
1

Tackling UQ in DARMA, a Programming Model
for Task-Based Execution at Extreme-Scale

F. Rizzi , E. Phipps, D. Hollman, J. Lifflander, J. Wilke, A. Markosyan, H. Kolla,
N. Slattengren, K. Teranishi, J. Stewart, R. Clay and J. Bennett

Sandia National Laboratories

QUIET17 - SISSA - Italy

Follow on your device: http://fnrizzi.github.io/quiet17

http://fnrizzi.github.io/quiet17

1

2

Motivation
fnrizzi.github.io/quiet17

http://fnrizzi.github.io/quiet17

2

3 . 1

1 exaFlops: (10e18) calculations per second, supposedly arriving by 2023-2024

As of June 2017:

1. Sunway TaihuLight (China): 10,649,600 cores -- 125 PFlops -- 15.4 MW
2. Tianhe-2 (MilkyWay-2) (China): 3,120,000 cores -- 54 PFlops -- 17.8 MW
3. Piz Daint (Switzerland): 361,760 cores -- 25 PFlops -- 2.2 MW
4. Titan (USA): 560,640 cores -- 27 PFlops -- 8.2 MW

Challenges:

Power consumption
Complex architectures: heterogeneity
Unpredictable machines: resilience
Managing communication/computation
Increasingly more dynamic workloads and machine performance

Can we ride the wave of current technology?

4 . 1

Moore's observation: number of transistors
on a chip doubles (nearly) every two years

Dennard scaling: power density remains
constant as transistors get smaller

Dennard scaling broke down ~2005-2007

Moore's trend is alive and well

The ability to drop the voltage and current
needed to operate reliably has broken,
NOT the ability to make smaller transistors.

Clock speeds are plateauing due to power
and thermal limitations

5 . 1

When you can't build outward any longer, build upward!

6 . 1

Clock frequency stalled, so performance growth is/will be achieved by
exponential growth in the number of processing elements per chip and
hardware threading per core.

Increasing number of cores/chip: expected to double every 18/24 months.

Need for new programming abstractions that:
virtualize the notion of a core

threading APIs with expanded semantics for thread control, placement, launching

synchronization as well as scalable runtimes to manage massive numbers of threads

7 . 1

Locality: Systems bound by communication infrastructure and power dissipation.
Management of data locality is a first order concern. Move computation to data,
not viceversa.

Heterogeneity: accelerators, implicit data movement, memory hierarchies.

Asynchrony: SPMD/bulk-synchronous programming models presume
homogeneous performance across massively parallel systems. Numerous sources
of performance inhomogeneity are emerging that will challenge this.

Fault Tolerance: larger, more complex machines. Hundreds of millions of cores,
circuits with feature sizes as small as 7 nm, and lower voltages than today.
So�/hard errors more likely.

8

DARMA
fnrizzi.github.io/quiet17

file:///Users/fnrizzi/Desktop/work/Presentations/QUIET17sandia/fnrizzi.github.io/quiet17

8

9 . 1

DARMA: Distributed Asynchronous Resilient Models and Applications

C++ abstraction layer for asynchronous many-task (AMT) runtimes

Provides a set of abstractions to facilitate the expression of tasking that map to a
variety of underlying AMT runtime system technologies.

Goals:

Enables exploration of a variety of underlying runtime system technologies without
changing application code.
Facilitate the expression of coarse-grained tasking.

10 . 1

Decompose into small, transferable units of work (many tasks) with associated inputs
(dependencies) rather than simply decomposing at the process level (MPI ranks).

Rather than in a well-defined order, tasks execute when inputs become available.
Is the coarse-grained, distributed memory analog of instruction-level parallelism,
extending the concepts of data pre-fetching, out-of-order task execution based on
dependency analysis, and even branch prediction (speculative execution).

An AMT model aims to leverage all available task and pipeline parallelism, rather just
relying on basic data parallelism for concurrency.

Enables communication/computation overlap, as well as reasoning about
asynchronous load balancing strategies.

11 . 1

Broad survey of many AMT runtime systems

Deep dive on Charm++, Legion, Uintah

Programmability:
Does this runtime enable efficient expression of
workloads?

Performance:
How performant is this runtime on current
platforms and how well suited is it to address
future architecture challenges?

Mutability:
What is the ease of adopting this runtime and
modifying it to suit users' needs?

12 . 1

AMT systems show great promise

No common user-level APIs

Need for best practices and standards

Survey recommendations led to DARMA

C++ abstraction layer for AMT runtimes

A single user-level API

Support multiple AMT runtimes to begin
identification of best practices

13 . 1

AMT runtimes operate with a directed acyclic
graph (DAG): captures relationships between
application data and inter-dependent tasks

DAGs can be annotated to capture additional
information

Tasks’ read/write usage of data
Task needs a subset of data

Additional information enables runtime to
reason more completely about

When and where to execute a task
Whether to load balance

Existing runtimes leverage DAGs with varying
degrees of annotation, also leveraging user-
provided information about dependencies

14 . 1

Serial code

Output: quiet 17

Explicit threads

Output: quiet 17

Using async-future:

