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\ PDEs + Random Inputs

To perform forward UQ, we can may apply Stochastic FEMs:

⊲ Monte Carlo FEMs (inc QMC, MLMC, ...)

⊲ Stochastic Galerkin FEMs (SGFEMs) (this talk)

⊲ Stochastic collocation FEMs

⊲ Reduced basis FEMs

⊲ . . .

SGFEMs have limitations for interesting/complex problems.

u(x, ξ(ω)) ≈
nX∑

i=1

nP∑

j=1

uijφi(x)ψj(ξ(ω))
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\ Outline

Intro : standard SGFEM approximation for

−∇ · a (x, ξ(ω))∇u(x, ξ(ω)) = f(x)

Matrix equation formulation of SGFEM systems

Reduced basis iterative solver (MultiRB) :

⊲ Exploits low rank of solution object

⊲ Memory-efficient
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\ 1. Standard SGFEM

Find u(x,y) : D × Γ → R such that

−∇ · a (x,y)∇u(x,y) = f(x) (x,y) ∈ D × Γ,

(+ boundary conditions) where

a(x,y) = a0(x) +

∞∑

m=1

am(x)ym ,

and y is the image of a vector of countably many random variables
ξ = (ξ1, ξ2, . . . , ) taking values in some set Γ (the parameter domain ).
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\ Weak Formulation

Find u ∈ Vg := L2(Γ, H1
g (D)) satisfying:

∫

Γ

(a∇u,∇v)L2(D) dπ(y) =

∫

Γ

(f, v)L2(D) dπ(y) ∀v ∈ V0.
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\ Weak Formulation

Find u ∈ Vg := L2(Γ, H1
g (D)) satisfying:

∫

Γ

(a∇u,∇v)L2(D) dπ(y) =

∫

Γ

(f, v)L2(D) dπ(y) ∀v ∈ V0.

To construct a Galerkin approximation:

Let X ⊂ H1
g (D) be a finite element space on D

Let P ⊂ L2(Γ) be a set of M -variate polynomials on Γ

⊲ total degree ≤ k ⇒ dim(P) = (M+k)!
M !k!

⊲ tensor product ⇒ dim(P) = ΠM
m=1 (km + 1)
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\ SGFEM Linear Systems

Construct uXP ∈ X ⊗ P by solving one linear system, Au = f of size

nXnP = dim(X) × dim(P)

where

A = G0 ⊗K0 +

M∑

m=1

Gℓ ⊗Kℓ.

Matrix structure (total degree case) M = 4 and k = 1, 2, 3.
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\ SGFEM Linear Systems

A = G0 ⊗K0 +
M∑

m=1

Gm ⊗Km

G0, Gm are associated with P (the polynomial space) and K0, Km are
associated with X (the FEM space). All are sparse .

Can solve Au = f using standard Krylov methods . Need:

⊲ multiplications with A

⊲ application of P−1 (preconditioner) to vectors

⊲ memory to store 4 vectors of length nXnP !
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\ Example

Choose D = [−1, 1] × [1, 1] and X = Q1 with nX = 65, 025 and

a(x,y) = 1 + σ
20∑

m=1

√

λmϕm(x)ym, ym ∈
[

−
√

3,
√

3
]

,

where σ = 0.1 and (λm, ϕm) are eigenpairs associated with

Ca(x,x′) = σ2 exp

(

−1

2
‖x − x′‖1

)

M k nP Preconditioned CG

2 231 7.4e1 (6)

20 3 1,771 5.6e2 (6)

4 10,626 Out of Memory
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\ Adaptive SGFEM (1)

⊲ start with low-dimensional spaces X(0),P(0) and compute u(0)
XP

⊲ estimate the (e.g, energy) error using a posterior estimators

η ≈ E

[

‖a1/2∇
(

u− u
(0)
XP

)

‖2
L2(D)

]1/2

⊲ learn if enrichment is needed for X(0) or P(0) (or both)

⊲ compute u(ℓ)
XP

∈ X(ℓ) ⊗ P(ℓ), ℓ = 1, 2, . . .

