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§ When	modeling	some	physical	phenomena,	inputs	are	often	
subject	to	uncertainty.

§ Example:	Uncertainty	in	Groundwater	Flow	with	Darcy's	Law	
— Permeability	coefficient	k	is	subject	to	uncertainty.

— Model	k	as	a	spatially	correlated	log-normal	random	field.

— 𝑘 𝑥, 𝜔 = exp 𝜃 𝑥, 𝜔 	where	𝜃 is	a	Gaussian	random	field	with	known	
mean	and	covariance.	

§ Goal:	Given	prior	assumptions	about	uncertainty	in	input	data,	
quantify	uncertainty	in	the	solution	for	large-scale	simulations	
using	Monte	Carlo	sampling	methods.

Forward	Propagation	Uncertainty	Quantification



LLNL-PRES-xxxxxx
3

Many samples	are	
necessary	with	a	fine
spatial	discretization.

Multilevel	Monte	Carlo
• Use	specialized	element-based	
agglomeration	technique	to	
construct	hierarchy.	

Key	Computational	Challenges	for	Large-Scale	
Monte	Carlo	Sampling	Methods

Scalable	generation	of	
random	input	coefficient	

realizations

SPDE	Sampling	Technique
•Solve	a	stochastic	PDE	(SPDE)	with	
mixed	finite	element	method.

•Requires	solution	of	saddle	point	
problem	with	random	right	hand	side.

Efficient	solution	of	
forward	problem

Specialized	preconditioners
•Discretization	leads	to	matrices	with	
saddle	point	structure.

•Employ	methods	from	element-based	
multigrid.
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§ Goal:	Estimate	𝔼[𝑄],	the	expected	value	of	a	quantity	of	interest	
𝑄(𝑿(𝑥, 𝜔) )	where	𝑿(𝑥,𝜔) is	the	solution	of	a	PDE	with	random	field	
coefficient.	

E[Q] ⇡ bQMC
h =

1

N

NX

i=0

Qh(!i)

where	𝑄2(𝜔3) is	the	𝑖-th sample	of	𝑄	approximated	with	spatial	discretization	ℎ.

Monte	Carlo	Method

1

N
V[Qh]

� �� �
Es mator Variance

+ (E[Q � Qh])2� �� �
Bias: Discre za on Error

Mean	Square	Error	(MSE)	of	method:	
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Multilevel	Monte	Carlo	Method

§ This	variance	reduction	technique	uses	a	sequence	of	spatial	
approximations	𝑄ℓ, ℓ = 𝐿,… , 1 which	approximate	𝑄; = 𝑄2	with	
increasing	accuracy	(and	cost).

§ Linearity	of	expectation	implies
E[Q] ⇡ E[Qh] = E[QL] +

PL�1
`=0 E[Q` �Q`+1].

The	multilevel	MC	estimator	is	

bQMLMC
h = 1

NL

PNL

i=0 QL(!i) +
PL�1

i=0

h
1
N`

PN`

i=0 (Q`(!i)�Q`+1(!i))
i
.

M.	Giles.	Oper.	Res.	(2008)
K.	Cliffe,	M.	Giles,	R.	Scheichl,	and	A.	Teckentrup.	Comput.	Vis.	Sci.,	(2011)
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Multilevel	Acceleration	of	Monte	Carlo	Method

§ The	MSE	of	the	MLMC	Estimator	is

For	a	desired	tolerance,	the	
number	of	samples	on	each	level	is	
chosen	to	minimize	the	total	
computational	cost.

