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NA PDEs+ Random Inputs

Manchester Numerical Analysis

To perform forward UQ, we can may apply Stochastic FEMs:
> Monte Carlo FEMs (inc QMC, MLMC, ...)
> Stochastic Galerkin FEMs (SGFEMs) (this talk)
> Stochastic collocation FEMs
> Reduced basis FEMs

> ...

SGFEMSs have limitations for interesting/complex problems.

nx np

u(x, E(w)) ~ Z Z wij @i ()P (&(w))

i=1 j=1
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NA Outline

Manchester Numerical Analysis

O Intro : standard SGFEM approximation for

—V-a(z,§(w)) Vu(z, (W) = f(x)
O Matrix equation formulation of SGFEM systems

O Reduced basis iterative solver (MultiRB) :

> Exploits low rank of solution object

> Memory-efficient
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NA 1. Standard SGFEM

Manchester Numerical Analysis

Find u(x,y) : D x I' — R such that
-V -a(z,y) Vu(z,y) = f(z) (x,y) € DxT,

(+ boundary conditions) where

00
CL(X,y _GJO _|_ Zam )
=1

and y is the image of a vector of countably many random variables
£ = (&1,&,,...,) taking values in some set I' (the parameter domain ).
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NA Weak Formulation

Manchester Numerical Analysis

Findu € V, := L*(I', H (D)) satisfying:

/F (aVt, V) o ) () = /P (f,0) g dr(y) Vo€ Vo
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NA Weak Formulation

Manchester Numerical Analysis

Findu € V, := L*(I', H (D)) satisfying:

/F (aVt, V) o ) () = /P (f,0) g dr(y) Vo€ Vo

To construct a Galerkin approximation:

O Let X C H (D) be a finite element space on D

O Let P c L?(T") be a set of M-variate polynomials onT

> total degree < k = | dim(P) = LR

> tensor product =

M!E!

dim(P) = IM_, (k,,, + 1)

An Efficient Reduced Basis Solver for SGFEM Matrix Eqguations. — n. 5/2



Manchester Numerical Analysis

NA

SGFEM Linear Systems

Construct uxp € X ® P by solving one linear system, Au = f of size

where

nxnp = dim(X) x dim(P)

M
A=Go®Ko+ Y GieKy

m=1

Matrix structure (total degree case) M =4and k =1,2, 3.
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NA SGFEM Linear Systems

Manchester Numerical Analysis

M
A:G0®K0+2Gm®[(m

m=1

Go, G, are associated with P (the polynomial space) and K, K,, are
associated with X (the FEM space). All are sparse .

Can solve Au = f using standard Krylov methods . Need:
> multiplications with A
> application of P~! (preconditioner) to vectors

> memory to store 4 vectors of length nxnp!
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NA Example

Manchester Numerical Analysis

Choose D = |[—1,1] x [1,1] and X = Q; with|[nx = 65,025 | and

20
a(may) =1+o0 Z V )\mgpm(m)ym, Ym € [_\/57 \/g} J
m=1
where 0 = 0.1 and (\,,,, ¢.,) are eigenpairs associated with

1
C,(x,x') = 0% exp (—§Hw — az’Hl)

M | k np | Preconditioned CG
2 231 7.4el (6)
20 | 3 1,771 5.6e2 (6)
4 10,626 Out of Memory
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NA  Adaptive SGFEM (1)

Manchester Numerical Analysis

> start with low-dimensional spaces X (®, P() and compute v'%),

> estimate the (e.g, energy) error using a posterior estimators

. 1/2
n~E {Hal/QV (’u, — ug(;;) H%P(D)}

> learn if enrichment is needed for X(© or P (or both)
> compute ul{), € XD @ PO (=12 ...

See work by: Bespalov, Powell, Silvester, Crowder (S-IFISS MATLAB
Software) and Schwab, Eigel, Gittelson, Zander etc.

An Efficient Reduced Basis Solver for SGFEM Matrix Eqguations. — n. 9/2



NA  Adaptive SGFEM (2)

Manchester Numerical Analysis

> start with standard (probably too large) spaces X, P
> convert linear system Au = f into a matrix equation, with solution U

> apply an iterative method to generate U, =~ U, k =0,1,2,... where

Uk = VkYk, Vk - RnXan, Yk e RNEXNP

with [ng << nx

Note: the product V,.Y}. is never formed!
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NA

Manchester Numerical Analysis

Define the

nx X np

U =

2. Matrix Equation Formulation

solution matrix

ug,ug, ..., uy,, u = vec(U).