See work by: Bespalov, Powell, Silvester, Crowder (S-IFISS MATLAB
Software) and Schwab, Eigel, Gittelson, Zander etc.
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\ Adaptive SGFEM (2)

⊲ start with standard (probably too large) spaces X,P

⊲ convert linear system Au = f into a matrix equation, with solution U

⊲ apply an iterative method to generate Uk ≈ U, k = 0, 1, 2, . . . where

Uk = VkYk, Vk ∈ RnX×nR , Yk ∈ RnR×nP

with nR << nX

Note: the product VkYk is never formed!
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\ 2. Matrix Equation Formulation

Define the nX × nP solution matrix

U = [u1,u2, . . . ,unP
] , u = vec(U).

Rewrite Au = f as a multi-term matrix equation

K0UG0 +
M∑

m=1

KmUGm = F.

Key fact: U is often a low-rank matrix . Standard Krylov iterative
methods like CG do not take advantage of this.
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\ Low Rank Example

Let D = [0, 1] × [0, 1] with a0 = 1, ym ∈ [−1, 1] and

am(x) = γm cos (2πβ1x1) cos (2πβ2x2) , γm = O(m−4)

(fast decay coefficients).

Tol=10−6 Tol=10−7 Tol=10−8

M k nP rank rank rank

5 3 56 19 24 30

4 126 23 29 37

9 3 220 21 29 34

4 715 23 32 41

Approximate ranks of the SGFEM solution matrix U (nX = 4, 096).
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\ Singular Values (nX = 4, 096, nP = 220)

Singular values of U (blue), and a reduced solution matrix (red) of size
nR × nP for nR = 20 (left) and nR = 30 (right).

⊲
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\ Reformulated Matrix Equation

K0UG0 +
M∑

m=1

KmUGm = f0g
⊤

0
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\ Reformulated Matrix Equation

K0UG0 +
M∑

m=1

KmUGm = f0g
⊤

0

⊲ Using G0 = I and Cholesky factorisation K0 = LL⊤:

X +

M∑

m=1

K̂mXGm = f̂0g
⊤

0

where X := L⊤U , K̂m = L−1KmL
−⊤ (preconditioning) .
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\ Reformulated Matrix Equation

K0UG0 +
M∑

m=1

KmUGm = f0g
⊤

0

⊲ Using G0 = I and Cholesky factorisation K0 = LL⊤:

X +

M∑

m=1

K̂mXGm = f̂0g
⊤

0

where X := L⊤U , K̂m = L−1KmL
−⊤ (preconditioning) .

⊲ Introduce shifts so FEM matrices are positive definite :

X

(

I −
M∑

m=1

αmGm

)

+
M∑

m=1

(

K̂m + αmI
)

XGm = f̂0g
⊤

0
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\ Reformulated Matrix Equation

K0UG0 +
M∑

m=1

KmUGm = f0g
⊤

0

⊲ Using G0 = I and Cholesky factorisation K0 = LL⊤:

X +

M∑

m=1

K̂mXGm = f̂0g
⊤

0

where X := L⊤U , K̂m = L−1KmL
−⊤ (preconditioning) .

⊲ Introduce shifts so FEM matrices are positive definite :

XB0 +

M∑

m=1

AmXBm = f̂0g
⊤

0
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\ 3. Reduced Basis Approximation

Given KR ⊂ RnR with nR ≪ nX and an orthonormal basis

VR = [v1, . . . ,vnR
] ,

X ≈ XR := VRYR, where the nR × nP reduced solution YR satisfies

V ⊤

R RR = 0

where RR is the residual.
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\ 3. Reduced Basis Approximation

Given KR ⊂ RnR with nR ≪ nX and an orthonormal basis

VR = [v1, . . . ,vnR
] ,

X ≈ XR := VRYR, where the nR × nP reduced solution YR satisfies

V ⊤

R RR = 0

where RR is the residual. Equivalently,

(
V ⊤

R VR

)

︸ ︷︷ ︸

nR×nR

YRB0 +
M∑

m=1

(
V ⊤

R AmVR

)

︸ ︷︷ ︸

nR×nR

YRBm =
(

V ⊤

R f̂⊤0

)

︸ ︷︷ ︸

nR×1

g0.
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\ MultiRB Iterative Method

⊲ Start with V0 = span {v0}

⊲ For j = 1, 2, . . . (until convergence)

- Augment Vj−1 with at most M new vectors

(Am + sjI)
−1

vj−1 ∈ RnX , m = 1, . . . ,M

- Truncate SVD & orthonormalise to obtain Vj

- Solve reduced problem to find Yj

Requires O((nX + nP ) ·M) memory rather than O(nX · nP )

(Motivated by rational Krylov methods for Sylvester equations (M = 1)).
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\ Krylov subspaces

Recall, the standard Krylov space of dimension k associated with a
vector v0 and matrix A is

Kk(A,v0) = span
{
v0, Av0, A

2v0, . . . , A
k−1v0

}
.
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\ Krylov subspaces

Recall, the standard Krylov space of dimension k associated with a
vector v0 and matrix A is

Kk(A,v0) = span
{
v0, Av0, A

2v0, . . . , A
k−1v0

}
.

