An Efficient Reduced Basis Solver for SGFEM Matrix Equations.

Catherine E. Powell
School of Mathematics
University of Manchester

Joint work with: Valeria Simoncini, David Silvester.

MIcrNA
 PDEs + Random Inputs

To perform forward UQ, we can may apply Stochastic FEMs:
\triangleright Monte Carlo FEMs (inc QMC, MLMC, ...)
\triangleright Stochastic Galerkin FEMs (SGFEMs) (this talk)
\triangleright Stochastic collocation FEMs
\triangleright Reduced basis FEMs

- ...

SGFEMs have limitations for interesting/complex problems.

$$
u(\boldsymbol{x}, \boldsymbol{\xi}(\omega)) \approx \sum_{i=1}^{n_{X}} \sum_{j=1}^{n_{\mathcal{P}}} u_{i j} \phi_{i}(\boldsymbol{x}) \psi_{j}(\boldsymbol{\xi}(\omega))
$$

\square Intro: standard SGFEM approximation for

$$
-\nabla \cdot a(\boldsymbol{x}, \boldsymbol{\xi}(\omega)) \nabla u(\boldsymbol{x}, \boldsymbol{\xi}(\omega))=f(\boldsymbol{x})
$$

\square Matrix equation formulation of SGFEM systems
\square Reduced basis iterative solver (MultiRB):
\triangleright Exploits low rank of solution object
\triangleright Memory-efficient

MICrNA
 1. Standard SGFEM

Find $u(\boldsymbol{x}, \boldsymbol{y}): D \times \Gamma \rightarrow \mathbb{R}$ such that

$$
-\nabla \cdot a(\boldsymbol{x}, \boldsymbol{y}) \nabla u(\boldsymbol{x}, \boldsymbol{y})=f(\boldsymbol{x}) \quad(\boldsymbol{x}, \boldsymbol{y}) \in D \times \Gamma
$$

(+ boundary conditions) where

$$
a(\mathbf{x}, \mathbf{y})=a_{0}(\mathbf{x})+\sum_{m=1}^{\infty} a_{m}(\mathbf{x}) y_{m},
$$

and y is the image of a vector of countably many random variables $\boldsymbol{\xi}=\left(\xi_{1}, \xi_{2}, \ldots,\right)$ taking values in some set Γ (the parameter domain).

Manchester Numerical Analysis

Find $u \in V_{g}:=L^{2}\left(\Gamma, H_{g}^{1}(D)\right)$ satisfying:

$$
\int_{\Gamma}(a \nabla u, \nabla v)_{L^{2}(D)} d \pi(\boldsymbol{y})=\int_{\Gamma}(f, v)_{L^{2}(D)} d \pi(\boldsymbol{y}) \quad \forall v \in V_{0} .
$$

Find $u \in V_{g}:=L^{2}\left(\Gamma, H_{g}^{1}(D)\right)$ satisfying:

$$
\int_{\Gamma}(a \nabla u, \nabla v)_{L^{2}(D)} d \pi(\boldsymbol{y})=\int_{\Gamma}(f, v)_{L^{2}(D)} d \pi(\boldsymbol{y}) \quad \forall v \in V_{0} .
$$

To construct a Galerkin approximation:
ㄴ Let $X \subset H_{g}^{1}(D)$ be a finite element space on D
\square Let $\mathcal{P} \subset L^{2}(\Gamma)$ be a set of M-variate polynomials on Γ

$$
\begin{aligned}
& \triangleright \text { total degree } \leq k \Rightarrow \operatorname{dim}(\mathcal{P})=\frac{(M+k)!}{M!k!} \\
& \triangleright \text { tensor product } \Rightarrow \operatorname{dim}(\mathcal{P})=\Pi_{m=1}^{M}\left(k_{m}+1\right)
\end{aligned}
$$

SGFEM Linear Systems

Construct $u_{X \mathcal{P}} \in X \otimes \mathcal{P}$ by solving one linear system, $A \mathbf{u}=\mathbf{f}$ of size

$$
n_{X} n_{\mathcal{P}}=\operatorname{dim}(X) \times \operatorname{dim}(\mathcal{P})
$$

where

$$
A=G_{0} \otimes K_{0}+\sum_{m=1}^{M} G_{\ell} \otimes K_{\ell}
$$

Matrix structure (total degree case) $M=4$ and $k=1,2,3$.

