
Improving Sampling-based Uncertainty
Quantification Performance Through

Embedded Ensemble Propagation
Eric Phipps (etphipp@sandia.gov),

Marta D’Elia, Mohamed Ebeida
Sandia National Laboratories

and
Ahmad Rushdi, UC Davis

QUIET 2017
July 18-21, 2017

SAND2017-7005 C

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and
Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S.
Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Can Exascale Solve the UQ Challenge?

• Focusing on forward propagation of uncertainty through
sampling-based methods
– Common task in many UQ analyses

• Key challenge:
– Accurately quantifying rare events and localized behavior in

high-dimensional uncertain input spaces for expensive
simulations

• Can exascale solve this challenge?

Emerging Architectures Motivate New
UQ Approaches

• UQ approaches traditionally implemented as an outer loop:
– Repeatedly call forward simulation for each sample realization
– Coarse-grained parallelism over samples

• Increasing UQ performance will require
– Speeding-up each sample evaluation, and/or
– Evaluating more samples in parallel

• Many important scientific simulations will struggle
with upcoming architectures

– Irregular memory access patterns
– Difficulty in exploiting fine-grained parallelism

(vectorization, fine-grained threads)

• Increasing UQ parallelism requires exploiting
massive increase in on-node parallelism

• Improve performance by propagating multiple samples together at lowest levels of
simulation (embedded ensemble propagation)

– Improve memory access patterns
– Expose new dimensions of structured fine-grained parallelism
– Reduce aggregate communication

http://dakota.sandia.gov

// CRS Matrix for an arbitrary floating-point type T
template <typename T>
struct CrsMatrix {

int num_rows; // number of rows in matrix
int num_entries; // number of nonzeros in matrix
int *row_map; // starting index of each row, [0,num_rows+1)
int *col_entry; // column indices for each nonzero, [0,num_entries)
T *values; // matrix values of type T, [0,num_entries)

};

// Serial CRS matrix-vector product for arbitrary floating-point type T
template <typename T>
void crs_mat_vec(const CrsMatrix<T>& A, const T *x, T *y) {

for (int row=0; row<A.num_rows; ++row) {
const int entry_begin = A.row_map[row];
const int entry_end = A.row_map[row+1];
T sum = 0.0;
for (int entry = entry_begin; entry < entry_end; ++entry) {

const int col = A.col_entry[entry];
sum += A.values[entry] * x[col];

}
y[row] = sum;

}
}

Sparse CRS-Format Matrix-Vector Product

Simultaneous ensemble propagation

• PDE:

• Propagating m samples – block diagonal (nonlinear) system:

– Spatial DOFs for each sample stored consecutively

0 10 20 30

0

5

10

15

20

25

30

F (U,Y) = 0, U =
mX

i=1

ei ⌦ ui , Y =
mX

i=1

ei ⌦ yi , F =
mX

i=1

ei ⌦ f (ui , yi),

@F

@U
=

mX

i=1

eie
T
i ⌦ @f

@ui

f (u, y) = 0

// Ensemble matrix-vector product
template <typename T, int m>
void ensemble_crs_mat_vec(const CrsMatrix<T>& A, const T *x, T *y) {

for (int e=0; e < m; ++e) {
for (int row=0; i<A.num_rows; ++row) {

const int entry_begin = A.row_map[row];
const int entry_end = A.row_map[row+1];
T sum = 0.0;
for (int entry = entry_begin; entry < entry_end; ++entry) {

const int col = A.col_entry[entry];
sum += A.values[entry + e*A.num_entries] * x[col + e*A.num_rows];

}
y[row + e*A.num_rows] = sum;

}
}

}

Ensemble Matrix-Vector Product

Simultaneous ensemble propagation

• Commute Kronecker products:

