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Forward Propagation Uncertainty Quantification

= When modeling some physical phenomena, inputs are often
subject to uncertainty.

= Example: Uncertainty in Groundwater Flow with Darcy's Law
— Permeability coefficient k is subject to uncertainty.

— Model k as a spatially correlated log-normal random field.
— k(x,w) = exp[0(x, w)] where 6 is a Gaussian random field with known

mean and covariance.

= Goal: Given prior assumptions about uncertainty in input data,
guantify uncertainty in the solution for large-scale simulations
using Monte Carlo sampling methods.
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Key Computational Challenges for Large-Scale
Monte Carlo Sampling Methods

P
Many samples are
necessary with a fine
spatial discretization.
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Scalable generation of
random input coefficient
realizations
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Efficient solution of
forward problem
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Multilevel Monte Carlo

e Use specialized element-based
agglomeration technique to
L construct hierarchy.

~
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SPDE Sampling Technique

e Solve a stochastic PDE (SPDE) with
mixed finite element method.

® Requires solution of saddle point
problem with random right hand side.

-

/

Specialized preconditioners

¢ Discretization leads to matrices with
saddle point structure.

* Employ methods from element-based
multigrid.
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Monte Carlo Method

= Goal: Estimate [E[Q], the expected value of a quantity of interest
Q(X(x,w) ) where X(x, w) is the solution of a PDE with random field

coefficient.

1 N
~ OHMC _
ElQl = Q) ~ = N E Qn(w;)
1=0
where Qp (w;) is the i-th sample of Q approximated with spatial discretization h.

Mean Square Error (MSE) of method:

1 2
NV[Qh] + (E[Q 1Qh])J

\ - 7

. AV Bias: Discretization Error
Estimator Variance
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Multilevel Monte Carlo Method

= This variance reduction technique uses a sequence of spatial
approximations Q,, ¥ = L, ..., 1 which approximate Q, = Q with
increasing accuracy (and cost).

= Linearity of expectation implies

E[Q] ~ E[Qn] = E[Qr] + 312y E[Qr — Qui].

The multilevel MC estimator is

MM = L3 Qulen) + T |3 S0 (Qelwr) = Qe (@)

M. Giles. Oper. Res. (2008)
K. Cliffe, M. Giles, R. Scheichl, and A. Teckentrup. Comput. Vis. Sci., (2011)
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Multilevel Acceleration of Monte Carlo Method

= The MSE of the MLMC Estimator is
L—1

VIQ) 4 Y VIQe - Qe+ (EIQ - Qul)?

\ ~ J/ /=1

J Discretization error

Ve

Fixed cost independent of h
V[Qe—Qe11]<KV[Qy]

10’
—e -—10"°

; 10°} o—e -—10""|]
é—g —e =10 For a desired tolerance, the
S 10°} .
g number of samples on each level is
3 10°) - chosen to minimize the total
Z ol | computational cost.

10°
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Number of unknows
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Generation of Hierarchy of Spatial Discretizations
with Element-Based Multigrid (AMGe)

Recall pros/cons of multigrid (MG) methods:

= Geometric Multigrid (GMG) = Algebraic Multigrid (AMG)
— Scalable for many regular/semi- — Optimal and effective solver for many
structured grid problem PDEs on arbitrary grids
— Requires a nested hierarchy of grids — Requires only the fine-grid matrix; no
— Uses information from discretization spatial mesh needed
— Infeasible to implement for arbitrary — Closer to a black-box method

unstructured-grid problems
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Element-based Multigrid (AMGe)

AMGe methods aim to leverage the
advantages of the two approaches and
to mitigate their shortcomings.

* GMG with nonstandard elements
(agglomerates of fine-grid ones)
and operator-dependent coarse
finite element spaces.

* By using some “extra” information,
AMGe can handle effectively a
broader class of problems than
classical AMG.

. Coarse spaces have guaranteed Hierarchy of agglomerated meshes

approximation properties.