1

NL
V[QL]

� �� �
Fixed cost independent of h

+
L�1�

�=1

1

N�
V[Q� � Q�+1]

� �� �
V[Q��Q�+1]�V[Q�]

+ (E[Q � Qh])2� �� �
Discre za on error
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Generation	of	Hierarchy	of	Spatial	Discretizations
with	Element-Based	Multigrid	(AMGe)	

§ Geometric	Multigrid	(GMG)
— Scalable	for	many	regular/semi-

structured	grid	problem
— Requires	a	nested	hierarchy	of	grids
— Uses	information	from	discretization
— Infeasible	to	implement	for	arbitrary	

unstructured-grid	problems

§ Algebraic	Multigrid	(AMG)
— Optimal	and	effective	solver	for	many	

PDEs	on	arbitrary	grids	
— Requires	only	the	fine-grid	matrix;	no	

spatial	mesh	needed	
— Closer	to	a	black-box	method	

Recall	pros/cons	of	multigrid	(MG)	methods:
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Element-based	Multigrid	(AMGe)

Hierarchy	of	agglomerated	meshes

AMGe methods	aim	to	leverage	the	
advantages	of	the	two	approaches	and	
to	mitigate	their	shortcomings.

• GMG	with	nonstandard	elements	
(agglomerates	of	fine-grid	ones)	
and	operator-dependent	coarse	
finite	element	spaces.

• By	using	some	“extra”	information,	
AMGe can	handle	effectively	a	
broader	class	of	problems	than	
classical	AMG.

• Coarse	spaces	have	guaranteed	
approximation	properties.	
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The	de	Rham complex	plays	an	important	role	in	analysis	and	discretization	of	PDEs.

Coarsening	de	Rham Complexes	on	Agglomerated	
Elements	

H1 H(curl) H(div) L2

Sh Qh Rh Wh

SH QH RH WH

r r⇥ r·

r

⇧S ⇧Q

r⇥

⇧R

r·

⇧W

r r⇥ r·

§ Generate	a	coarse	sequence	such	that
— The	sequence	is	exact.
— The	spaces	are	conforming.	

— The	commutativity	property	is	preserved.
— The	approximation	properties	of	the	original	spaces	

are	preserved.	

J.	Pasciak,	P.	Vassilevski.	SISC.	(2008)
I.	Lashuk,	P.	Vassilevski.	CMAM.	(2011)
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The	hierarchy of	de	Rham sequences	with	operator-dependent	
coarse	spaces	with	approximation	properties can	be	used	for	

— Robust	multilevel	preconditioners
— Discretization	on	a	hierarchy	of	levels

• Numerical	upscaling
• Multilevel	Monte	Carlo	simulations
• Scalable	Generation	of	Gaussian	Random	Fields

One	hierarchy,	many	uses…..

A	parallel	distributed	memory	C++	library	for	an	AMGe framework	to	coarsen	a	
wide	class	of	PDEs	on	general	unstructured	meshes	developed	at	LLNL.						

https://github.com/LLNL/parelag
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Challenge:	How	to	generate	realizations	of	a	Gaussian	field	(GF)	on	a	
hierarchy	of	spatial	discretizations??

We	consider	a	stationary	isotrophic field	with	Matérn covariance	function

Scalable	Sampling	of	a	Gaussian	Random	Field

Karhunen-Lo�̀�ve Expansion:	
—Dense	eigenvalue	computation														Bottleneck
—State	of	the	art	methods	exploit	Fast	Multipole	Methods and	
randomized	eigensolvers to	alleviate	this	issue.

cov(x, y) =
σ2

2ν−1Γ(ν)
(κ ∥y − x∥)νKν(κ ∥y − x∥) where x, y ∈ Rd.
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Scalable	Sampling	of	a	Gaussian	Random	Field

Gaussian	Markov	random	field	representation:

GFs	with	Matérn covariance	functions	are	solutions	of	the	
stochastic PDE

• 𝒲 𝑥,𝜔 : spatial	Gaussian	white	noise	with	unit	variance
• g:	scaling	factor	to	impose	unit	marginal	variance
• 𝜅 ∈ 	ℝ: inversely	proportional	to	correlation	length

(2 ��)↵/2✓(x,!) = gW(x,!), x 2 Rd
,↵ = ⌫ + d

2

F. Lindgren, H. Rue, J. Lindstrom. J R Stat Soc Series B Stat Methodol. (2011)

Special	case:
In	3D,	realizations	of	a	Gaussian	random	field	with	exponential	covariance	
function	are	solutions	of	the	stochastic	reaction	diffusion	problem.
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Let	𝜈 = 1 (2D)	or	𝜈 = E
F
	(3D),	then	the	realizations	of	the	GF	solve