\square	0	0	0	0
0	0			
0		0		
0			0	
0				0

SGFEM Linear Systems

$$
A=G_{0} \otimes K_{0}+\sum_{m=1}^{M} G_{m} \otimes K_{m}
$$

G_{0}, G_{m} are associated with \mathcal{P} (the polynomial space) and K_{0}, K_{m} are associated with X (the FEM space). All are sparse.

Can solve $A \mathbf{u}=\mathbf{f}$ using standard Krylov methods. Need:
\triangleright multiplications with A
\triangleright application of P^{-1} (preconditioner) to vectors
\triangleright memory to store 4 vectors of length $n_{X} n_{\mathcal{P}}$!

Choose $D=[-1,1] \times[1,1]$ and $X=\mathbb{Q}_{1}$ with $n_{X}=65,025$ and

$$
a(\boldsymbol{x}, \boldsymbol{y})=1+\sigma \sum_{m=1}^{20} \sqrt{\lambda_{m}} \varphi_{m}(\boldsymbol{x}) y_{m}, \quad y_{m} \in[-\sqrt{3}, \sqrt{3}],
$$

where $\sigma=0.1$ and $\left(\lambda_{m}, \varphi_{m}\right)$ are eigenpairs associated with

$$
C_{a}\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\sigma^{2} \exp \left(-\frac{1}{2}\left\|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right\|_{1}\right)
$$

M	k	n_{P}	Preconditioned CG
20	2	231	$7.4 \mathrm{e} 1(6)$
	3	1,771	$5.6 \mathrm{e} 2(6)$
	4	$\mathbf{1 0 , 6 2 6}$	Out of Memory

Adaptive SGFEM (1)

\triangleright start with low-dimensional spaces $X^{(0)}, \mathcal{P}^{(0)}$ and compute $u_{X \mathcal{P}}^{(0)}$
\triangleright estimate the (e.g, energy) error using a posterior estimators

$$
\eta \approx \mathbb{E}\left[\left\|a^{1 / 2} \nabla\left(u-u_{X \mathcal{P}}^{(0)}\right)\right\|_{L^{2}(D)}^{2}\right]^{1 / 2}
$$

\triangleright learn if enrichment is needed for $X^{(0)}$ or $\mathcal{P}^{(0)}$ (or both)
\triangleright compute $u_{X \mathcal{P}}^{(\ell)} \in X^{(\ell)} \otimes \mathcal{P}^{(\ell)}, \ell=1,2, \ldots$

See work by: Bespalov, Powell, Silvester, Crowder (S-IFISS MATLAB Software) and Schwab, Eigel, Gittelson, Zander etc.

MlerNA
 Adaptive SGFEM (2)

\triangleright start with standard (probably too large) spaces X, \mathcal{P}
\triangleright convert linear system $A \mathbf{u}=\mathbf{f}$ into a matrix equation, with solution U
\triangleright apply an iterative method to generate $U_{k} \approx U, k=0,1,2, \ldots$ where

$$
U_{k}=V_{k} Y_{k}, \quad V_{k} \in \mathbb{R}^{n_{X} \times n_{R}}, Y_{k} \in \mathbb{R}^{n_{R} \times n_{\mathcal{P}}}
$$

with $n_{R} \ll n_{X}$

Note: the product $V_{k} Y_{k}$ is never formed!

2. Matrix Equation Formulation

Define the $n_{X} \times n_{P}$ solution matrix

$$
U=\left[\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n_{P}}\right], \quad \mathbf{u}=\operatorname{vec}(U) .
$$

Rewrite $A \mathbf{u}=\mathbf{f}$ as a multi-term matrix equation

$$
K_{0} U G_{0}+\sum_{m=1}^{M} K_{m} U G_{m}=F
$$

Key fact: U is often a low-rank matrix. Standard Krylov iterative methods like CG do not take advantage of this.

Low Rank Example

Let $D=[0,1] \times[0,1]$ with $a_{0}=1, y_{m} \in[-1,1]$ and

$$
a_{m}(\mathbf{x})=\gamma_{m} \cos \left(2 \pi \beta_{1} x_{1}\right) \cos \left(2 \pi \beta_{2} x_{2}\right), \quad \gamma_{m}=O\left(m^{-4}\right)
$$

(fast decay coefficients).

		Tol $=10^{-6}$	Tol $=10^{-7}$	$\mathrm{Tol}=10^{-8}$	
M	k	n_{P}	rank	rank	rank
5	3	56	19	24	30
	4	126	23	29	37
9	3	220	21	29	34
	4	715	23	32	41

Approximate ranks of the SGFEM solution matrix $U\left(n_{X}=4,096\right)$.