Y
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Coarsening de Rham Complexes on Agglomerated
Elements

The de Rham complex plays an important role in analysis and discretization of PDEs.

H' — H(curl) VX, H(div) —— L2

| | | |

V V X \v&
Sh ? Qh > Ry, > W,

| |me ) |mm [

V X \va
SH > QH ? RH — WH

= Generate a coarse sequence such that

— The sequence is exact. — The commutativity property is preserved.
— The spaces are conforming. — The approximation properties of the original spaces
are preserved.

J. Pasciak, P. Vassilevski. SISC. (2008)
l. Lashuk, P. Vassilevski. CMAM. (2011)
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One hierarchy, many uses.....

The hierarchy of de Rham sequences with operator-dependent

coarse spaces with approximation properties can be used for
— Robust multilevel preconditioners

— Discretization on a hierarchy of levels
* Numerical upscaling
* Multilevel Monte Carlo simulations
« Scalable Generation of Gaussian Random Fields

ar|elLUAlE

A parallel distributed memory C++ library for an AMGe framework to coarsen a
wide class of PDEs on general unstructured meshes developed at LLNL.

https://github.com/LLNL/parelag
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Key Computational Challenges for Large-Scale
Monte Carlo Sampling Methods

e p N
Many samples are Multilevel Monte Carlo

necessary with a fine * Use specialized element-based

spatial discretization. e Elle iy Ui
construct hierarchy.
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SPDE Sampling Technique

Scalable generation of | |
e Solve a stochastic PDE (SPDE) with

random input coefficient

mixed finite element method.

rea | izations * Requires solution of saddle point
problem with random right hand side.
/ . . . . \
Specialized preconditioners
Efficient solution of * Discretization leads to matrices with

saddle point structure.

* Employ methods from element-based

multigrid.
@ s/ S v

forward problem
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Scalable Sampling of a Gaussian Random Field

Challenge: How to generate realizations of a Gaussian field (GF) on a
hierarchy of spatial discretizations??

We consider a stationary isotrophic field with Matérn covariance function

0.2

21/—1F(V) (/i Hy — ZUH)VK,/(/Q Hy - LUH) where T,y < Rd.

cov(x,y) =

Karhunen-Loeve Expansion:
— Dense eigenvalue computation mms) Bottleneck
— State of the art methods exploit Fast Multipole Methods and
randomized eigensolvers to alleviate this issue.

S-XXXXXX
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Scalable Sampling of a Gaussian Random Field

Gaussian Markov random field representation:

GFs with Matérn covariance functions are solutions of the
stochastic PDE

(K% = 8)*20(z,w) = gW(z,w), z€R,a=v+ g

 W(x,w): spatial Gaussian white noise with unit variance
e g:scaling factor to impose unit marginal variance
* Kk € R:inversely proportional to correlation length

Special case:
In 3D, realizations of a Gaussian random field with exponential covariance

function are solutions of the stochastic reaction diffusion problem.

F. Lindgren, H. Rue, J. Lindstrom. J R Stat Soc Series B Stat Methodol. (2011)
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Stochastic PDE (SPDE) Sampler

Letv =1 (2D)orv =§ (3D), then the realizations of the GF solve
(k% — A)O(z,w) = gW(z,w), =€ R?

Using the mixed finite element method, let

O, C L*(D) piecewise constant functions
Ry, C H(div, D) lowest-order Raviart-Thomas elements

Find (up, 6r) € (Rp, ©p) such that

(uh,vh) -+ (@h, div Vh) = ( Vv, € Ry,
(divup, gn) = £%(On, qn) = gOV(W), qn)  Yan € O,
with boundary conditions u;, - n = 0.

S-XXXXXX
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Stochastic PDE (SPDE) Sampler

Noting thathi W(w) ~ N(0,|D;|) we obtain

AL e
[Bh —KJQW}L Hh — __gWhgg_ ) f N(Oaj)

where

* M, is the mass matrix for the space R,
* W, is the (diagonal) mass matrix for space O,
* B, stems from the divergence constraint.