Stochastic	PDE	(SPDE)	Sampler

Using	the	mixed	finite	element	method,	let	

(2 ��)✓(x,!) = gW(x,!), x 2 Rd

�h � L2(D) piecewise constant func ons
Rh � H(div, D) lowest-order Raviart-Thomas elements

Find (uh, �h) � (Rh, �h) such that
�

(uh,vh) + (�h, div vh) = 0 �vh � Rh

(div uh, qh) � �2(�h, qh) = g(W(�), qh) �qh � �h

with boundary condi ons uh · n = 0.
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Noting	that	

Stochastic	PDE	(SPDE)	Sampler

R
Di

W(!) ⇠ N (0, |Di|) we	obtain


Mh BT

h
Bh �2Wh

� 
uh

✓h

�
=

"
0

�gW
1
2
h ⇠

#
, ⇠ ⇠ N (0, I)

where
• Mh is	the	mass	matrix	for	the	space	Rh
• Wh is	the	(diagonal)	mass	matrix	for	space	Θh
• Bh stems	from	the	divergence	constraint.

Able	to	leverage	existing	scalable	solvers	and	preconditioners!
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§ For	MLMC,	the	same	realization	𝜃 𝜔3 must	be	computed	at	
different	spatial	resolutions	𝜃2 𝜔3 (fine)	and	𝜃I 𝜔3 	 (coarse).	

§ Recall	the	AMGe coarse	spaces:

and	

§ Define	interpolation	operators	as

§ Define	the	block	interpolation	operator	as

so	that

Hierarchical	SPDE	Sampler

⇥H ⇢ ⇥h ⇢ L2(D) RH ⇢ Rh ⇢ H(div, D)

AH = PTAhP.

P� : �H � �h and Pu : RH � Rh

P =

[
Pu 0
0 Pθ

]
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Then	the	Gaussian	field	𝜃2 admits	the	two-level	decomposition

Hierarchical	SPDE	Sampler

where	𝜃I	is	a	coarse	representation	of	a	Gaussian	field	from	the	
same	distribution,	and	

where


Ah AhP

PTAh 0

� 
�Uh

UH(!)

�
=


Fh

0

�
,

�h(�) = P��H(�) + ��h(�),

�Uh =

�
�uh

��h(�)

�
, UH =

�
uH

�H(�)

�
, and Fh =

�
0

�gW 1/2
h �h(�)

�
.
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§ Given	𝜉2 𝜔3 , solve	the	saddle	point	system

Hierarchical	SPDE	Sampler:	Numerical	Solution

§ Then	solve	𝒜2𝑈2 = 𝐹2 with	𝒫𝑈I as	the	initial	guess.	

to	generate		𝜃I	 𝜔3 (coarse	representation	of 𝜃2	(𝜔3) on	ΘI	).

Sample realizations of Gaussian random field

AH

[
uH

θH(ωi)

]
= PT

[
0

−gW 1/2
h ξh

]
, ξh ∼ N (0, I)

S.O.,	U.	Villa,	P.	Vassilevski.	A	multilevel,	hierarchical	sampling	technique	for	spatially	correlated	random	
fields.	To	appear	SIAM	SISC	(2017).	
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Mesh	Embedding	with	Non-Matching	Meshes	to	
Mitigate	Artificial	Boundary	Effects

§ Solve	SPDE	on	enlarged	(structured)	grid.	

§ Transfer	the	piecewise-constant	solution	to	the	original	finite	element	space	in	
parallel.	

• Meshes	can	be	arbitrarily	distributed!	

Sample
marginal
variance

Embed the original (unstructured) mesh
in a regular, structured mesh.