Rewrite Au = f as a multi-term matrix equation

M
KoUGy + Z K, UG, =F.

m=1

Key fact: U is often a low-rank matrix . Standard Krylov iterative
methods like CG do not take advantage of this.
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NA Low Rank Example
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Let D = [0, 1] x [0, 1] with ag = 1, y,,, € [-1,1] and

Ay (X) = Yy cos (2B121) cos (2w Baxa) ,

(fast decay coefficients).

Tm = O(m_4)

Tol=10=°% | Tol=10~7 | Tol=10"8

M|k np rank rank rank
513 56 19 24 30
4 126 23 29 37

9 | 3 220 21 29 34
4 715 23 32 41

Approximate ranks of the SGFEM solution matrix U (nx = 4, 096).
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NA Singular Values (nx = 4,096, np = 220)

Manchester Numerical Analysis

Singular values of U (blue), and a reduced solution matrix  (red) of size
nr X np forng = 20 (left) and nz = 30 (right).

0 50 100 150 200 250 0 50 100 150 200 250
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N A Reformulated Matrix Equation

Manchester Numerical Analysis

M
KoUGo+ Y KnUGy, = fogg

m=1
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N A Reformulated Matrix Equation

Manchester Numerical Analysis

M
KoUGo+ Y KnUGy, = fogg

m=1

> Using Gy = I and Cholesky factorisation Ky = LL':

M
X+ KnXG, = bhgl

m=1

where X := L'U, K,,, = L 'K,,L~ " (preconditioning) .
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N A Reformulated Matrix Equation

Manchester Numerical Analysis

M
KoUGo+ Y KnUGy, = fogg

m=1

> Using Gy = I and Cholesky factorisation Ky = LL':

M
X+ KnXG, = bhgl

m=1

where X := L'U, K,,, = L 'K,,L~ " (preconditioning) .

> Introduce shifts so FEM matrices are positive definite :
M M
X (1 -y ame> + > (Km + aml) XG,, = fog!
m=1 m=1
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N A Reformulated Matrix Equation

Manchester Numerical Analysis

M
KoUGo+ Y KnUGy, = fog)

m=1

> Using Gy = I and Cholesky factorisation Ky = LL':

M
X+ KnXG = bhg]

m=1

where X := LU, K,, = L 'K,, L~ (preconditioning) .

> Introduce shifts so FEM matrices are positive definite :

M
XBy+ Y AnXB, =fog]

m=1
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NA 3. Reduced Basis Approximation

Manchester Numerical Analysis

Given Lr C R"2 with|np < nx

VR = [Vl,..

X ~ Xg := VgrYg, where the

where Rp is the residual.

np Xnp

and an orthonormal basis

7VnR] 9

reduced solution Ypg satisfies

Ve R =0
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NA 3. Reduced Basis Approximation

Manchester Numerical Analysis

Given Kr C R™"2 with [ ngr < nx |and an orthonormal basis

VR: [Vla"'avnR]a

X ~ Xgr := VgYg, where the[ngr x np |reduced solution Yg satisfies

VaRr =0
where Rg is the residual. Equivalently,
M A
(Vi Vi) YaBo+ % (Vi AnVi) YaBm = (Vit) ) go

N—— m=1 ~~ \

NrXNRegR NrXNRegR

~

nr X1
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NA MultiRB Iterative Method

Manchester Numerical Analysis

> Start with Vy = span{vg}

> For j = 1,2, ... (until convergence)

- Augment V;_; with at most M new vectors

(Am+8jl)_1Vj_1€RnX, m=1,....,.M

- Truncate SVD & orthonormalise to obtain V

- Solve reduced problem to find Y;

Requires| O((nx +np) - M) [memory rather than O(nx - np)

(Motivated by rational Krylov methods for Sylvester equations (M = 1)).
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NA Krylov subspaces

Manchester Numerical Analysis

Recall, the standard Krylov space of dimension k associated with a
vector vg and matrix A is

Ky (A, vg) = span {VO, Avy, A%vy, ..., Ak_lvo} .
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NA Krylov subspaces

Manchester Numerical Analysis

Recall, the standard Krylov space of dimension k associated with a
vector vg and matrix A is

Ky (A, vg) = span {VO, Avy, A%vy, ..., Ak_lvo} .