Able to leverage existing scalable solvers and preconditioners!
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Hierarchical SPDE Sampler

= For MLMC, the same realization 6 (w;) must be computed at
different spatial resolutions 85, (w;) (fine) and 8y (w;) (coarse).

= Recall the AMGe coarse spaces:

Oy C O C LZ(D) and Ry C Ry, C H(diV,D)

= Define interpolation operators as
Pg:@H%@handPu:RH%Rh

= Define the block interpolation operator as

o e
P — )

O PH_ so that -AH — PTA;LP
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Hierarchical SPDE Sampler

Then the Gaussian field 8;, admits the two-level decomposition

On(w) = Pylg(w) + 00 (w),

where 0y is a coarse representation of a Gaussian field from the
same distribution, and

{ﬁlﬁh ASP} {u%)} = m »

where

) oL =[]

S-XXXXXX
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Hierarchical SPDE Sampler: Numerical Solution

= Given &, (w;), solve the saddle point system

u 0
Ap {HH(IZJ@)] =pl [—gW;}ﬂfh] &n ~ N(0,1)

to generate Oy (w;) (coarse representation of 6, (w;) on O ).

= Then solve A, U, = F,, with PUy as the initial guess.

Sample realizations of Gaussian random field

» - - -
PN RN RN RS

' 4 | ' 4 . g ¢ &

Level 0 Level 1 Level 2 Level 3

S.0., U. Villa, P. Vassilevski. A multilevel, hierarchical sampling technique for spatially correlated random
fields. To appear SIAM SISC (2017).
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Mesh Embedding with Non-Matching Meshes to
Mitigate Artificial Boundary Effects

Sample N Sample marginal
marginal Embed the original (unstructured) mesh variance with

in a regular, structured mesh. :
5 mesh embedding

variance

SNy

= Solve SPDE on enlarged (structured) grid.

= Transfer the piecewise-constant solution to the original finite element space in

parallel.
» Meshes can be arbitrarily distributed!

S.0., P. Zulian,T. Benson, U. Villa, R. Krause, P. Vassilevski. Scalable hierarchical PDE sampler for
generating spatially correlated random fields using non-matching meshes. Submitted (2017)
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Model Problem: Uncertainty in Subsurface Flow

We solve the mixed Darcy equations

)
_1 L .

[FFa+vp=0 D _ {Mk,h BZ} M ) [fh}
\V .q=20 in D,

where k is subject to uncertainty

with boundary conditions
q-n=0onI'yand p=pp on I'p.

Model £ as a log-normal random field k(x, w) = exp[8(x, w)]
where 8 where is a Gaussian field with Matérn covariance function.
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Multilevel Monte Carlo Simulation Workflow

L

N

. _ — N 1

MLMC Estimator:  QM“MC = ;_;(Qe — Qo)™ where Q3¢ = — ;Qh(wi)
To generate a sample on level /:

Random Input:
65("‘)@') ~ N(()? I)

SPDE Sampler:w ke(wi) ( Model W X (wi) J

> : - Postprocess

Generate 9£(wz‘)-J { evaluation J { >
Solve saddle point Solve forward model problem Compute quantity of
problem on level £ of structured on level ¢ of original, unstruc-  interest Qe( Xy (w;)).

hierarchy. Compute
ke(w;) = explfy(w;)] and
transfer to original FE space.

tured hierarchy.
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Key Computational Challenges for Large-Scale
Monte Carlo Sampling Methods

e p N
Many samples are Multilevel Monte Carlo

necessary with a fine * Use specialized element-based

spatial discretization. e Elle iy Ui
§ construct hierarchy.
% o

-

P

. SPDE Sampling Technique

Scalable generation of P fg a _
e Solve a stochastic PDE (SPDE) with

random input coefficient mixed finite element method.

rea | izations ® Requires solution of saddle point
problem with random right hand side.

