Improving Sampling-based Uncertainty Quantification Performance Through Embedded Ensemble Propagation

Eric Phipps (etphipp@sandia.gov), Marta D'Elia, Mohamed Ebeida Sandia National Laboratories and Ahmad Rushdi, UC Davis

> QUIET 2017 July 18-21, 2017

SAND2017-7005 C

Can Exascale Solve the UQ Challenge?

- Focusing on forward propagation of uncertainty through sampling-based methods
 - Common task in many UQ analyses
- Key challenge:
 - Accurately quantifying rare events and localized behavior in high-dimensional uncertain input spaces for expensive simulations
- Can exascale solve this challenge?

Emerging Architectures Motivate New UQ Approaches

- UQ approaches traditionally implemented as an outer loop:
 - Repeatedly call forward simulation for each sample realization
 - Coarse-grained parallelism over samples
- Increasing UQ performance will require
 - Speeding-up each sample evaluation, and/or
 - Evaluating more samples in parallel
- Many important scientific simulations will struggle with upcoming architectures
 - Irregular memory access patterns
 - Difficulty in exploiting fine-grained parallelism (vectorization, fine-grained threads)
- Increasing UQ parallelism requires exploiting massive increase in on-node parallelism
- Improve performance by propagating multiple samples together at lowest levels of simulation (embedded ensemble propagation)
 - Improve memory access patterns
 - Expose new dimensions of structured fine-grained parallelism
 - Reduce aggregate communication

http://dakota.sandia.gov

Sparse CRS-Format Matrix-Vector Product

```
// CRS Matrix for an arbitrary floating-point type T
template <typename T>
struct CrsMatrix {
    int num_rows; // number of rows in matrix
    int num_entries; // number of nonzeros in matrix
    int *row_map;  // starting index of each row, [0,num_rows+1)
                     // column indices for each nonzero, [0,num_entries)
    int *col_entry;
        *values:
                     // matrix values of type T, [0,num_entries)
};
// Serial CRS matrix-vector product for arbitrary floating-point type T
template <typename T>
void crs_mat_vec(const CrsMatrix<T>& A, const T *x, T *y) {
    for (int row=0; row<A.num rows; ++row) {</pre>
        const int entry_begin = A.row_map[row];
        const int entry end = A.row map[row+1];
        T sum = 0.0;
        for (int entry = entry_begin; entry < entry_end; ++entry) {</pre>
            const int col = A.col_entry[entry];
            sum += A.values[entry] * x[col];
        }
        v[row] = sum;
```

Simultaneous ensemble propagation

• PDE: f(u, y) = 0

$$F(U,Y) = 0, \ U = \sum_{i=1}^{m} e_i \otimes u_i, \ Y = \sum_{i=1}^{m} e_i \otimes y_i, \ F = \sum_{i=1}^{m} e_i \otimes f(u_i, y_i),$$
$$\frac{\partial F}{\partial U} = \sum_{i=1}^{m} e_i e_i^T \otimes \frac{\partial f}{\partial u_i}$$

Spatial DOFs for each sample stored consecutively

Ensemble Matrix-Vector Product

```
// Ensemble matrix-vector product
template <typename T, int m>
void ensemble_crs_mat_vec(const CrsMatrix<T>& A, const T *x, T *y) {
    for (int e=0; e < m; ++e) {
        for (int row=0; i<A.num_rows; ++row) {</pre>
            const int entry_begin = A.row_map[row];
            const int entry end = A.row map[row+1];
            T sum = 0.0;
            for (int entry = entry_begin; entry < entry_end; ++entry) {</pre>
                const int col = A.col_entry[entry];
                sum += A.values[entry + e*A.num_entries] * x[col + e*A.num_rows];
            y[row + e*A.num_rows] = sum;
```

Simultaneous ensemble propagation

• Commute Kronecker products:

$$\tilde{F}(\tilde{U}, \tilde{Y}) = 0, \ \tilde{U} = \sum_{i=1}^{m} u_i \otimes e_i, \ \tilde{Y} = \sum_{i=1}^{m} y_i \otimes e_i, \ \tilde{F} = \sum_{i=1}^{m} f(u_i, y_i) \otimes e_i,
\frac{\partial \tilde{F}}{\partial \tilde{U}} = \sum_{i=1}^{m} \frac{\partial f}{\partial u_i} \otimes e_i e_i^T$$