Output: quiet 17

Direct extraction of conservative concurrency based on the sequence of data usage
Conservative because it is "safe by default"
Enabling runtime-based approaches rather than auto-magic compilers
There is existing related research (e.g., Legion, OpenMP 4.5)

void get_name(string& val){
 /*...*/
 val = "quiet"; }
void get_year(int& val){
 /*...*/
 val = 17; }
void print(string a, int b){
 cout << a << " "
 << b << endl;
}

int main() {
 string name; int year;
 get_name(name);
 get_year(year);
 print(name, year);
}

static string name; static int year;
void get_name() {
 /*...*/
 name = "quiet"; }
void get_year() {
 /*...*/
 year = 17; }
void print() {
 cout << name << " " << year << endl;
}

int main() {
 auto thr_n = std::thread(get_name);
 auto thr_y = std::thread(get_year);
 thr_n.join();
 thr_y.join();
 print();
}

string get_name() {
 /*...*/
 return "quiet"; }
int get_year() {
 /*...*/
 return 17; }
void print(future<string> a,
 future<int> b) {
 cout << a.get() << " "
 << b.get() << endl;
}
int main() {
 auto n = std::async(get_name);
 auto y = std::async(get_year);
 auto done = std::async(print,
 move(n), move(y));
 done.wait();
}

There is existing related research (e.g., Legion, OpenMP 4.5)

15 . 1

Serial code (quasi) DARMA code

The function signature itself (from the sequential implementation)
can serve as a concurrency specification!

mpass::async() detects dependencies of a task and their use (i.e., read or modify).
Concurrency with other tasks is implicitly specified by how the data is used.
A backend task scheduler and runtime layer is needed to execute the DAG.
Alleviates (some) burden on programmers. Various degrees of user-defined information.

void get_name(string& val) { val = "quiet"; }
void get_year(int& val) { val = 17; }
void print(string a, int b) {
 cout << a << " " << b << endl;
}

int main() {
 string name; int year;
 get_name(name);
 get_year(year);
 print(name, year);
}

void get_name(string& val) { val = "quiet"; }
void get_year(int& val) { val = 17; }
void print(string a, int b) {
 cout << a << " " << b << endl;
}

int main() {
 async_ptr<string> name; async_ptr<int> year;
 mpass::async(get_name, name);
 mpass::async(get_year, year);
 mpass::async(print, name, year);
}

16 . 1

17 . 1

18 . 1

19 . 1

20 . 1

21 . 1

22 . 1

Asynchronous smart pointers wrap application data
Track meta-data used to build and annotate the DAG

Current permissions information (e.g. read-only, read/write)
Subsetting information under development

Data partitioning and distribution expressed with explicit,
hierarchical, logical decomposition of data using:
AccessHandle<T>

Does not span multiple memory spaces
Must be serialized to be transferred between memory spaces

AccessHandleCollection<T,R>
Expresses a collection of data of type T, mapped to range R
Can be mapped across memory spaces in a scalable manner

Distribution of data is up to individual backend runtime

23 . 1

create_work
A task that doesn’t span multiple execution spaces
Sequential semantics: the order and manner (e.g., read, write) in which data
(AccessHandle) is used determines what tasks may be run in parallel

create_concurrent_work
Scalable abstraction to launch across distributed systems
A collection of tasks that must make simultaneous forward progress
Sequential semantics supported across different task collections based on order and
manner of AccessHandleCollection usage

How is synchronization expressed?
DARMA does not provide explicit temporal synchronization abstractions
DARMA does provide data coordination abstractions
publish/fetch semantics between participants in a task collection
Asynchronous collectives between participants in a task collection

24 . 1

25 . 1

26 . 1

27 . 1

28 . 1

void darma_main_task(std::vector<std::string> args) {

 auto answer = initial_access<int>();

 //set value of answer - must run first
 create_work([=]{ answer.set_value(42); });

 //read-only, can run in parallel with check below
 create_work(reads(answer), [=]{
 std::cout << "The answer is" << *answer << std::endl;
 });

 //read-only, can run in parallel with print above
 create_work(reads(answer), [=]{
 if (*answer != 42){
 darma_runtime::abort("the answer is incorrect");
 }
 });
}
DARMA_REGISTER_TOP_LEVEL_FUNCTION(darma_main_task);

29

UQ with DARMA
fnrizzi.github.io/quiet17

file:///Users/fnrizzi/Desktop/work/Presentations/QUIET17sandia/fnrizzi.github.io/quiet17

29

30 . 1

Uncertainties in inputs propagated to outputs:
Moments, reliability, PDFs of the outputs

Techniques:
Sampling methods: ex. Monte Carlo, Multi-level MC, Importance sampling.
Functional expansion-based methods: ex. PCe.

Need multiple evaluation of forward model (e.g. PDE).