For Sylvester equations (M=1), we use rational Krylov spaces

Ki(A,vo,s) = span{vq, (A+ s1I) " v, (A+ soI) YA+ s11) Lo,
...... 7H§:1(A + Sj])_lVO } )

where s = (s1, s2, . ..) are parameters .

An Efficient Reduced Basis Solver for SGFEM Matrix Eqguations. — n. 18/2



NA  MultiRB Spaces

Manchester Numerical Analysis

Suppose M = 3. Initialise V, = span {vq}, e.g. vo = K 'f.
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NA  MultiRB Spaces

Manchester Numerical Analysis

Suppose M = 3. Initialise V, = span {vq}, e.g. vo = K 'f.

> lteration 1
Vl = span {VQ, (Al —|— 81])_1 Vo, (A2 —|— 81])_1 Vo, (Ag —|— 81])_1 Vo}
- Truncate (SVD) and orthonormalise

- V1 = span{vy, v1, Vo, Vvs}
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NA  MultiRB Spaces

Manchester Numerical Analysis

Suppose M = 3. Initialise V, = span {vq}, e.g. vo = K 'f.

> lteration 1
Vl = span {VQ7 (Al —|— 81])_1 Vo, (A2 —|— 81])_1 Vo, (Ag —|— 81])_1 Vo}
- Truncate (SVD) and orthonormalise

- V1 = span{vy, v1, Vo, Vvs}

> Iteration 2

VQ — Span {V07 Vi1,V2,V3
(A1 + sod) " vy, (Ao + s2) " vy, (Ag 4 so1) 7" V1}

= span {V07 (A1 +511) v, (A 4+ 510) " v, (As + 1)~ v

(A1 + 59I) " (A1 + s10) " vo, (As 4+ soI) " (A1 + s10) " vo,
(Ag + SQI)_l (Al -+ 81[)_1 Vo}
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NA

Manchester Numerical Analysis

Let D = [0,1]? and X = Q; with

with ~,, = O(m~*) (fast decay) .

Numerical Results: Case 1

nx = 65,025

Let y.,, € [-1,1] and

a(x,y) =1+ Z Y €08 (27 3121) cos (2T B222) Ym,

m=1

M |k np | iter np time Standard PCG
3 56 | 19 77 2.65el 2.17el (12)

> | 4 126 | 19 77 2.52el 5.31el (14)
5 252 | 23 94 3.23el 1.03e2 (14)
3 969 | 14 106 6.19¢e1 4.90e2 (12)

16 | 4 4845 | 15 117 8.47el 2.81e3 (14)
5 20,349 | 15 117 2.15e2 || Out of Memory
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NA Mesh-independent Convergence

Manchester Numerical Analysis

Stop when || .X; — X;_1[|r/| Xj-1llr < TOL.

Error

h=1/128
h=1/256 ]

0 20 40 60 80 100 120 140 160
Size of Reduced Basis
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NA Numerical Results: Case 2

Manchester Numerical Analysis

Choose D = [-1,1]? and X = Q; with|nx = 65,025 | and

20
a(may) =1+o0 Z V Amgpm(m)ym, Ym € [_\/57 \/g} J
m=1
where 0 = 0.1 and (\,,,, ¢.,) are eigenpairs associated with

1
C,(x,x') = 0% exp (—§Hw — az’Hl)

M | k np | iter npg time Standard PCG
2 231 | 10 171 6.1lel 7.4e1l (6)

20 | 3 1,771 | 10 171 6.6el 5.6e2 (6)
4 10,629 | 10 171 1.1e2 || Out of Memory
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NA

Manchester Numerical Analysis

References

> An efficient reduced basis solver for stochastic Galerkin matrix
equations, SIAM Journal Sci. Comp., 39(1), (2017). [PSS,2017]

- Valeria Simoncini (Bologna), David Silvester (Manchester)

> Other work on SGFEMSs (linear algebra + approximation theory) at:

http://ww. mat hs. manchest er. ac. uk/ ~cp/

or email me at

c. powel | @manchest er. ac. uk|.
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