– m sample values for each DOF stored consecutively

0 10 20 30

0

5

10

15

20

25

30

F̃ (Ũ, Ỹ) = 0, Ũ =
mX

i=1

ui ⌦ ei , Ỹ =
mX

i=1

yi ⌦ ei , F̃ =
mX

i=1

f (ui , yi)⌦ ei ,

@F̃

@Ũ
=

mX

i=1

@f

@ui
⌦ eie

T
i

// Ensemble matrix-vector product using commuted layout
template <typename T, int m>
void ensemble_commuted_crs_mat_vec(const CrsMatrix<T>& A, const T *x, T *y) {

for (int row=0; i<A.num_rows; ++row) {
const int entry_begin = A.row_map[row];
const int entry_end = A.row_map[row+1];
T sum[m];
for (int e=0; e < m; ++e)

sum[e] = 0.0;
for (int entry = entry_begin; entry < entry_end; ++entry) {

const int col = A.col_entry[entry];
for (int e=0; e < m; ++e) {

sum[e] += A.values[entry*m + e] * x[col*m + e];
}

}
for (int e=0; e < m; ++e)

y[row*m + e] = sum[e];
}

}

• Automatically reuse non-sample dependent data
• Sparse access latency amortized across ensemble
• Math on ensemble naturally maps to vector arithmetic
• Communication latency amortized across ensemble

Commuted, Ensemble Matrix-Vector Product

// Ensemble scalar type
template <typename U, int m>
struct Ensemble {

U val[m];
Ensemble(const U& v) { for (int e=0; e<m; ++e) val[m] = v; }
Ensemble& operator=(const Ensemble& a) {

for (int e=0; e<m; ++e) val[m] = a.val[m];
return *this;

}
Ensemble& operator+=(const Ensemble& a) {

for (int e=0; e<m; ++e) val[m] += a.val[m];
return *this;

}
// ...

};

template <typename U, int m>
Ensemble<U,m> operator*(const Ensemble<U,m>& a, const Ensemble<U,m>& b) {

Ensemble<U,m> c;
for (int e=0; e<m; ++e) c.val[e] = a.val[e]*b.val[e];
return c;

}

// ...

C++ Ensemble Scalar Type

// Serial Crs matrix-vector product for arbitrary floating-point type T
template <typename T>
void crs_mat_vec(const CrsMatrix<T>& A, const T *x, T *y) {

for (int row=0; row<A.num_rows; ++row) {
const int entry_begin = A.row_map[row];
const int entry_end = A.row_map[row+1];
T sum = 0.0;
for (int entry = entry_begin; entry < entry_end; ++entry) {

const int col = A.col_entry[entry];
sum += A.values[entry] * x[col];

}
y[row] = sum;

}
}

Ensemble Matrix-Vector Product Through
Operator Overloading

• Original matrix-vector product routine, instantiated with T = Ensemble<double,m>
scalar type:

Stokhos: Trilinos Tools for Embedded
UQ Methods

• Provides ensemble scalar type
– Uses expression templates to fuse loops

• Enabled in simulation codes through template-based generic programming
– Template C++ code on scalar type
– Instantiate template code on ensemble scalar type

• Integrated with Kokkos (Edwards, Sunderland, Trott) for many-core parallelism
– Specializes Kokkos data-structures, execution policies to map vectorization parallelism across

ensemble

• Integrated with Tpetra-based solvers for hybrid (MPI+X) parallel linear algebra
– Exploits templating on scalar type
– Krylov solvers (Belos)
– Algebraic multigrid preconditioners (MueLu)
– Incomplete factorization, polynomial, and relaxation-based preconditioners/smoothers

(Ifpack2)
– Sparse-direct solvers (Amesos2)

http://trilinos.sandia.gov d = a⇥ b + c = {a1 ⇥ b1 + c1, . . . , am ⇥ bm + cm}

Techniques Prototyped in FENL Mini-App*

• Simple nonlinear diffusion equation

– 3-D, linear FEM discretization
– 1x1x1 cube, unstructured mesh
– KL truncation of exponential random field model for diffusion coefficient
– Trilinos-couplings package

• Hybrid MPI+X parallelism
– Traditional MPI domain decomposition using threads within each domain

• Employs Kokkos for thread-scalable
– Graph construction
– PDE matrix/RHS assembly