m sample values for each DOF stored consecutively

Commuted, Ensemble Matrix-Vector Product

```
// Ensemble matrix-vector product using commuted layout
template <typename T, int m>
void ensemble_commuted_crs_mat_vec(const CrsMatrix<T>& A, const T *x, T *y) {
    for (int row=0; i<A.num_rows; ++row) {</pre>
        const int entry_begin = A.row_map[row];
        const int entry end = A.row map[row+1];
        T sum[m]:
        for (int e=0; e < m; ++e)
            sum[e] = 0.0:
        for (int entry = entry_begin; entry < entry_end; ++entry) {</pre>
            const int col = A.col_entry[entry];
            for (int e=0; e < m; ++e) {
                sum[e] += A.values[entry*m + e] * x[col*m + e];
        for (int e=0; e < m; ++e)
            y[row*m + e] = sum[e];
}
```

- Automatically reuse non-sample dependent data
- Sparse access latency amortized across ensemble
- Math on ensemble naturally maps to vector arithmetic
- Communication latency amortized across ensemble

C++ Ensemble Scalar Type

```
// Ensemble scalar type
template <typename U, int m>
struct Ensemble {
    U val[m];
    Ensemble(const U& v) { for (int e=0; e<m; ++e) val[m] = v; }
    Ensemble& operator=(const Ensemble& a) {
        for (int e=0; e<m; ++e) val[m] = a.val[m];</pre>
        return *this:
    Ensemble& operator+=(const Ensemble& a) {
        for (int e=0; e<m; ++e) val[m] += a.val[m];</pre>
        return *this:
};
template <typename U, int m>
Ensemble<U,m> operator*(const Ensemble<U,m>& a, const Ensemble<U,m>& b) {
    Ensemble<U,m> c;
    for (int e=0; e<m; ++e) c.val[e] = a.val[e]*b.val[e];</pre>
    return c;
```

Ensemble Matrix-Vector Product Through Operator Overloading

 Original matrix-vector product routine, instantiated with T = Ensemble<double,m> scalar type:

```
// Serial Crs matrix-vector product for arbitrary floating-point type T
template <typename T>
void crs_mat_vec(const CrsMatrix<T>& A, const T *x, T *y) {
    for (int row=0; row<A.num_rows; ++row) {
        const int entry_begin = A.row_map[row];
        const int entry_end = A.row_map[row+1];
        T sum = 0.0;
        for (int entry = entry_begin; entry < entry_end; ++entry) {
            const int col = A.col_entry[entry];
            sum += A.values[entry] * x[col];
        }
        y[row] = sum;
    }
}</pre>
```

Stokhos: Trilinos Tools for Embedded UQ Methods

- Provides ensemble scalar type
 - Uses expression templates to fuse loops

$$d = a \times b + c = \{a_1 \times b_1 + c_1, \dots, a_m \times b_m + c_m\}$$

- Enabled in simulation codes through template-based generic programming
 - Template C++ code on scalar type
 - Instantiate template code on ensemble scalar type
- Integrated with Kokkos (Edwards, Sunderland, Trott) for many-core parallelism
 - Specializes Kokkos data-structures, execution policies to map vectorization parallelism across ensemble
- Integrated with Tpetra-based solvers for hybrid (MPI+X) parallel linear algebra
 - Exploits templating on scalar type
 - Krylov solvers (Belos)
 - Algebraic multigrid preconditioners (MueLu)
 - Incomplete factorization, polynomial, and relaxation-based preconditioners/smoothers (Ifpack2)
 - Sparse-direct solvers (Amesos2)

Techniques Prototyped in FENL Mini-App*

Simple nonlinear diffusion equation

$$-\nabla \cdot (\kappa(x, y)\nabla u) + u^2 = 0,$$

$$\kappa(x, y) = \kappa_0 + \sigma \sum_{i=1}^{M} \sqrt{\lambda_i} \kappa_i(x) y_i$$

- 3-D, linear FEM discretization
- 1x1x1 cube, unstructured mesh
- KL truncation of exponential random field model for diffusion coefficient
- Trilinos-couplings package
- Hybrid MPI+X parallelism
 - Traditional MPI domain decomposition using threads within each domain
- Employs Kokkos for thread-scalable
 - Graph construction
 - PDE matrix/RHS assembly
- Employs Tpetra for distributed linear algebra
 - CG iterative solver (Belos package)
 - Smoothed Aggregation AMG preconditioning (MueLu)
- Supports embedded ensemble propagation via Stokhos through entire assembly and solve
 - Samples generated via local and global sparse grids (TASMANIAN)