Sample marginal
variance with

mesh embedding

S.O.,	P.	Zulian,T.	Benson,	U.	Villa,	R.	Krause,	P.	Vassilevski.	Scalable	hierarchical	PDE	sampler	for	
generating	spatially	correlated	random	fields	using	non-matching	meshes.	Submitted	(2017)	
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Model	Problem:	Uncertainty	in	Subsurface	Flow

We	solve	the	mixed	Darcy	equations	

where					is	subject	to	uncertainty	
with	boundary	conditions	
q · n = 0 on �N and p = pD on �D.

Model					as	a	log-normal	random	field	𝑘 𝑥,𝜔 = exp 𝜃 𝑥,𝜔 	
where	𝜃 where	is	a	Gaussian	field	with Matérn covariance	function.

k

k

�
Mk,h BT

h
Bh 0

� �
qh

ph

�
=

�
fh

0

��
k�1q + �p = 0 in D

� · q = 0 in D,
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Multilevel	Monte	Carlo	Simulation	Workflow

MLMC	Estimator:

To generate a sample on level �:

��(�i)

��(�i) � N (0, I)

k�(�i) X�(�i)

�

k�(�i) = exp[��(�i)]

� Q�(X�(�i))

Q̂MLMC
h =

L∑

ℓ=0

( ̂Qℓ −Qℓ+1)
MC where Q̂MC

h =
1

N

N∑

i=1

Qh(ωi)
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§ We	need	to	solve	a	large,	sparse	saddle	point	system	of	the	form:

§ Possible	preconditioning	strategies:
— Block	factorization	preconditioners:	

• Build	MG-based	approximations	for	AQE and	inverse	of	approximate	Schur-
complement		where	𝑆 = −𝐶 − 𝐵diag 𝐴 QE𝐵[.

— Monolithic	AMGe preconditioners
• Treat	whole	system	simultaneously	with	one	MG	method.
• Blocked	grid	transfers	from	de	Rham sequence.

Efficient	Solvers	for	Saddle	Point	Problems

(where C=0 for 
mixed Darcy eqns)

�
A BT

B �C

� �
x
y

�
=

�
f
g

�
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Numerical	Results:	Implementation	and	Solver	
Specifics	for	SPDE	Sampler	and	Forward	Problem

§ Solve	saddle	point	systems	with	preconditioned	GMRES:
— Monolithic	AMGe:

• Block	LDU	smoother	using	a	single	sweep	of	point	Gauss-Seidel	to	approximate	AQE.
• Blocked	grid	transfers	from	hierarchy	of	de	Rham sequence.	

— Block	+	AMGe:
• AQE approximated	by	a	single	AMGe V-cycle	using	a	sweep	of	point	Gauss-Seidel	as	a	
smoother.

— Block	+	GS:
• AQE approximated	by	a	single	sweep	of	point	Gauss-Seidel

𝑆QE	is	approximated	by	a	single	BoomerAMG V-cycle	for	each	preconditioner.	

MFEM:	scalable C++	library	for	
finite	element	methods

Scalable	linear	solvers	
and	multigrid	methods
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Weak	Scaling	of	SPDE	Sampler:	
Crooked	Pipe	Problem

§ Finite	element	level	(Level	=	0)	has	≈51K	stochastic	dofs per	process,	
largest	problem	has	approximately	4.7x10^ stochastic	degrees	of	
freedom.

§ The	saddle	point	system	is	solved	with	GMRES	preconditioned	with	
‘Monolithic	AMGe’.	
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Weak	Scaling	of	Mixed	Darcy	Equations	with	
Random	Permeability:	Crooked	Pipe	Problem

Finite	element	level	(Level	=	0)	has	≈209K	velocity/pressure	dofs per	process,	
largest	problem	has	≈	1.9x10_ dofs.

Average	Solve	Time	– Fine	Level	0	(100	samples)
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Multilevel	Variance	Reduction:	
Crooked	Pipe	Problem

The	QoI is	the	effective	
permeability	given	by

keff (!) =
1

|�
out

|
R
�
out

q(·,!) · n dS.