Why is DARMA (AMT) good for UQ?
(Dynamic) parallelism: heterogeneity among samples
AMT model is a natural fit
Nested UQ evaluations
Adaptive UQ algorithms
Performance portability, expressiveness and productivity

31 . 1

Multiple Solves per Rank Single Solve per Rank
using vecD = vector<double>;

struct RunSamples {
 void operator()(
 Index1D<size_t> index,
 AccessHandleCollection<vecD, Range1D> ahcdata, /*...*/)
 {
 ahcdata[index].local_access().resize(solves_per_rank,0.0);
 for (uint i = 0; i < solves_per_rank; ++i){
 create_work([=]{
 // generate sample diffusivity
 // solve PDE for current germ sample
 // independently store QoI from this sample
 });
 }//for
 }//op
};

//
void darma_main_task(std::vector<std::string> args) {

const uint solves_per_rank = ...; //# of PDE solves per rank
const uint n_ranks = ...; //# of ranks

auto data = initial_access_collection<vecD>(Range1D(n_ranks));

create_concurrent_work<RunSamples>(data, ..., Range1D(n_ranks));
create_concurrent_work<Collect>(data, ..., Range1D(n_ranks));

}
DARMA_REGISTER_TOP_LEVEL_FUNCTION(darma_main_task);

using vecD = vector<double>;

struct RunSamples {
 void operator()(
 Index1D<size_t> index,
 AccessHandleCollection<double, Range1D> ahcdata, /*...*/
 {
 // generate sample diffusivity
 //...
 // solve PDE for current germ sample
 // store QoI from this sample
 //...

 }
};

void darma_main_task(std::vector<std::string> args) {

const uint n_ranks = ...; //# of ranks

auto data = initial_access_collection<double>(Range1D(n_ranks));

create_concurrent_work<RunSamples>(data, ..., Range1D(n_ranks));
create_concurrent_work<Collect>(data, ..., Range1D(n_ranks));

}
DARMA_REGISTER_TOP_LEVEL_FUNCTION(darma_main_task);

32 . 1

33 . 1

n: number of samples per DARMA ``stream''

Total number of samples: N=n*2880, where
2880 is tot # of threads (96 nodes * 30
threads/node).

Each PDE solve involves 4,194,304 points.

Run on Haswell nodes on in-house machine.

Grid size of each PDE solve: 4,194,304 points.

Good scaling (as expected). Similar (or better)
runtime of equivalent charm++ code.

Cache/memory effects appear for larger
problems.

34 . 1

Top-level Task Core Run Functor
void darma_main_task(std::vector<std::string> args){

auto vLevelsH = initial_accesss<vector<Level>>();
create_work<initialize>(vLevelsH, ...);

auto converged = initial_accesss<bool>();
auto iter = initial_accesss<uint>();
create_work([=]{
 converged.set_value(false);
 iter.set_value(1);
});

create_work_while([=]{
 return converged.get_value()==false
 && iter.get_value()<=maxIter;
}).do_([=]
{
 // loop over level and run/collect samples
 for (auto & lev : vLevelsH)
 create_concurrent_work<runFunctor>(lev, ...);

 // compute stats, new # of samples, check convergence
 create_work<checkStats>(vLevelsH, converged, ...);
 iter.get_reference()++;
});

// compute estimator
create_work<MLestimator>(vLevelsH, ...);
}
DARMA_REGISTER_TOP_LEVEL_FUNCTION(darma_main_task);

struct runFunctor{
 void operator()(
 Index1D index, ...) const
 {
 const auto contextSize = index.max_value + 1;

 uint myN = std::ceil(N/contextSize);
 for (uint i = 0; i < myN; ++i){
 create_work([=]
 {
 // generate sample of stochastic diffusivity
 create_work([=]{
 // PDE solve for l level (fine)
 });
 create_work([=]{
 // PDE solve for l-1 level (coarser)
 });

 // store target QoI for fine Q_l
 // store target QoI for coarse Q_lm1
 // store target QoI: Y = Q_l - Q_lm1;
 });
 }//for
 }//op
};
}

35 . 1

Adaptive MLMC: start with fixed initial number
of levels (4), add more as needed.
Coarsest level has 4096 points.

E.g. need to handle ~10e7 tasks.

Dynamic addition of levels is interesting and
challenging for task/data mapping and
speculative execution.

Compare Haswell/KNL using gcc/icc on in-
house machine.

Good scaling. Still investigating Haswell trend.

Looking now into more heterogeneous
problems: impact of load balancing, dynamic
parallelism and optimal task mapping.

36 . 1

Take-home message:

AMT provides a promising framework for exploring UQ on next generation machines.

DARMA provides a unified interface for AMT: one code, multiple runtimes.
Automatic dependency detection and parallel/concurrency reasoning.

Work in progress:

Leveraging data reusability

Reuse data produced by some tasks to accelerate convergence for other similar tasks.

Tradeoff between data movement, execution time (memory access, data locality).

Benchmarking for distributed backends.

Optimize load balancing methods for UQ applications.

Development of abstraction tailored for UQ.

37 . 1

DARMA is about to become publicly available, for info:
darma@sandia.gov

Sandia National Laboratories is a multimission laboratory managed and operated by
National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary

of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear
Security Administration under contract DE-NA0003525.

Questions? Comments?

Thank you for your attention!

fnrizzi@sandia.gov

https://share-ng.sandia.gov/darma/

https://share-ng.sandia.gov/darma/