*Phipps, et al, Embedded Ensemble Propagation for Improving Performance, Portability and Scalability of Uncertainty Quantification on Emerging Computational Architectures, SISC, 2017

AMG Preconditioned CG Solve

- $Speed-Up = \frac{Ensemble \text{ size} \times Time \text{ for single sample}}{Time \text{ for ensemble}}$
- Smoothed-aggregation algebraic multigrid preconditioning (MueLu)
 - Chebyshev smoothers
 - Sparse-direct coarse-grid solver (Amesos2/Basker)
 - Multi-jagged parallel repartioning (Zoltan2)

Highly Anisotropic Diffusion

$$\begin{aligned} -\nabla \cdot (K(x,y)\nabla u) + u^2 &= 0, \\ K(x,y) &= \mathsf{diag}(\kappa(x,y),1,1) \\ \kappa(x,y) &= 1 + 100 \exp(\sqrt{300} \sum_{i=1}^{M} \sqrt{\lambda_i} \kappa_i(x) y_i)) \end{aligned}$$

 Decision on how to group samples will strongly impact performance

Ensemble Grouping

- For these problems, computational work driven by the number of (preconditioned) solver iterations
- Special case of "ensemble divergence", where different samples in the ensemble would take diverging code paths
 - Biggest challenge for effective use of ensembles on hard problems
- Solution: group samples to minimize divergence
 - In this case, group samples requiring similar numbers of iterations
- Challenge: we don't know the number of iterations beforehand

Solution 1: Expert Knowledge*

- Use expert knowledge on how the uncertain parameters affect linear solver convergence
 - For highly anisotropic diffusion equation, convergence is highly correlated with level of anisotropy:

$$a(y) = \max_{x} \left[\frac{\lambda_{\max}(K(x, y))}{\lambda_{\min}(K(x, y))} \right]$$

- Grouping algorithm:
 - Compute anisotropy a(y) for each sample y
 - Sort samples based on increasing a
 - Divide sorted list in ensembles of given size m
- Note, evaluation of a(y) requires modification of the simulation code

Solution 2: Iterations Surrogate*

- For adaptive sampling methods, use previous samples to predict iterations for future samples
 - E.g., locally adaptive sparse grids
 - Use surrogate generated from previous samples evaluated on new samples
- Grouping algorithm (for adaptive sparse grids):
 - Build interpolant over previous sparse grid levels for linear solver iterations
 - Evaluate interpolant for samples at new level
 - Sort samples based on increasing iterations surrogate
 - Divide sorted list into ensembles of size m

Note:

- For first level, just use natural ordering of samples (no grouping)
- Requires ability to track when a sample would have converged when not part of an ensemble (which can be done)

Numerical Tests

- FENL mini-app to test performance of grouping methods
 - Highly anisotropic diffusion tensor
 - Ensemble propagation using Trilinos infrastructure
 - AMG (MueLu), CG (Belos)
- Locally adaptive sparse grids provided by TASMANIAN (http://tasmanian.ornl.gov)
- Measure of increased computational work:

$$R = \frac{S \sum_{e=1}^{N_e} I_e}{\sum_{k=1}^{N} i_k}$$

S: ensemble size

N: number of samples

 $N_{\rm e}$: number of ensembles $\approx N/S$

 I_e : number of iterations for eth ensemble

 i_k : number of iterations for kth sample

- -R = 1 if all samples in ensemble take same number of iterations
- In general R > 1
- Ensemble speedup inversely proportional to R

Continuous Test Case

$$-\nabla \cdot (K(x,y)\nabla u) + u^2 = 0,$$

$$x \in [0,1]^3, \quad y \in [-1,1]^4$$

$$K(x,y) = \operatorname{diag}(\kappa(x,y),1,1)$$

$$\kappa(x,y) = 1 + 100 \exp\left(\sqrt{300} \sum_{i=1}^4 \sqrt{\lambda_i} \kappa_i(x) y_i\right)$$