Singular values of U (blue), and a reduced solution matrix (red) of size $n_{R} \times n_{P}$ for $n_{R}=20$ (left) and $n_{R}=30$ (right).

Reformulated Matrix Equation

Manchester Numerical Analysis

$$
K_{0} U G_{0}+\sum_{m=1}^{M} K_{m} U G_{m}=\mathbf{f}_{0} \mathbf{g}_{0}^{\top}
$$

Reformulated Matrix Equation

$$
K_{0} U G_{0}+\sum_{m=1}^{M} K_{m} U G_{m}=\mathbf{f}_{0} \mathbf{g}_{0}^{\top}
$$

\triangleright Using $G_{0}=I$ and Cholesky factorisation $K_{0}=L L^{\top}$:

$$
X+\sum_{m=1}^{M} \hat{K}_{m} X G_{m}=\hat{\mathbf{f}}_{0} \mathbf{g}_{0}^{\top}
$$

where $X:=L^{\top} U, \hat{K}_{m}=L^{-1} K_{m} L^{-\top}$ (preconditioning).

Reformulated Matrix Equation

$$
K_{0} U G_{0}+\sum_{m=1}^{M} K_{m} U G_{m}=\mathbf{f}_{0} \mathbf{g}_{0}^{\top}
$$

\triangleright Using $G_{0}=I$ and Cholesky factorisation $K_{0}=L L^{\top}$:

$$
X+\sum_{m=1}^{M} \hat{K}_{m} X G_{m}=\hat{\mathbf{f}}_{0} \mathbf{g}_{0}^{\top}
$$

where $X:=L^{\top} U, \hat{K}_{m}=L^{-1} K_{m} L^{-\top}$ (preconditioning).
\triangleright Introduce shifts so FEM matrices are positive definite:

$$
X\left(I-\sum_{m=1}^{M} \alpha_{m} G_{m}\right)+\sum_{m=1}^{M}\left(\hat{K}_{m}+\alpha_{m} I\right) X G_{m}=\hat{\mathbf{f}}_{0} \mathbf{g}_{0}^{\top}
$$

Reformulated Matrix Equation

$$
K_{0} U G_{0}+\sum_{m=1}^{M} K_{m} U G_{m}=\mathbf{f}_{0} \mathbf{g}_{0}^{\top}
$$

\triangleright Using $G_{0}=I$ and Cholesky factorisation $K_{0}=L L^{\top}$:

$$
X+\sum_{m=1}^{M} \hat{K}_{m} X G_{m}=\hat{\mathbf{f}}_{0} \mathbf{g}_{0}^{\top}
$$

where $X:=L^{\top} U, \hat{K}_{m}=L^{-1} K_{m} L^{-\top}$ (preconditioning).
\triangleright Introduce shifts so FEM matrices are positive definite:

$$
X B_{0}+\sum_{m=1}^{M} A_{m} X B_{m}=\hat{\mathbf{f}}_{0} \mathbf{g}_{0}^{\top}
$$

MlerNA

 3. Reduced Basis Approximation

 3. Reduced Basis Approximation}

Given $\mathcal{K}_{R} \subset \mathbb{R}^{n_{R}}$ with $n_{R} \ll n_{X}$ and an orthonormal basis

$$
V_{R}=\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{n_{R}}\right]
$$

$X \approx X_{R}:=V_{R} Y_{R}$, where the $n_{R} \times n_{P}$ reduced solution Y_{R} satisfies

$$
V_{R}^{\top} R_{R}=0
$$

where R_{R} is the residual.

MlerNA
 3. Reduced Basis Approximation

Given $\mathcal{K}_{R} \subset \mathbb{R}^{n_{R}}$ with $n_{R} \ll n_{X}$ and an orthonormal basis

$$
V_{R}=\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{n_{R}}\right],
$$

$X \approx X_{R}:=V_{R} Y_{R}$, where the $n_{R} \times n_{P}$ reduced solution Y_{R} satisfies

$$
V_{R}^{\top} R_{R}=0
$$

where R_{R} is the residual. Equivalently,

$$
\underbrace{\left(V_{R}^{\top} V_{R}\right)}_{n_{R} \times n_{R}} Y_{R} B_{0}+\sum_{m=1}^{M} \underbrace{\left(V_{R}^{\top} A_{m} V_{R}\right)}_{n_{R} \times n_{R}} Y_{R} B_{m}=\underbrace{\left(V_{R}^{\top} \hat{\mathbf{f}}_{0}^{\top}\right)}_{n_{R} \times 1} \mathbf{g}_{0} .
$$

