Scalable solvers for meshless methods on
many-core clusters

Peter Zaspel

Nl
X< University
of Basel

QUIET 2017
SISSA, Trieste, July 18-21, 2017

Main objective for today
Solution of well-structured dense linear system

k(yi,y1) - kY, ¥n)
: : x=b
k(er7y1) e k(erﬂer)

» k: I x T — R positive definite kernel function
» {y}M., y; € RY points, with N potentially extremely large

Applications Fast and scalable solvers

» uncertainty quantification
» quadrature
» machine learning

Outline

Motivating applications
Review of solution techniques for kernel systems
Scenario 1: Krylov subspace solvers on many-core clusters

Scenario 2: Hierarchical matrices on many-core clusters
Many-core parallelization
Outlook: Cluster parallelization

Outlook: Numerical results in quadrature

Outline

Motivating applications

Kernel-based stochastic collocation for CFD &reetfeeer2orsl

[Z.2015]
Example: Expectation value
Nr Nr
E[u](x) = Y u(ys X)E[Ls] & ... = > u(ys, X) (Acx) '),
s=1 s=1
kv, y1) - k(Y ¥a) Elk(-, y1)]
Ak:Xr = , e= ()
k(ne,y1) - k(YY) E[k(, yn.)]

.
08 o
..
06 o,°
.
04f o %

«® o
02f e, .'.' % °

6 0.‘2 014 016 0‘.8 1‘
L luti h x
collocation points y solution snapshots u(ys, X, 1) RBF kernel function

k(yiy;) = ¢(llyi — y;l)

[Schaback 2014],

Higher-order quadrature for QMC points ireve fieger 20151 2. 2015

Quadrature rule

[Oettershagen 2017]

a=Ax'b, b= /k(x,-,x)dx

Quadrature points x;

1

0.8

0.6

0.4

0.2

0

r

Convergence (Gaussian)

10°

S
[

quadrature error
3
S

S,
&

1 02
quadrature points

Machine learning in quantum chemistry
Objectives and challenges

» computational exploration of chemical compound space

Proposed solution
» machine learning: predicting energies of unknown molecules
» kernel ridge regression: p(M) = Z,’L aik(M, M;)
> “points” M;: representation (e.g. coulomb matrix) of molecule

1 A
PSS PUN o
L 1

Chalcone derivative oy5 (e

555m

SNF project by H. Harbrecht & A. v. Lilienfeld within @ Big Data

National Research Programme

Outline

Review of solution techniques for kernel systems

Scenarios

Scenario 1

» original dense system has to be solved

» example: unstructured, truely high-dimensional data sites
= no gain by e.g. low rank approx. in presymptotic regime

» (precond.) iterative Krylov subspace solvers O(c(Nr)NZ)

= ¢(Nr) = const for local Lagrange precond. on sphere
(joint work w. M. Griebel, Ch. Rieger)

Scenario 2
» dense matrix can be efficiently approximated
» hierarchical matrices: ~ O(Nr log Nr) matrix-vector product
» use in Krylov subspace solver: O(c(Nr)Nrlog Nr)

Fast matrix-vector product by H-Matrices

Hierarchical matrices [Hackbusch 1999],...

>

>

matrix entries k(y;, ¥;) corresponding to tuples of points
— point view vs. matrix view

Qp k(y1_7y1) k(yn_er)
P o)

G k(.VN.rJﬁ) k(er.ver)
matrix approximation via tree-based point set decomposition

\—

approximation of subblocks if
corresponding point sets are far
away i.e. admissible

~ O(NrlogNr) complexity MVP

Cluster tree

hierarchical decomposition
of point set into clusters
tree of subsets of the
underlying point set

splitting of subsets
e.g. based on cardinality
based clustering (CBC)

implementation
— space filling curve

Block cluster tree

//\\
NN

tree of subset / cluster tuples

subset splitting based on cluster tree

nodes representing subblocks of system matrix

leaves either stored exactly or approximated if admissible
admissibility condition:

min{diam(£2,),diam(Q,)} < ndist(Q2,, Q)

vV Vv vVvYyVvyy

fast MVP < block tree traversal & leaf application

Matrix block approximation

Adaptive Cross Approximation (ACA) gevendort 2000]

» low-rank approximation method
» algorithm (simplified):

Forr=1,2,...,k

i\lr = A1:m’fr - Z/r;‘: UI(VI)j,,

up = (&) ay, with |(@,);,| = (18| o,

Vy = (Ai,,1:n)T - r_1(ul)'

. €(1.0

if (||u,||2 Villo < GO |5 wy |) stop

~ k
> A ~ Zr:1 UrVr

Outline

Scenario 1: Krylov subspace solvers on many-core clusters

Why targeting many-core clusters?