• Employs Tpetra for distributed linear algebra
– CG iterative solver (Belos package)
– Smoothed Aggregation AMG preconditioning (MueLu)

• Supports embedded ensemble propagation via Stokhos through entire assembly and solve
– Samples generated via local and global sparse grids (TASMANIAN)

http://trilinos.sandia.gov

*Phipps, et al, Embedded Ensemble Propagation for Improving Performance, Portability and
Scalability of Uncertainty Quantification on Emerging Computational Architectures, SISC, 2017

�r · ((x , y)ru) + u

2 = 0,

(x , y) = 0 + �
MX

i=1

p
�ii (x)yi

AMG Preconditioned CG Solve

Speed-Up =

Ensemble size ⇥ Time for single sample

Time for ensemble

• Smoothed-aggregation algebraic
multigrid preconditioning (MueLu)

– Chebyshev smoothers
– Sparse-direct coarse-grid solver

(Amesos2/Basker)
– Multi-jagged parallel repartioning

(Zoltan2)

0
1
2
3
4
5
6
7

0 8 16 24 32

Sp
ee
d-
U
p

Ensemble	Size

Multigrid	Preconditioned	CG	Solve
(1	MPI	Rank,	64x64x64	Spatial	Mesh)

Haswell	 																									
(1	NUMA,	16	threads)

Cray	XK7																							
(1	NUMA,	8	threads)

NVIDIA	K20x	GPU

KNC	(240	threads)

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

1 4 16 64 256 1024

S
p
e
e
d
.U
p

Compute5Nodes

Cray5XK75Multigrid5Preconditioned5CG5Solve

(64x64x645Mesh/Node)

Ensemble5Size5=54

Ensemble5Size5=58

Ensemble5Size5=516

Ensemble5Size5=532

Highly Anisotropic Diffusion

�r · (K (x , y)ru) + u

2
= 0,

K (x , y) = diag((x , y), 1, 1)

(x , y) = 1 + 100 exp(

p
300

MX

i=1

p
�ii (x)yi))

• Decision on how to
group samples will
strongly impact
performance

Ensemble Grouping

• For these problems, computational work driven by the
number of (preconditioned) solver iterations

• Special case of “ensemble divergence”, where different
samples in the ensemble would take diverging code paths
– Biggest challenge for effective use of ensembles on hard

problems

• Solution: group samples to minimize divergence
– In this case, group samples requiring similar numbers of

iterations

• Challenge: we don’t know the number of iterations
beforehand

Solution 1: Expert Knowledge*

• Use expert knowledge on how the uncertain parameters
affect linear solver convergence
– For highly anisotropic diffusion equation, convergence is

highly correlated with level of anisotropy:

• Grouping algorithm:
– Compute anisotropy a(y) for each sample y
– Sort samples based on increasing a
– Divide sorted list in ensembles of given size m

• Note, evaluation of a(y) requires modification of the
simulation code

*M. D’Elia, et al, Ensemble Grouping Strategies for Embedded Stochastic Collocation Methods
Applied to Anisotropic Diffusion Problems, submitted to JUQ, 2016.

a(y) = max

x


�
max

(K (x , y))

�
min

(K (x , y))

�

Solution 2: Iterations Surrogate*

• For adaptive sampling methods, use previous samples to predict
iterations for future samples
– E.g., locally adaptive sparse grids
– Use surrogate generated from previous samples evaluated on new

samples

• Grouping algorithm (for adaptive sparse grids):
– Build interpolant over previous sparse grid levels for linear solver

iterations
– Evaluate interpolant for samples at new level
– Sort samples based on increasing iterations surrogate
– Divide sorted list into ensembles of size m

• Note:
– For first level, just use natural ordering of samples (no grouping)
– Requires ability to track when a sample would have converged when

not part of an ensemble (which can be done)

*M. D’Elia, et al, Surrogate-based Ensemble Grouping Strategies for Embedded Stochastic
Collocation Methods, submitted to JUQ, 2017 (arXiv: 1705.02003).