MultiRB Iterative Method

\triangleright Start with $V_{0}=\operatorname{span}\left\{\mathbf{v}_{0}\right\}$
\triangleright For $j=1,2, \ldots$ (until convergence)

- Augment V_{j-1} with at most M new vectors

$$
\left(A_{m}+s_{j} I\right)^{-1} \mathbf{v}_{j-1} \in \mathbb{R}^{n_{X}}, \quad m=1, \ldots, M
$$

- Truncate SVD \& orthonormalise to obtain V_{j}
- Solve reduced problem to find Y_{j}

Requires $O\left(\left(n_{X}+n_{P}\right) \cdot M\right)$ memory rather than $O\left(n_{X} \cdot n_{P}\right)$
(Motivated by rational Krylov methods for Sylvester equations $(M=1)$).

Recall, the standard Krylov space of dimension k associated with a vector \mathbf{v}_{0} and matrix A is

$$
\mathbb{K}_{k}\left(A, \mathbf{v}_{0}\right)=\operatorname{span}\left\{\mathbf{v}_{0}, A \mathbf{v}_{0}, A^{2} \mathbf{v}_{0}, \ldots, A^{k-1} \mathbf{v}_{0}\right\}
$$

MlerNA Krylov subspaces

Recall, the standard Krylov space of dimension k associated with a vector \mathbf{v}_{0} and matrix A is

$$
\mathbb{K}_{k}\left(A, \mathbf{v}_{0}\right)=\operatorname{span}\left\{\mathbf{v}_{0}, A \mathbf{v}_{0}, A^{2} \mathbf{v}_{0}, \ldots, A^{k-1} \mathbf{v}_{0}\right\}
$$

For Sylvester equations ($M=1$), we use rational Krylov spaces

$$
\begin{aligned}
& \qquad \begin{array}{l}
\overline{\mathbb{K}}_{k}\left(A, \mathbf{v}_{0}, \mathbf{s}\right)=\operatorname{span}\left\{\mathbf{v}_{0},\left(A+s_{1} I\right)^{-1} \mathbf{v}_{0},\left(A+s_{2} I\right)^{-1}\left(A+s_{1} I\right)^{-1} \mathbf{v}_{0}\right. \\
\\
\left.\ldots \ldots, \Pi_{j=1}^{k}\left(A+s_{j} I\right)^{-1} \mathbf{v}_{0}\right\} .
\end{array} \\
& \text { where } \mathrm{s}=\left(s_{1}, s_{2}, \ldots\right) \text { are parameters. }
\end{aligned}
$$

Suppose $M=3$. Initialise $V_{0}=\operatorname{span}\left\{\mathbf{v}_{0}\right\}$, e.g. $\mathbf{v}_{0}=K_{0}^{-1} \mathbf{f}$.

MlerNA
 MultiRB Spaces

Suppose $M=3$. Initialise $V_{0}=\operatorname{span}\left\{\mathbf{v}_{0}\right\}$, e.g. $\mathbf{v}_{0}=K_{0}^{-1} \mathbf{f}$.
\triangleright Iteration 1

$$
V_{1}=\operatorname{span}\left\{\mathbf{v}_{0},\left(A_{1}+s_{1} I\right)^{-1} \mathbf{v}_{0},\left(A_{2}+s_{1} I\right)^{-1} \mathbf{v}_{0},\left(A_{3}+s_{1} I\right)^{-1} \mathbf{v}_{0}\right\}
$$

- Truncate (SVD) and orthonormalise
- $V_{1}=\operatorname{span}\left\{\mathbf{v}_{0}, \mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$

MlerNA
 MultiRB Spaces

Suppose $M=3$. Initialise $V_{0}=\operatorname{span}\left\{\mathbf{v}_{0}\right\}$, e.g. $\mathbf{v}_{0}=K_{0}^{-1} \mathbf{f}$.
\triangleright Iteration 1

$$
V_{1}=\operatorname{span}\left\{\mathbf{v}_{0},\left(A_{1}+s_{1} I\right)^{-1} \mathbf{v}_{0},\left(A_{2}+s_{1} I\right)^{-1} \mathbf{v}_{0},\left(A_{3}+s_{1} I\right)^{-1} \mathbf{v}_{0}\right\}
$$

