate to steady state
Done using adaptive stabilized trapezoidal rule
(Gresho, Griffiths, Silvester)

2. Perturb the velocity and continue the integration until either
– flow returns to steady state, or
– something else happens

Assessed using

Acceleration a(t) =

√∫
D

(
∂~uh
∂t

)2
, small if velocity ~uh is steady

Mean vorticity ω(t) =
∫
D∇× ~uh(·, t) =

∫
∂DN uy (·, t)ds,

avg vertical velocity at outflow, 0 for reflectionally symmetric flow
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0 100 200 300 400
Time step

-5

0
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10

15

20 ×10-15   Mean vorticity evolution

0 100 200 300 400
Time step

10-2

10-1

100

101

102
Flow acceleration

Preliminary: What happens for supercritical
viscosity, ν = 1/250?

Answer: Steady-state solution is
nearly found
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What happens
next, after
interrupt, w/o
perturbation?

330 530 830 930
Time step

-1

-0.5

0

0.5

1

1.5

2

2.5

3 ×10-4  Mean vorticity evolution

330 530 830 930
Time step

10-20

10-15

10-10

10-5

100
Flow acceleration

0 200 400 600 800
Time step

10-10

10-5

100

105

1010

1015
dT

Evolution of the time step

Additional insight from
automatic time stepping:

16 / 26 H. C. Elman Stochastic Collocation for Stability Analysis



Problem Statement
Use of Surrogate Models

Comparison: Eigenvalue Analysis and Simulation in Time

Flow in expanding step
Flow around obstacle

Solution obtained: symmetry breaking

Stationary streamlines: time step = 340

Stationary streamlines: time step = 430

Stationary streamlines: time step = 530

Stationary streamlines: time step = 885
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Flow around obstacle

330 350 370 390 400

Time step

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5 ×10 -10      Mean vorticity evolution

330 350 370 390 400

Time step

10 -25

10 -20

10 -15

10 -10

10 -5

100 Flow acceleration

Repeat experiment for

subcritical ν = 1/210

Long-term behavior,

no perturbation

330 350 370 390 400

Time step

0

0.5

1

1.5

2

2.5

3

3.5 ×10 -9  Mean vorticity evolution

330 350 370 390 400

Time step

10 -20

10 -15

10 -10

10 -5

100 Flow acceleration

Long-term behavior,

perturbation #1

(benign)

330 380 430 480

Time step

-2

-1

0

1

2

3

4 ×10 -6  Mean vorticity evolution

330 380 430 480

Time step

10 -20

10 -15

10 -10

10 -5

100 Flow acceleration

Long-term behavior,

perturbation #2

(lively)
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Flow in expanding step
Flow around obstacle

Display these results differently:

Time step Time step
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Flow in expanding step
Flow around obstacle

330 350 370 390 400

Time step

0

1

2

3

4

5

6 ×10 -7 Mean vorticity evolution

330 350 370 390 400

Time step

10 -20

10 -15

10 -10

10 -5

100
Flow acceleration

Repeat experiment for

near critical ν=1/220

Long-term behavior,

no perturbation

330 350 370 390 400

Time step

0

1

2

3

4

5

6

7 ×10 -7 Mean vorticity evolution

330 350 370 390 400

Time step

10 -20

10 -15

10 -10

10 -5

100 Flow acceleration

Long-term behavior,

perturbation #1

(benign)

330 530 730 930 1130

Time step

-4

-3

-2

-1

0

1

2

3

4 ×10 -5 Mean vorticity evolution

330 530 730 930 1130
Time step

10 -20

10 -15

10 -10

10 -5

100 Flow acceleration

Long-term behavior,

perturbation #2

(lively)
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Flow in expanding step
Flow around obstacle

Summarizing these results, for flow in expanding step:

Transient iteration is consistent with perturbation analysis
– Instability for near-critical parameter is displayed
– Flow for sub-critical (but barely so) parameter is stable

but slight leanings to instability can be observed

Symmetry-breaking for super-critical parameter

Effects can also seen in time step choices made by a good
integrator
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Flow in expanding step
Flow around obstacle

HHj

ν Re(λ)

1/175 −2.9× 10−2

1/185.6 −3.0× 10−4

1/200 3.7× 10−2

Eigenvalues for
obstable problem

Subcritical: ν = 1/175 Near critical: ν = 1/185.6

Perturbed
eigenvalues

For this:
Solve 760 perturbed
eigenvalue problems
Sample surrogate
100K samples, ∼1 min
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Flow in expanding step
Flow around obstacle

330 430 530 630
Time step

-1.5

-1

-0.5

0

0.5

1

1.5
10-3   Mean vorticity evolution

330 430 530 630
Time step

10-15

10-10

10-5

100
Flow acceleration

0 100 200 300 400 500 600
Time step

10-10

10-5

100

105

1010

1015
dT

Evolution of the time step

Simulation for obstacle,

super-critical ν = 1/200

after interrupt

Periodic solution
Vortex-shedding
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Flow in expanding step
Flow around obstacle

200 250 300 350
Time

-6

-4

-2

0

2

4

6 10-6    Mean vorticity evolution

200 250 300 350
Time

10-8

10-6

10-4

Flow acceleration

Highlights of evolution
for three parameters,
with no perturbation

Super-critical,

ν = 1/200

5.9679 5.96795 5.968
Time 107

-2

-1

0

1

2 10-8   Mean vorticity evolution

5.9679 5.96795 5.968
Time 107

10-10

10-8

10-6
Flow acceleration

Sub-critical,

ν = 1/175

1.09 1.1 1.11 1.12 1.13 1.14 1.15
Time 104

-1.5

-1

-0.5

0

0.5

1

1.5
10-7    Mean vorticity evolution

1.09 1.1 1.11 1.12 1.13 1.14 1.15
Time 104

10-10

10-8

10-6

Flow acceleration

Near-critical,

ν = 185.6
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Flow in expanding step
Flow around obstacle

Impact of perturbation
(lively)

5.9 5.95 6 6.05 6.1 6.15
Time 105

-1.5

-1

-0.5

0

0.5

1

1.5 10-7    Mean vorticity evolution

5.9 5.95 6 6.05 6.1 6.15
Time 105

10-15

10-10

10-5
Flow acceleration

Subcritical parameter
ν = 1/175

2800 3000 3200 3400
Time

-1.5

-1

-0.5

0

0.5
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1.5 10-7    Mean vorticity evolution

2800 3000 3200 3400
Time

10-10

10-5
Flow acceleration

Near-critical parameter
ν = 1/185.6
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Flow in expanding step
Flow around obstacle

Summarizing these results, for flow around obstacle:

Transient iteration is again consistent with perturbation analysis
– For sub-critical parameter, performance with perturbation is

like that for no perturbation
– For near-critical parameter, performance with perturbation is

like that for super-critical regime

Results affected by delicacy of stability analysis
– Some instability is seen even for subcritical parameters

Caused by truncation error in transient iteration

For both benchmark problems:

New relatively cheap method for finding pseudospectra is predictive
of behavior of simulation in time

Refined understanding of simulation in time near stability limit
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