Numerical Tests

• FENL mini-app to test performance of grouping methods
– Highly anisotropic diffusion tensor
– Ensemble propagation using Trilinos infrastructure
– AMG (MueLu), CG (Belos)

• Locally adaptive sparse grids provided by TASMANIAN
(http://tasmanian.ornl.gov)

• Measure of increased computational work:

– R = 1 if all samples in ensemble take same number of iterations
– In general R > 1
– Ensemble speedup inversely proportional to R

S : ensemble size

N: number of samples

Ne : number of ensembles ⇡ N/S
Ie : number of iterations for eth ensemble

ik : number of iterations for kth sample

R =

S
NeP
e=1

Ie

NP
k=1

ik

Continuous Test Case

SURROGATE-BASED GROUPING STRATEGIES 17

Speed- Pred.
I S R

1

R
2

R
3

R
4

R
5

R
6

R
7

R
8

R up Speed-up

its 4 1.68 1.43 1.23 1.05 1.01 1.04 1.06 1.10 1.06 – 2.56
sur 4 2.04 1.44 1.27 1.32 1.13 1.09 1.10 1.14 1.15 2.35 2.37
par 4 2.04 1.71 1.52 1.30 1.34 1.20 1.12 1.12 1.24 1.81 2.20
nat 4 2.04 1.66 1.44 1.23 1.34 1.28 1.25 1.24 1.29 2.15 2.11

its 8 2.83 1.60 1.27 1.08 1.10 1.08 1.10 1.44 1.14 – 3.44
sur 8 2.83 1.67 1.33 1.14 1.13 1.11 1.12 1.44 1.17 3.35 3.35
par 8 2.83 2.15 1.71 1.39 1.49 1.27 1.18 1.47 1.35 2.84 2.89
nat 8 2.83 2.29 1.90 1.48 1.49 1.51 1.41 1.64 1.52 2.61 2.58

its 16 3.11 1.94 1.60 1.12 1.28 1.25 1.25 1.56 1.30 – 3.94
sur 16 3.11 1.94 1.69 1.19 1.30 1.29 1.28 1.56 1.33 3.70 3.84
par 16 3.11 2.59 1.83 1.46 1.65 1.41 1.30 1.57 1.49 3.33 3.43
nat 16 3.11 2.59 2.12 1.87 1.80 1.83 1.67 2.16 1.84 2.73 2.78

its 32 6.22 3.07 2.62 1.25 1.67 1.32 1.61 2.63 1.66 – 3.46
sur 32 6.22 3.07 2.75 1.30 1.70 1.36 1.64 2.64 1.70 3.47 3.39
par 32 6.22 3.07 2.76 1.59 2.11 1.57 1.65 2.64 1.87 3.05 3.08
nat 32 6.22 3.07 2.99 2.37 2.24 2.16 2.07 2.74 2.28 2.06 2.53

Table 2
Computational results for Test 1, displaying Rl for each level l, the final R, measured ensemble linear

solver speed-up and predicted speed-up based on R and Figure 1, for the iterations-based (“its”), surrogate-based
(“sur”), parameter-based (“par”), and natural grouping (“nat”) methods.

points, and stops after reaching a size of |Y| = 1009 and five levels of refinement. We report
the results in Table 3; generally, results similar to the continuous case above are observed.
However we do see larger di↵erences between the R values at higher levels between the iteration
and surrogate-based groupings. As before, the solver iterations at each level as well as the
iterations predicted by the surrogate are displayed in Figure 5 and the error in the surrogate
iterations in Figure 6. Again, the surrogate predicts the number of iterations for most samples
reasonably well, even for this more di�cult discontinuous case.

5. Conclusion. The embedded ensemble propagation approach introduced in [49] has been
demonstrated to be a powerful means of reducing the computational cost of sampling-based
uncertainty quantification methods, particularly on emerging computational architectures.
A substantial challenge with this method however is ensemble-divergence, whereby di↵erent
samples within an ensemble choose di↵erent code paths. This can reduce the e↵ectiveness of
the method and increase computational cost. Therefore grouping samples together to minimize
this divergence is paramount in making the method e↵ective for challenging computational
simulations.