\a / o

Specialized preconditioners
Efficient solution of * Discretization leads to matrices with

saddle point structure.

* Employ methods from element-based
multigrid.

forward problem
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Efficient Solvers for Saddle Point Problems

= We need to solve a large, sparse saddle point system of the form:

T
A B £z f (where C=0 for
B . C y g mixed Darcy egns)

= Possible preconditioning strategies:

— Block factorization preconditioners:
« Build MG-based approximations for A~! and inverse of approximate Schur-
complement where S = —C — Bdiag(4) 'BT.
— Monolithic AMGe preconditioners
* Treat whole system simultaneously with one MG method.
» Blocked grid transfers from de Rham sequence.
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Numerical Results: Implementation and Solver
Specifics for SPDE Sampler and Forward Problem

1]

ParlElRly A=

Scalable linear solvers
and multigrid methods

MFEM: scalable C++ library for
finite element methods

= Solve saddle point systems with preconditioned GMRES:

— Monolithic AMGe:
« Block LDU smoother using a single sweep of point Gauss-Seidel to approximate A™1.
 Blocked grid transfers from hierarchy of de Rham sequence.

— Block + AMGe:

« A~1 approximated by a single AMGe V-cycle using a sweep of point Gauss-Seidel as a
smoother.

— Block + GS:
« A~1 approximated by a single sweep of point Gauss-Seidel

S~1is approximated by a single BoomerAMG V-cycle for each preconditioner.
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Weak Scaling of SPDE Sampler:
Crooked Pipe Problem

NN

NN
SSSSS=ae

SN

S

Computational Time (secs)

10 —

10° |

10|

102 L

/o—om/elo ]
—> Level 1 |]
<+ Level 2 |
&—A Level 3
------ Optimal (3

T e T e

Number of Processes

= Finite element level (Level = 0) has 51K stochastic dofs per process,

largest problem has approximately 4.7x10% stochastic degrees of

freedom.

= The saddle point system is solved with GMRES preconditioned with

‘Monolithic AMGe’.
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Weak Scaling of Mixed Darcy Equations with
Random Permeability: Crooked Pipe Problem

Average Solve Time — Fine Level 0 (100 samples)

103 —
C =—e® Block + AMGe
—_ > Block + GS
8 <+—< Monolithic AMGe
o | Perfect Scaling
a2
Q 102 [T e
l§ :
= B
© I
c
lg I
e
B 10t}
3 C
Q -
£
(=]
o
0 [ | 1 1 1 1 1 | I I | 1 1 1 1 1 | I I |
10 102 103 104

Number of Processes

Finite element level (Level = 0) has =209K velocity/pressure dofs per process,
largest problem has =~ 1.9x10° dofs.
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Multilevel Variance Reduction:
Crooked Pipe Problem

MLMC Simulation with hierarchical SPDE sampler with non-matching mesh embedding

10-1 TTTTT T T T TTTTT T T T TTTTT T T T |||||:
B 1 The Qol is the effective
1072 ¢ E .1 .
5 5 permeability given by
S ool : ~— [~ q(,w) -ndS
B v |Fout | I'owt 7
wl . v,
oo | T,
[ vev Q,—Qpiq v
-5 1 1 L1111l 1 1 1111l 1 1 L1111l 1 1 L1111
10 10° 10° 10’ 108 10°
Number of Unknowns
- . G
Lawrence Livermore National Laboratory N ‘VS,:_%“ 28

LLNL-PRES-xxxxxx



MLMC Performance: Crooked Pipe Problem

= MSE: €2 = 2.5¢-5 Average time to compute a sample Qp(w;) — Qpy1(w;)
i A [~ perfect Scaling |
= 240M velocity/pressure ¢
unknowns on fine level Tg' N
E
= 59M stochastic dimensions g
= 1.2K processors/sample g
generation S
= Preconditioner: 106 Number of Unknowns
— Sampler: Monolithic AMGe MC (estimatea) MLMC
— Darcy: Block + GS Ny 1799 12
Total samples 1799 3147
Wall Time 12.2 hours 0.4 hours
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Weak Scaling of SPDE Sampler:
SPE10 Problem