For Sylvester equations (M=1), we use rational Krylov spaces

Kk(A,v0, s) = span
{
v0, (A+ s1I)

−1v0, (A+ s2I)
−1(A+ s1I)

−1v0,

. . . . . . ,Πk
j=1(A+ sjI)

−1v0 } .

where s = (s1, s2, . . .) are parameters .
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\ MultiRB Spaces

Suppose M = 3. Initialise V0 = span {v0}, e.g. v0 = K−1
0 f .
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\ MultiRB Spaces

Suppose M = 3. Initialise V0 = span {v0}, e.g. v0 = K−1
0 f .

⊲ Iteration 1

V1 = span
{

v0, (A1 + s1I)
−1

v0, (A2 + s1I)
−1

v0, (A3 + s1I)
−1

v0

}

- Truncate (SVD) and orthonormalise

- V1 = span {v0,v1,v2,v3}
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\ MultiRB Spaces

Suppose M = 3. Initialise V0 = span {v0}, e.g. v0 = K−1
0 f .

⊲ Iteration 1

V1 = span
{

v0, (A1 + s1I)
−1

v0, (A2 + s1I)
−1

v0, (A3 + s1I)
−1

v0

}

- Truncate (SVD) and orthonormalise

- V1 = span {v0,v1,v2,v3}

⊲ Iteration 2

V2 = span {v0,v1,v2,v3

(A1 + s2I)
−1

v1, (A2 + s2I)
−1

v1, (A3 + s2I)
−1

v1

}

= span
{

v0, (A1 + s1I)
−1

v0, (A2 + s1I)
−1

v0, (A3 + s1I)
−1

v0

(A1 + s2I)
−1 (A1 + s1I)

−1
v0, (A2 + s2I)

−1 (A1 + s1I)
−1

v0,

(A3 + s2I)
−1 (A1 + s1I)

−1
v0

}
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\ Numerical Results: Case 1

Let D = [0, 1]2 and X = Q1 with nX = 65, 025 . Let ym ∈ [−1, 1] and

a(x,y) = 1 +
∞∑

m=1

γm cos (2πβ1x1) cos (2πβ2x2) ym,

with γm = O(m−4) (fast decay) .

M k nP iter nR time Standard PCG

3 56 19 77 2.65e1 2.17e1 (12)

5 4 126 19 77 2.52e1 5.31e1 (14)

5 252 23 94 3.23e1 1.03e2 (14)

3 969 14 106 6.19e1 4.90e2 (12)

16 4 4,845 15 117 8.47e1 2.81e3 (14)

5 20,349∗ 15 117 2.15e2 Out of Memory
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\ Mesh-independent Convergence

Stop when ‖Xj −Xj−1‖F /‖Xj−1‖F ≤ TOL.
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\ Numerical Results: Case 2

Choose D = [−1, 1]2 and X = Q1 with nX = 65, 025 and

a(x,y) = 1 + σ
20∑

m=1

√

λmϕm(x)ym, ym ∈
[

−
√

3,
√

3
]

,

where σ = 0.1 and (λm, ϕm) are eigenpairs associated with

Ca(x,x′) = σ2 exp

(

−1

2
‖x − x′‖1

)

M k nP iter nR time Standard PCG

2 231 10 171 6.1e1 7.4e1 (6)

20 3 1,771 10 171 6.6e1 5.6e2 (6)

4 10,629 10 171 1.1e2 Out of Memory
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\ References

⊲ An efficient reduced basis solver for stochastic Galerkin matrix
equations, SIAM Journal Sci. Comp., 39(1), (2017). [PSS,2017]

- Valeria Simoncini (Bologna), David Silvester (Manchester)

⊲ Other work on SGFEMs (linear algebra + approximation theory) at:

http://www.maths.manchester.ac.uk/∼cp/

or email me at c.powell@manchester.ac.uk .
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