In this work, a new grouping approach based on a surrogate for computational cost built

�r · (K (x , y)ru) + u

2
= 0,

x 2 [0, 1]3, y 2 [�1, 1]4

K (x , y) = diag((x , y), 1, 1)

(x , y) = 1 + 100 exp

p
300

4X

i=1

p
�ii (x)yi

!

Discontinuous Test Case

18 SURROGATE-BASED GROUPING STRATEGIES

Speed- Pred.
I S R

1

R
2

R
3

R
4

R
5

R up Speed-up

its 4 1.77 1.06 1.20 1.06 1.06 1.08 – 2.51
sur 4 2.08 1.13 1.24 1.14 1.25 1.22 2.09 2.23
par 4 2.08 1.44 1.62 1.36 1.37 1.41 1.93 1.94
nat 4 2.08 1.51 1.32 1.34 1.35 1.36 2.00 2.01

its 8 2.91 1.23 1.56 1.16 1.14 1.22 – 3.22
sur 8 2.91 1.29 1.64 1.27 1.21 1.30 2.80 3.02
par 8 2.91 1.74 2.01 1.49 1.79 1.74 2.29 2.25
nat 8 2.91 1.56 1.80 1.55 1.55 1.59 2.41 2.46

its 16 3.33 1.79 1.64 1.22 1.17 1.29 – 3.97
sur 16 3.33 1.79 1.69 1.33 1.24 1.36 3.22 3.74
par 16 3.33 2.38 2.37 1.60 1.66 1.77 2.87 2.88
nat 16 3.33 2.38 2.10 1.99 1.81 1.93 2.60 2.65

its 32 6.65 2.88 2.28 1.38 1.28 1.54 – 3.74
sur 32 6.65 2.88 2.34 1.46 1.37 1.62 3.04 3.55
par 32 6.65 2.88 2.53 1.75 1.77 1.94 2.87 2.96
nat 32 6.65 2.88 2.87 2.56 2.16 2.43 2.39 2.38

Table 3
Computational results for Test 2, displaying Rl for each level l, the final R, measured ensemble linear

solver speed-up and predicted speed-up based on R and Figure 1, for the iterations-based (“its”), surrogate-based
(“sur”), parameter-based (“par”), and natural grouping (“nat”) methods.

up during the uncertainty propagation was developed and applied to model di↵usion problems
where computational cost is driven by the number of (preconditioned) linear solver iterations.
The approach was developed within the context of locally adaptive stochastic collocation
methods, where an iterations surrogate generated from previous levels of the adaptive grid
generation is used to predict iterations for subsequent samples, and group them based on sim-
ilar numbers of iterations. While the approach was developed within the context of stochastic
collocation methods, we believe the idea is general and could be easily applied to any adaptive
uncertainty quantification algorithm. In principle it could even be applied to non-adaptive
algorithms by pre-selecting a set of samples, evaluating those samples, and generating an
appropriate iterations surrogate from those results. The method was applied to two highly
anisotropic di↵usion problems with a wide variation in solver iterations from sample to sam-
ple, one continuous with respect to the uncertain parameters, and one discontinuous, and the
method was demonstrated to significantly improve grouping and increase performance of the
ensemble propagation method. It extends the parametric-based grouping approach developed
in [17] to more general problems without requiring detailed knowledge of how the uncertain
parameters a↵ect the simulation’s cost, and is also less intrusive to the simulation code.

k(y) =

8
>><

>>:

1 r(y) < d
4

100 d
4  r(y) < d

2

10 r(y) � d
2 ,

r(y) = kyk2, d =
p
3

�r · (K (x , y)ru) + u

2
= 0,

x 2 [0, 1]3, y 2 [�1, 1]4

K (x , y) = diag((x , y), 1, 1)

(x , y) = 1 + k(y) exp

p
300

4X

i=1

p
�ii (x)yi

!