- Truncate (SVD) and orthonormalise
- $V_{1}=\operatorname{span}\left\{\mathbf{v}_{0}, \mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$
\triangleright Iteration 2

$$
\begin{aligned}
& V_{2}=\operatorname{span}\left\{\mathbf{v}_{0}, \mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right. \\
& \left.\left(A_{1}+s_{2} I\right)^{-1} \mathbf{v}_{1},\left(A_{2}+s_{2} I\right)^{-1} \mathbf{v}_{1},\left(A_{3}+s_{2} I\right)^{-1} \mathbf{v}_{1}\right\} \\
& =\operatorname{span}\left\{\mathbf{v}_{0},\left(A_{1}+s_{1} I\right)^{-1} \mathbf{v}_{0},\left(A_{2}+s_{1} I\right)^{-1} \mathbf{v}_{0},\left(A_{3}+s_{1} I\right)^{-1} \mathbf{v}_{0}\right. \\
& \left(A_{1}+s_{2} I\right)^{-1}\left(A_{1}+s_{1} I\right)^{-1} \mathbf{v}_{0},\left(A_{2}+s_{2} I\right)^{-1}\left(A_{1}+s_{1} I\right)^{-1} \mathbf{v}_{0}, \\
& \left.\left(A_{3}+s_{2} I\right)^{-1}\left(A_{1}+s_{1} I\right)^{-1} \mathbf{v}_{0}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Let } D=[0,1]^{2} \text { and } X=\mathbb{Q}_{1} \text { with } n_{X}=65,025 \text {. Let } y_{m} \in[-1,1] \text { and } \\
& \qquad \quad a(\boldsymbol{x}, \boldsymbol{y})=1+\sum_{m=1}^{\infty} \gamma_{m} \cos \left(2 \pi \beta_{1} x_{1}\right) \cos \left(2 \pi \beta_{2} x_{2}\right) y_{m} \\
& \text { with } \gamma_{m}=O\left(m^{-4}\right) \text { (fast decay). }
\end{aligned}
$$

M	k	n_{P}	iter	n_{R}	time	Standard PCG
5	3	56	19	77	2.65 e 1	$2.17 \mathrm{e} 1(12)$
	4	126	19	77	2.52 e 1	$5.31 \mathrm{e} 1(14)$
	5	252	23	94	3.23 e 1	$1.03 \mathrm{e} 2(14)$
	3	969	14	106	6.19 e 1	$4.90 \mathrm{e} 2(12)$
	4	4,845	15	117	8.47 e 1	$2.81 \mathrm{e} 3(14)$
	5	$\mathbf{2 0 , 3 4 9}$	15	117	$\mathbf{2 . 1 5 e} 2$	Out of Memory

MlerNA
 Mesh-independent Convergence

Manchester Numerical Analysis

Stop when $\left\|X_{j}-X_{j-1}\right\|_{F} /\left\|X_{j-1}\right\|_{F} \leq T O L$.

Numerical Results: Case 2

Choose $D=[-1,1]^{2}$ and $X=\mathbb{Q}_{1}$ with $n_{X}=65,025$ and

$$
a(\boldsymbol{x}, \boldsymbol{y})=1+\sigma \sum_{m=1}^{20} \sqrt{\lambda_{m}} \varphi_{m}(\boldsymbol{x}) y_{m}, \quad y_{m} \in[-\sqrt{3}, \sqrt{3}]
$$

where $\sigma=0.1$ and $\left(\lambda_{m}, \varphi_{m}\right)$ are eigenpairs associated with

$$
C_{a}\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\sigma^{2} \exp \left(-\frac{1}{2}\left\|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right\|_{1}\right)
$$

M	k	n_{P}	iter	n_{R}	time	Standard PCG
20	2	231	10	171	6.1 e 1	$7.4 \mathrm{e} 1(6)$
	3	1,771	10	171	6.6 e 1	$5.6 \mathrm{e} 2(6)$
	4	$\mathbf{1 0 , 6 2 9}$	10	171	$\mathbf{1 . 1 e 2}$	Out of Memory

\triangleright An efficient reduced basis solver for stochastic Galerkin matrix equations, SIAM Journal Sci. Comp., 39(1), (2017). [PSS,2017]

- Valeria Simoncini (Bologna), David Silvester (Manchester)
\triangleright Other work on SGFEMs (linear algebra + approximation theory) at:
http://www.maths.manchester.ac.uk/~cp/
or email me at c.powell@manchester.ac.uk.