=]
(=]
(=]
T
1

SPE10 model:
1200x2200x170(ft) regular
cartesian grid (highly
stretched elements)

]
o
-
T
]

e—e |evel 0 (]
> Level 1 |
<+ Level 2 (]
a—A Level 3 |]
------ Optimal

Computational Time (secs)

=
o
N

I102 1 1 1 1 1 1 1 I103 1 1 1 1 1 1 1 ]I-04
Number of Processes

= Finite element level (Level = 0) has = 32K stochastic dofs per process,
largest problem has approximately 2.9x108 stochastic dofs.

= Solver: GMRES preconditioned with ‘Monolithic AMGe’

. . "<‘
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MLMC for SPE10 Problem

Random permeability coefficient k(x, w) is modeled as log-
normal random field where expllog[kspr10 (X)] + 6 (x, w)].

x/y component z component

Logarithmic plots of relative permeability coefficient from SPE10 dataset
which has large jumps between the mesh elements.
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Weak Scaling of Mixed Darcy Equations with
Random Permeability: SPE10 Problem

Average Solve Time — Fine Level 0 (100 samples)

10%

e—e Block + AMGe
> Block + GS

<+—<¢ Monolithic AMGe
------ Perfect Scaling

10

Computational Time (secs)

100|I 1 1 /N N I T T | 1 1 /N N I T T |
102 103 10*

Number of Processes

Finite element level (Level = 0) has =130K velocity/pressure dofs per process,
largest problem has =~ 1.2x10° dofs.
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Multilevel Variance Reduction: SPE10 Problem

MLMC Simulation with hierarchical SPDE sampler with non-matching mesh embedding

10-15 T T T T TTTTT T T T T TTTTT T T T T TTTTT
° —n —— —0
107 £ 5
—_— 3L E .
= i TheQolis p(x™) for x* =
> Y., ]
2 b e (600,1100,85)
310-4_ IIIIII v 3
- “y z
F| o= Qy
vy Q-Qi
T T AT T _ T

Number of Unknowns
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MLMC Performance: SPE10 Problem

* MSE €” = 6.25¢~° = 9K processors/sample generation

= 1.2B velocity/pressure unknowns on

fine level = Preconditioner:
— Sampler: Monolithic AMGe
= 443M stochastic dimensions — Darcy: Block + GS

o [ redecsing]
ﬁ 102; MC (estimated) MLMC
i LN 10623 42
g Total samples 10623 13690
‘N Wall Time 41.9 hours 3.9 hours
= 3

02 MLMC with SPDE sampling makes large-

Number of Unknowns

scale Monte Carlo simulations feasible!!
Average time to compute a sample

Qe(w;) — Qpyq(wy).
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Concluding Remarks

= Scalable sampling of Gaussian random fields is necessary for large-

scale uncertainty quantification simulations.

— Proposed Solution: Hierarchical SPDE sampler

— Sampling strategy is based on solving a mixed discretization of stochastic PDE.

— Use mesh embedding on non-matching meshes to mitigate artificial boundary
effects with scalable transfer of data between meshes.

= Successfully applied the new sampling technique to large-scale

MLMC simulations of subsurface flow problems.

— Constructed hierarchy of coarse spaces using specialized element-based
agglomeration techniques.

— Able to leverage specialized preconditioners for saddle point problems.

= Future Work/Remarks:
— Only leveraging parallelism in spatial dimension.

— Further parallelism possible within and across levels as investigated by B.
B. Gmeiner, D. Drzisga, U. Rude, R. Scheichl, B. Wohimuth (2016).
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