Summary

• Embedded sampling approach improves aggregate UQ performance by
– Eliminating sparse memory accesses
– Amortizing communication/access latency
– Perfect fine-grained vector/Cuda-thread parallelism

• Applying technique through C++ templates greatly facilitates
implementation
– Alleviate code developers from having to worry about UQ

• Smart grouping of samples into ensembles required for more
challenging problems
– “Surrogate” approach works well for adaptive UQ methods, easily

generalizable

• Working on new approach that adaptively choses samples to improve
simulation QoI and minimize same divergence
– Voronoi Piecewise Surrogates method of Ebedia and Rushdi

Extra Slides

Application	&	Library	Domain	Layer

Kokkos: A Manycore Device Performance Portability Library for
C++ HPC Applications*

• Standard C++ library, not a language extension
– Core: multidimensional arrays, parallel execution, atomic operations
– Containers: Thread-scalable implementations of common data structures

(vector, map, CRS graph, …)
– LinAlg: Sparse matrix/vector linear algebra

• Relies heavily on C++ template meta-programming to introduce
abstraction without performance penalty

– Execution spaces (CPU, GPU, …)
– Memory spaces (Host memory, GPU memory, scratch-pad, texture cache,

…)
– Layout of multidimensional data in memory
– Scalar type

Back-ends:	OpenMP,	pthreads,	Cuda,	vendor	libraries	...

Kokkos	Sparse	Linear	Algebra
Kokkos	Containers
Kokkos	Core

http://trilinos.sandia.gov

*H.C. Edwards, D. Sunderland, C. Trott (SNL)

Tpetra: Foundational Layer / Library for Sparse Linear
Algebra Solvers on Next-Generation Architectures*

• Tpetra: Sandia’s templated C++ library for distributed
memory (MPI) sparse linear algebra
– Builds distributed memory linear algebra on top of Kokkos

library
– Distributed memory vectors, multi-vectors, and sparse

matrices
– Data distribution maps and communication operations
– Fundamental computations: axpy, dot, norm, matrix-vector

multiply, ...
– Templated on “scalar” type: float, double, automatic

differentiation, polynomial chaos, ensembles, …

§ Higher level solver libraries built on Tpetra
– Preconditioned iterative algorithms (Belos)
– Incomplete factorization preconditioners (Ifpack2, ShyLU)
– Multigrid solvers (MueLu)
– All templated on the scalar type

http://trilinos.sandia.gov

*M. Heroux, M. Hoemmen, et al (SNL)

• Kokkos views of UQ scalar type internally stored as views of 1-higher rank
– UQ dimension is always contiguous, regardless of layout

• Facilitates
– Fine-grained parallelism over UQ dimension
– Efficient allocation and initialization
– Specialization of kernels
– Transfering data between host and device and MPI communication

• Requires specialized kernel launch for CUDA to map warp to UQ dimension to
achieve performance

Kokkos Integration

Kokkos::View< Ensemble<double,4>*, LayoutRight, Device > view(“v”, 10);

Kokkos::View< Ensemble<double,4>*, LayoutLeft, Device > view(“v”, 10);

Ensemble Sparse Matrix-Vector Product
Speed-Up

• Speed-up results from
– Reuse of matrix graph
– Replacement of sparse

gather with contiguous
load

– Perfect vectorization of
multiply-add

Speed-Up =

Ensemble size ⇥ Time for single sample

Time for ensemble

0.8
1

1.2
1.4
1.6
1.8
2

2.2

0 8 16 24 32

Sp
ee
d-
Up

Ensemble	Size

Matrix-Vector	Product
(1	MPI	Rank,	64x64x64	Spatial	Mesh)

Haswell	 																									
(1	NUMA,	32	threads)

Cray	XK7																							
(1	NUMA,	8	threads)

NVIDIA	K20x	GPU

KNC	(240	threads)

Interprocessor Halo Exchange

• Speed-up results from reduced
aggregate communication
latency

– Fewer, larger MPI messages
– Communication volume is the

same

Time ⇡ a + bm

Speed-Up =

Ensemble size ⇥ Time for single sample

Time for ensemble

⇡
m(a + b)

a + bm

0

2

4

6

8

10

12

0 8 16 24 32

Ti
m
e,
(m

s)