Top supercomputing systems

» China: Tianhae-2, Intel Xeon Phi 31S1P (Top 2)
» Europe: Piz Daint, Nvidia Tesla P100 (Top 3)

» US: Titan, Nvidia Tesla K20X (Top 4)
= Summit to come in 2018, Nvidia Volta architecture

Machine learning

» deep learning often done on GPUs
» making kernel ridge regression available for many-core

Challenge in top HPC systems

» special programming for many-core processors
» parallelization to get beyond a single many-core processor

(Assumption: Want to compute on many-core procs., multi-core procs. for control)

Krylov subspace solver for kernel linear system

MPLA

> iterative dense linear solvers for multi-GPU clusters
» runs on Titan at ORNL

» Open Source: LGPL, github. com/zaspel/MPLA

» O(Nr?) complexity matrix-vector products

Parallelization between GPUs Parallelization on GPU
» kernel matrix setup written
SPURL | GRUR | — in CUDA

» use of CUBLAS for MVP
=- BLAS impl. by vendor

5PU3 GPUA

data exch. by CUDA-aware MPI

(localized preconditioner currently not part of the library)

github.com/zaspel/MPLA

Weak scalability results of pure Krylov solver on Titan

parallel efficiency (in %)

Parallel scale-up / weak scaling on Titan

120

100

80

60 - dgemv
—e—cg

40

20

1 2 4 8 16 32 64 128 256 512

#GPUs

Matrix-based approach

» fill dense matrix in GPU
memory

» apply BLAS dgemv

» problem: matrix size limited
by GPU memory size

Parallel scalability of CG for kernel matrices

weak scaling on Titan @ ORNL

weak scaling efficiency (in percent)

1 4 16 64 256 1024 4096

#GPUs

On-the-fly application

» sucessively generate and
apply parts of the matrix on
single GPU

» advantage: arbitrary size of
matrix on GPU possible

Outline

Scenario 2: Hierarchical matrices on many-core clusters
Many-core parallelization
Outlook: Cluster parallelization

Outline

Motivating applications
Review of solution techniques for kernel systems
Scenario 1: Krylov subspace solvers on many-core clusters

Scenario 2: Hierarchical matrices on many-core clusters
Many-core parallelization

Outlook: Numerical results in quadrature

Many-core H-matrix implementations: Related work

H2Lib

» GPU-accelerated boundary element quadrature and H?-GCA
compression

[Kriemann 2014]
» H-LU factorization algorithms designed for many-core
> implemented on Xeon Phi

» strong emphasis on use of many-core architecture for work part

HiICMA: Hierarchical Computations on Manycore
Architectures (Keyes et al.)

» seemingly very strong project towards hierarchical algorithms on
many-core hardware

» unclear state, no (?) software freely available

Purely-GPU based ‘H-matrix implementation
hmglib

» Open Source library: LGPL, github.com/zaspel/hmglib
» Main objective: Do everything on GPU.

Algorithmic realization of fast matrix-vector product

» phase 1: setup
» traversal of block tree
» storage of all leaves (— dense MVP / ACA) in work queue

» phase 2: calculation

» apply dense matrix-vector products
» compute ACA / build dense matrix and apply results

Phase 1: Components
1. general approach for tree traversal on GPU
2. spatial data structure for clustering
3. evaluation of admissibility condition (skipped, — upcoming preprint)
4. creation of work queue with leaves (skipped, — upcoming preprint)

github.com/zaspel/hmglib

Tree traversal on GPU

» reuse of old idea
— tree construction
in arrays
» wasting GPU
performance
— work queue
approach?

init root

y
nodedata‘z‘“|||||||||““

calculate child count

v
ewacon(3] [| [[[LTI T

calculate child offset via exclusive scan on child count
child offset

v

2
3

E !!! calculate new node data

rodedaa (470 [[[| [[[T L[1TL[

calculate child count

44y
on oo R 2 [e L L

calculate child offset via exclusive scan on child count
child offset

new node data

afefsfaafs[[[[T TTTTT

Spatial data structure for cluster tree

Z-order curve / Morton codes

1. transformation of input point set X
coordinates to Morton codes

2. sorting points following Morton codes
= neighboring points in list are close

3. splitting into point subsets of
subsequent Morton codes
= clustering strategy source: Wikipedia

Implementation aras 2012

» simple: point-wise Morton code computation by bit operations
» difficult: sorting following Morton codes = thrust-library

» performance results on Nvidia Quadro K620 (29M pts in 3D)

» compute codes: 98 ms
» compute order: 640 ms
» reorder 393 ms

Phase 2: Calculation

Example of work queue created during tree traversal

work item 1

Batching of work items (ACA)

» increasing length of parallel vector -
by stacking several work items ..

work item 2

» several ACAs done concurrently

work item 3

=- similar idea for batching of dens MVP

Pros and cons
» full use of GPU processing units

» overhead for indexing, etc. u, uuu

ooooo

Performance results

Quadro K620 time [s] Tesla K20X time [s]
Nr | Z-order tree MVP | Z-order tree MVP

221 0.0005 0.014 0.17 | 0.001 0.022 0.22
213 | 0.0006 0.019 0.30 | 0.001 0.032 0.27
2'4 1 0.0007 0.026 0.61 0.001 0.041 0.41
215 | 0.0009 0.045 1.35| 0.001 0.067 0.72
2'6 | 0.0015 0.056 3.29 | 0.001 0.086 1.33