MLMC	Simulation	with	hierarchical	SPDE	sampler	with	non-matching	mesh	embedding	
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MLMC	Performance:	Crooked	Pipe	Problem

§ MSE:		𝜖F = 2.5𝑒Qd

§ 240M	velocity/pressure	
unknowns	on	fine	level

§ 59M	stochastic	dimensions

§ 1.2K	processors/sample	
generation

§ Preconditioner:
— Sampler:	Monolithic	AMGe
— Darcy:	Block	+	GS

Average	time	to	compute	a	sample	𝑄ℓ(𝜔3) − 𝑄ℓeE(𝜔3)

MC (es mated) MLMC
N0 1799 12
Total samples 1799 3147
Wall Time 12.2 hours 0.4 hours
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Weak	Scaling	of	SPDE	Sampler:	
SPE10	Problem

§ Finite	element	level	(Level	=	0)	has	≈ 32K	stochastic	dofs per	process,	
largest	problem	has	approximately	2.9x10^ stochastic	dofs.	

§ Solver:	GMRES	preconditioned	with	‘Monolithic	AMGe’		

SPE10	model:	
1200x2200x170(ft)	regular	
cartesian grid	(highly	
stretched	elements)
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MLMC	for	SPE10	Problem

Random	permeability	coefficient	𝑘 𝑥,𝜔 	is	modeled	as	log-
normal	random	field	where	exp log[𝑘hijE; 	 𝑥 + 𝜃(𝑥, 𝜔)].

x/y component z component

Logarithmic	plots	of	relative	permeability	coefficient	from	SPE10	dataset	
which	has	large	jumps	between	the	mesh	elements.
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Weak	Scaling	of	Mixed	Darcy	Equations	with	
Random	Permeability:	SPE10	Problem

Finite	element	level	(Level	=	0)	has	≈130K	velocity/pressure	dofs per	process,	
largest	problem	has	≈	1.2x10_ dofs.

Average Solve Time – Fine Level 0 (100 samples)
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Multilevel	Variance	Reduction:	SPE10	Problem

MLMC	Simulation	with	hierarchical	SPDE	sampler	with	non-matching	mesh	embedding	

The	QoI is	𝑝(𝑥∗)	for	𝑥∗ =
(600,1100,85)
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MLMC	Performance:	SPE10	Problem

§ MSE	𝜖F = 6.25𝑒Qp

§ 1.2B	velocity/pressure	unknowns	on	
fine	level

§ 443M	stochastic	dimensions

Average	time	to	compute	a	sample	
𝑄ℓ(𝜔3) − 𝑄ℓeE(𝜔3).

MLMC	with	SPDE	sampling	makes	large-
scale	Monte	Carlo	simulations	feasible!!

MC (es mated) MLMC
N0 10623 42
Total samples 10623 13690
Wall Time 41.9 hours 3.9 hours

§ 9K	processors/sample	generation

§ Preconditioner:
— Sampler:	Monolithic	AMGe
— Darcy:	Block	+	GS
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Concluding	Remarks

§ Scalable	sampling	of	Gaussian	random	fields	is	necessary	for	large-
scale	uncertainty	quantification	simulations.
— Proposed	Solution:	Hierarchical	SPDE	sampler
— Sampling	strategy	is	based	on	solving	a	mixed	discretization	of	stochastic	PDE.
— Use	mesh	embedding	on	non-matching	meshes	to	mitigate	artificial	boundary	

effects	with	scalable	transfer	of	data	between	meshes.

§ Successfully	applied	the	new	sampling	technique	to	large-scale
MLMC	simulations of	subsurface	flow	problems.
— Constructed	hierarchy	of	coarse	spaces	using	specialized	element-based	

agglomeration	techniques.
— Able	to	leverage	specialized	preconditioners	for	saddle	point	problems.	

§ Future	Work/Remarks:
— Only	leveraging	parallelism	in	spatial	dimension.	
— Further	parallelism	possible	within	and	across	levels	as	investigated	by														B.	

B.	Gmeiner,	D.	Drzisga,	U.	Rude,	R.	Scheichl,	B.	Wohlmuth (2016).	