	I	S	R_1	R_2	R_3	R_4	R_5	R_6	R_7	R_8	R	Speed- up	Pred. Speed-up
	its	4	1.68	1.43	1.23	1.05	1.01	1.04	1.06	1.10	1.06	_	2.56
	sur	4	2.04	1.44	1.27	1.32	1.13	1.09	1.10	1.14	1.15	2.35	2.37
	par	4	2.04	1.71	1.52	1.30	1.34	1.20	1.12	1.12	1.24	1.81	2.20
	nat	4	2.04	1.66	1.44	1.23	1.34	1.28	1.25	1.24	1.29	2.15	2.11
	its	8	2.83	1.60	1.27	1.08	1.10	1.08	1.10	1.44	1.14	_	3.44
	sur	8	2.83	1.67	1.33	1.14	1.13	1.11	1.12	1.44	1.17	3.35	3.35
	par	8	2.83	2.15	1.71	1.39	1.49	1.27	1.18	1.47	1.35	2.84	2.89
	$_{\mathrm{nat}}$	8	2.83	2.29	1.90	1.48	1.49	1.51	1.41	1.64	1.52	2.61	2.58
	its	16	3.11	1.94	1.60	1.12	1.28	1.25	1.25	1.56	1.30	_	3.94
	sur	16	3.11	1.94	1.69	1.19	1.30	1.29	1.28	1.56	1.33	3.70	3.84
	par	16	3.11	2.59	1.83	1.46	1.65	1.41	1.30	1.57	1.49	3.33	3.43
	nat	16	3.11	2.59	2.12	1.87	1.80	1.83	1.67	2.16	1.84	2.73	2.78
	its	32	6.22	3.07	2.62	1.25	1.67	1.32	1.61	2.63	1.66	_	3.46
	sur	32	6.22	3.07	2.75	1.30	1.70	1.36	1.64	2.64	1.70	3.47	3.39
	par	32	6.22	3.07	2.76	1.59	2.11	1.57	1.65	2.64	1.87	3.05	3.08
2	nat	32	6.22	3.07	2.99	2.37	2.24	2.16	2.07	2.74	2.28	2.06	2.53

Discontinuous Test Case

$$-\nabla \cdot (K(x,y)\nabla u) + u^{2} = 0,$$

$$x \in [0,1]^{3}, y \in [-1,1]^{4}$$

$$K(x,y) = \operatorname{diag}(\kappa(x,y),1,1)$$

$$\kappa(x,y) = 1 + k(y) \exp\left(\sqrt{300} \sum_{i=1}^{4} \sqrt{\lambda_{i}} \kappa_{i}(x) y_{i}\right)$$

$$k(y) = \begin{cases} 1 & r(y) < \frac{d}{4} \\ 100 & \frac{d}{4} \le r(y) < \frac{d}{2} \\ 10 & r(y) \ge \frac{d}{2}, \end{cases}$$

$$r(y) = ||y||_{2}, d = \sqrt{3}$$

								C 1	
_	~	-	-	-	-	-	-	Speed-	Pred.
I	S	R_1	R_2	R_3	R_4	R_5	R	up	Speed-up
its	4	1.77	1.06	1.20	1.06	1.06	1.08	_	2.51
sur	4	2.08	1.13	1.24	1.14	1.25	1.22	2.09	2.23
par	4	2.08	1.44	1.62	1.36	1.37	1.41	1.93	1.94
$_{\mathrm{nat}}$	4	2.08	1.51	1.32	1.34	1.35	1.36	2.00	2.01
its	8	2.91	1.23	1.56	1.16	1.14	1.22	_	3.22
sur	8	2.91	1.29	1.64	1.27	1.21	1.30	2.80	3.02
par	8	2.91	1.74	2.01	1.49	1.79	1.74	2.29	2.25
$_{\mathrm{nat}}$	8	2.91	1.56	1.80	1.55	1.55	1.59	2.41	2.46
its	16	3.33	1.79	1.64	1.22	1.17	1.29	_	3.97
sur	16	3.33	1.79	1.69	1.33	1.24	1.36	3.22	3.74
par	16	3.33	2.38	2.37	1.60	1.66	1.77	2.87	2.88
nat	16	3.33	2.38	2.10	1.99	1.81	1.93	2.60	2.65
its	32	6.65	2.88	2.28	1.38	1.28	1.54	_	3.74
sur	32	6.65	2.88	2.34	1.46	1.37	1.62	3.04	3.55
par	32	6.65	2.88	2.53	1.75	1.77	1.94	2.87	2.96
nat	32	6.65	2.88	2.87	2.56	2.16	2.43	2.39	2.38

Summary

- Embedded sampling approach improves aggregate UQ performance by
 - Eliminating sparse memory accesses
 - Amortizing communication/access latency
 - Perfect fine-grained vector/Cuda-thread parallelism
- Applying technique through C++ templates greatly facilitates implementation
 - Alleviate code developers from having to worry about UQ
- Smart grouping of samples into ensembles required for more challenging problems
 - "Surrogate" approach works well for adaptive UQ methods, easily generalizable
- Working on new approach that adaptively choses samples to improve simulation Qol and minimize same divergence
 - Voronoi Piecewise Surrogates method of Ebedia and Rushdi