217 n/a na n/a| 0.002 0.108 2.82
218 n/a na n/a| 0.002 0.130 6.59
219 n/a nfa n/a| 0.004 0.153 14.19

» Gaussian kernel, X C [0,1]2, 7 =1, k = 16
> Clear = 512 (Quadro K620), Cjear = 512 (Tesla K20X)

= for now: ACA always recomputed due to memory limitation

Outline

Motivating applications
Review of solution techniques for kernel systems
Scenario 1: Krylov subspace solvers on many-core clusters

Scenario 2: Hierarchical matrices on many-core clusters

Outlook: Cluster parallelization

Outlook: Numerical results in quadrature

Parallelization by matrix decomposition

Implementation

» straight forward approach

» implementation by plugging
hmglib into MPLA library

Scalability results

150
*N=219, row par.
—N=2"°, row & column par.
2
o
O 100
]
>
o
3
3 50
o
a
0

0 50 100 150 200 250
GPUs

379
~Seol 541
379 I - n
lass| 1 NJo
544 e
390 [
R 87
e 550
—_ 084
ro R as7
531 [
382

—N=217, row & column par.
—N=218, row & column par. |-
"7, row par.

o
©

o
©

scaleup efficiency
© o o o
ES o o ~

o
w

Outlook: Improving scalability results

Potential solution: Master - worker model
» use of work queue and task runtime prediction
» adaptive distribution of work items
» rather complex implementation

Outline

Outlook: Numerical results in quadrature

Remember: Meshfree quadrature

Quadrature rule

[Schaback 2014], [Griebel, Rieger 2015],

[Z. 2015], [Oettershagen 2017]

Nr
/r f(x)dx ~ ; a;f(x;)

a=Ax'b, b= /k(x,-,x)dx

Quadrature points x;

1

0.8

0.6

0.4

0.2

0

r

Convergence

10°

S
o

quadrature error
3
1S

S
&

quadrature points

Both scenarios within one application
Test with H2Lib

» approximation of system matrix for Gaussian kernel
» 7 matrix, ACA, e = 10°
» points: Halton sequence, Eucledian norm

Rough characterization of scenarios

» d > 5: Scenario 1: Krylov with dense matrix
» d < 5: Scenario 2: Krylov solver with hierarchichal matrix

Artificial test cases

» solving system for Gaussian kernel, manufactured RHS
» Nr = 300000 points of Halton sequence in [0, 1]¢

d=10 d=2
> 256 GPUs on Titan » 1 GPU on Titan
> dense kernel matrix > H MVP
» stopping: HZ” <107° > stopping: H;’H <107°
103 10°
104 0
£ £
:
g’ |
% %106
107 108
1075 200 400 600 800 105 10 20 30 a0 50
#iterations #iterations

total runtime: ~3.65 minutes total runtime: ~26.5 minutes

Summary

» scalable dense kernel matrix solver
» hmglib H matrix library runs in MPLA
» important applications in quadrature and machine learning

Outlook
» using GPU with more memory for much faster H MVP

» improving scalability by different multi-GPU parallelization
» preconditioners become crucial issue

Acknowledgements

Big Data
> National Research Programme

This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National
P Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No.
DE-AC05-000R22725.

Summary

» scalable dense kernel matrix solver
» hmglib H matrix library runs in MPLA
» important applications in quadrature and machine learning

Outlook
» using GPU with more memory for much faster H MVP

» improving scalability by different multi-GPU parallelization
» preconditioners become crucial issue

Thank you!

Acknowledgements

Big Data
> National Research Programme

This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National
P Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No.
DE-AC05-000R22725.

Computation of admissibility condition

min{diam(£2,),diam(Q,)} < ndist(Q2,, Q)

Bounding boxes

» use of bounding boxes of
point subsets to
approximate distance,
diameter

» main challenge:
computation of bounding
boxes on each level of tree

Computational task

» computation of min. / max. coordinates of many point subsets
of different size

» subset sizes different on different levels of the tree

GPU parallelization of bounding box computation

Parallelization over coordinates
= use of reduce_by_key in thrust

keys [2]2]2] [4]4]
coords. [3]5]7] [5]2]
2[3]4]
5|

Performance results

level time (1M p.) time (4M p.)

. 0 17 ms 52 ms

Computation of keys ! 24ms s3ms
|

3 19 ms 53 ms

keys (1) [o]o]o] [o]0] 4 21 ms 52 ms

nodes 5 22 ms 54 ms

6 18 ms 53 ms

7 22 ms 53 ms

keys (2) 8 22ms 54ms

exclusive 9 24 ms 55 ms

scan Eﬂﬂ ﬂﬂ 10 27 ms 58 ms

11 21 ms 63 ms

nodes 12 78 ms

Tee— 13 53 ms

keys (3) [2]2]2] B (Matérn , cjgar = 1024)

	Motivating applications
	Review of solution techniques for kernel systems
	Scenario 1: Krylov subspace solvers on many-core clusters
	Scenario 2: Hierarchical matrices on many-core clusters
	Many-core parallelization
	Outlook: Cluster parallelization

	Outlook: Numerical results in quadrature