Ensemble,Size

Halo,Exchange,== Cray,XK7
(2,MPI,Ranks/Node,,8,Threads/Rank,,,

64x64x64,Mesh/Node)

64,Nodes

128,Nodes

256,Nodes

512,Nodes

1024,Nodes

0.5
1

1.5
2

2.5
3

3.5
4

4.5

0 8 16 24 32

Sp
ee
d.
U
p

Ensemble6Size

Halo6Exchange6.. Cray6XK7
(26MPI6Ranks/Node,686Threads/Rank,66

64x64x646Mesh/Node)

646Nodes

1286Nodes

2566Nodes

5126Nodes

10246Nodes

AMG Preconditioned CG Solve

Speed-Up =

Ensemble size ⇥ Time for single sample

Time for ensemble

• Smoothed-aggregation algebraic
multigrid preconditioning (MueLu)

– Chebyshev smoothers
– Sparse-direct coarse-grid solver

(Amesos2/Basker)
– Multi-jagged parallel repartioning

(Zoltan2)

0

100

200

300

400

500

600

0 8 16 24 32

T
im

e
	p
e
r	
Sa
m
p
le
	(
m
s)

Ensemble	Size

Multigrid	Preconditioned	CG	Solve
(1	MPI	Rank,	64x64x64	Spatial	Mesh)

Haswell	 																									

(1	NUMA,	16	threads)

Cray	XK7																							

(1	NUMA,	8	threads)

NVIDIA	K20x	GPU

KNC	(240	threads)

0
1
2
3
4
5
6
7

0 8 16 24 32

Sp
ee
d-
U
p

Ensemble	Size

Multigrid	Preconditioned	CG	Solve
(1	MPI	Rank,	64x64x64	Spatial	Mesh)

Haswell	 																									
(1	NUMA,	16	threads)

Cray	XK7																							
(1	NUMA,	8	threads)

NVIDIA	K20x	GPU

KNC	(240	threads)

AMG Preconditioned CG Solve

Speed-Up =

Ensemble size ⇥ Time for single sample

Time for ensemble

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1 4 16 64 256 1024

Ti
m
e-
pe

r-S
am

pl
e-
(s
ec
)

Compute-Nodes

Cray-XK7-Multigrid-Preconditioned-CG-Solve
(64x64x64-Mesh/Node)

Scalar
Ensemble-Size-=-4
Ensemble-Size-=-8
Ensemble-Size-=-16
Ensemble-Size-=-32

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

1 4 16 64 256 1024

S
p
e
e
d
.U
p

Compute5Nodes

Cray5XK75Multigrid5Preconditioned5CG5Solve

(64x64x645Mesh/Node)

Ensemble5Size5=54

Ensemble5Size5=58

Ensemble5Size5=516

Ensemble5Size5=532

• Smoothed-aggregation algebraic
multigrid preconditioning (MueLu)

– Chebyshev smoothers
– Sparse-direct coarse-grid solver

(Amesos2/Basker)
– Multi-jagged parallel repartioning

(Zoltan2)

Ensemble PDE Matrix/RHS Assembly Speed-Up

Speed-Up =

Ensemble size ⇥ Time for single sample

Time for ensemble

• Speed-up results from
– Reuse of mesh,

discretization data
structures

– Replacement of sparse
gather with contiguous
load

– Perfect vectorization of
math

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

0 8 16 24 32

Sp
ee
d-
U
p

Ensemble	Size

Matrix/RHS	Assembly
(1	MPI	Rank,	64x64x64	Spatial	Mesh)

Haswell	 																									
(1	NUMA,	16	threads)

Cray	XK7																							
(1	NUMA,	8	threads)

NVIDIA	K20x	GPU

KNC	(240	threads)

FLOPs

Ensemble Propagation for More Challenging
Problems

• Assuming number of CG iterations doesn’t vary significantly
from sample to sample
– True for problems with tame diffusion coefficient on regular

meshes
– Implies number of CG iterations for ensemble does not

increase

• This is not true for many problems

Continuous Test Case

Discontinuous Test Case