Extra Slides Sandia National Laboratories

Kokkos: A Manycore Device Performance Portability Library for C++ HPC Applications*

- Standard C++ library, not a language extension
 - Core: multidimensional arrays, parallel execution, atomic operations
 - Containers: Thread-scalable implementations of common data structures (vector, map, CRS graph, ...)
 - LinAlg: Sparse matrix/vector linear algebra
- Relies heavily on C++ template meta-programming to introduce abstraction without performance penalty
 - Execution spaces (CPU, GPU, ...)
 - Memory spaces (Host memory, GPU memory, scratch-pad, texture cache, ...)
 - Layout of multidimensional data in memory
 - Scalar type

*H.C. Edwards, D. Sunderland, C. Trott (SNL)

Tpetra: Foundational Layer / Library for Sparse Linear Algebra Solvers on Next-Generation Architectures*

- Tpetra: Sandia's templated C++ library for distributed memory (MPI) sparse linear algebra
 - Builds distributed memory linear algebra on top of Kokkos library
 - Distributed memory vectors, multi-vectors, and sparse matrices
 - Data distribution maps and communication operations
 - Fundamental computations: axpy, dot, norm, matrix-vector multiply, ...
 - Templated on "scalar" type: float, double, automatic differentiation, polynomial chaos, ensembles, ...
- Higher level solver libraries built on Tpetra
 - Preconditioned iterative algorithms (Belos)
 - Incomplete factorization preconditioners (Ifpack2, ShyLU)
 - Multigrid solvers (MueLu)
 - All templated on the scalar type

*M. Heroux, M. Hoemmen, et al (SNL)

Kokkos Integration

- Kokkos views of UQ scalar type internally stored as views of 1-higher rank
 - UQ dimension is always contiguous, regardless of layout
- Facilitates
 - Fine-grained parallelism over UQ dimension
 - Efficient allocation and initialization
 - Specialization of kernels
 - Transfering data between host and device and MPI communication

Kokkos::View< Ensemble<double,4>*, LayoutRight, Device > view("v", 10);

Kokkos::View< Ensemble<double,4>*, LayoutLeft, Device > view("v", 10);

 Requires specialized kernel launch for CUDA to map warp to UQ dimension to achieve performance

Ensemble Sparse Matrix-Vector Product Speed-Up

- Speed-up results from
 - Reuse of matrix graph
 - Replacement of sparse gather with contiguous load
 - Perfect vectorization of multiply-add

 $Speed-Up = \frac{Ensemble \text{ size} \times Time \text{ for single sample}}{Time \text{ for ensemble}}$

Interprocessor Halo Exchange

Time $\approx a + bm$

Speed-Up =
$$\frac{\text{Ensemble size} \times \text{Time for single sample}}{\text{Time for ensemble}}$$

- Speed-up results from reduced aggregate communication latency
 - Fewer, larger MPI messages
 - Communication volume is the same

AMG Preconditioned CG Solve

$$Speed-Up = \frac{Ensemble \text{ size} \times Time \text{ for single sample}}{Time \text{ for ensemble}}$$

- Smoothed-aggregation algebraic multigrid preconditioning (MueLu)
 - Chebyshev smoothers
 - Sparse-direct coarse-grid solver (Amesos2/Basker)
 - Multi-jagged parallel repartioning (Zoltan2)

AMG Preconditioned CG Solve

$$Speed-Up = \frac{Ensemble \text{ size} \times Time \text{ for single sample}}{Time \text{ for ensemble}}$$

- Smoothed-aggregation algebraic multigrid preconditioning (MueLu)
 - Chebyshev smoothers
 - Sparse-direct coarse-grid solver (Amesos2/Basker)
 - Multi-jagged parallel repartioning (Zoltan2)

Ensemble PDE Matrix/RHS Assembly Speed-Up

- Speed-up results from
 - Reuse of mesh, discretization data structures
 - Replacement of sparse gather with contiguous load
 - Perfect vectorization of math

$$Speed-Up = \frac{Ensemble \text{ size} \times Time \text{ for single sample}}{Time \text{ for ensemble}}$$

Ensemble Propagation for More Challenging Problems

- Assuming number of CG iterations doesn't vary significantly from sample to sample
 - True for problems with tame diffusion coefficient on regular meshes
 - Implies number of CG iterations for ensemble does not increase
- This is not true for many problems

Continuous Test Case

Discontinuous Test Case

