Spectral stochastic finite elements for two nonlinear problems

Bedřich Sousedík ${ }^{1}$, Howard C. Elman ${ }^{2}$

1 University of Maryland, Baltimore County 2 University of Maryland, College Park

supported by
Department of Energy (DE-SC0009301)
National Science Foundation (DMS1418754 and DMS1521563)

SISSA, QUIET workshop, July 19, 2017

We are interested in a solution of

$$
A(x, \xi) u^{s}(x, \xi)=\lambda^{s}(\xi) u^{s}(x, \xi)
$$

where $\xi=\left\{\xi_{i}\right\}_{i=1}^{N}$ is a set of i.i.d. random variables, and

$$
A=\sum_{\ell=0}^{M^{\prime}} A_{\ell} \psi_{\ell}(\xi), \quad \text { (SPD matrix operator) }
$$

We search

$$
\lambda^{s}=\sum_{k=0}^{M} \lambda_{k}^{s} \psi_{k}(\xi), \quad u^{s}=\sum_{k=0}^{M} u_{k}^{s} \psi_{k}(\xi)
$$

where $\left\{\psi_{\ell}(\xi)\right\}$ is a set of orthonormal polynomials, $\left\langle\psi_{j} \psi_{k}\right\rangle=0$ or 1 , which is referred to as the gPC basis. We will also use the notation

$$
c_{\ell j k}=\left\langle\psi_{\ell} \psi_{j} \psi_{k}\right\rangle=\mathbb{E}\left[\psi_{\ell} \psi_{j} \psi_{k}\right] .
$$

Monte Carlo and stochastic collocation

Both approaches are based on sampling,

$$
A\left(\xi^{(q)}\right) u^{s}\left(\xi^{(q)}\right)=\lambda^{s}\left(\xi^{(q)}\right) u^{s}\left(\xi^{(q)}\right), \quad s=1, \ldots, n_{s}
$$

Monte Carlo uses ensemble average
$\lambda_{k}^{s}=\frac{1}{N_{M C}} \sum_{q=1}^{N_{M C}} \lambda^{s}\left(\xi^{(q)}\right) \psi_{k}\left(\xi^{(q)}\right), \quad u_{k}^{s}=\frac{1}{N_{M C}} \sum_{q=1}^{N_{M C}} u^{s}\left(\xi^{(q)}\right) \psi_{k}\left(\xi^{(q)}\right)$.
Stochastic collocation uses quadrature

$$
\lambda_{k}^{s}=\sum_{q=1}^{N_{q}} \lambda^{s}\left(\xi^{(q)}\right) \psi_{k}\left(\xi^{(q)}\right) w^{(q)}, \quad u_{k}^{s}=\sum_{q=1}^{N_{q}} u^{s}\left(\xi^{(q)}\right) \psi_{k}\left(\xi^{(q)}\right) w^{(q)}
$$

where $\xi^{(q)}$ are the quadrature points, and $w^{(q)}$ are quadrature weights.

Stochastic Galerkin method

The stochastic Galerkin method is based on the projection

$$
\left\langle A u^{s}, \psi_{k}\right\rangle=\left\langle\lambda^{s} u^{s}, \psi_{k}\right\rangle, \quad k=0, \ldots, M, \quad s=1, \ldots, n_{s} .
$$

which yields a nonlinear algebraic system

$$
\sum_{j=0}^{M} \sum_{\ell=0}^{M^{\prime}} c_{\ell j k} A_{\ell} u_{j}^{s}=\sum_{j=0}^{M} \sum_{i=0}^{M} c_{i j k} \lambda_{i}^{s} u_{j}^{s}, \quad k=0, \ldots, M, \quad s=1, \ldots, n_{s}
$$

In order to find interior eigenvalues we use deflation via

$$
\widetilde{A}_{0}=A_{0}+\sum_{d=1}^{n_{d}}\left[C-\lambda_{0}^{d}\right]\left(u_{0}^{d}\right)\left(u_{0}^{d}\right)^{T}, \quad \widetilde{A}_{\ell}=A_{\ell}, \quad \ell=1, \ldots, M^{\prime}
$$

where $\left(\lambda_{0}^{d}, u_{0}^{d}\right), d=1, \ldots, n_{d}$, are the zeroth order coefficients, i.e., the mean value, of the eigenpairs to be deflated, and C is a constant.

Algorithm: Stochastic inverse subspace iteration

Algorithm

Find n_{e} eigenpairs of the deterministic mean value problem

$$
A_{0} \bar{U}=\bar{U} \bar{\Lambda}, \quad \bar{U}=\left[\begin{array}{lll}
\bar{u}^{1}, & \ldots, & \bar{u}^{n_{e}}
\end{array}\right], \quad \bar{\Lambda}=\operatorname{diag}\left(\bar{\lambda}^{1}, \ldots, \bar{\lambda}^{n_{e}}\right),
$$

(1) choose n_{s} eigenvalues of interest with indices $e=\left\{e_{1}, \ldots, e_{n_{s}}\right\}$
(2) set up matrices $\mathcal{A}_{\ell}, \ell=0, \ldots, M^{\prime}$, either as $\mathcal{A}_{\ell}=\mathcal{A}_{\ell}$, or $\mathcal{A}_{\ell}=\widetilde{A}_{\ell}$ using deflation
(3) initialize

$$
\begin{array}{ll}
u_{0}^{1,(0)}=\bar{u}^{e_{1}}, \quad u_{0}^{2,(0)}=\bar{u}^{e_{2}}, \quad \ldots \quad u_{0}^{n_{e},(0)}=\bar{u}^{e_{n_{s}}} \\
u_{i}^{s,(0)}=0, \quad s=1, \ldots, n_{s}, \quad i=1, \ldots, M
\end{array}
$$

Algorithm: Stochastic inverse subspace iteration

Algorithm (cont'd)

for it $=0,1,2, \ldots$
(1) Solve the stochastic Galerkin system for $v_{j}^{s,(i t)}, j=0, \ldots, M$:

$$
\sum_{j=0}^{M} \sum_{\ell=0}^{M^{\prime}} c_{\ell j k} \mathcal{A}_{\ell} v_{j}^{s,(i t)}=u_{k}^{s,(i t)}, \quad k=0, \ldots, M, \quad s=1, \ldots, n_{s} .
$$

(2) If $n_{s}=1$, normalize using the quadrature rule, or else if $n_{s}>1$ orthogonalize using the stochastic modified Gram-Schmidt process.
(3) Check convergence.

end

Use the stoch. Rayleigh quotient to compute the eigenvalue expansions.

Matrix-vector multiplication

Matrix-vector product corresponds to evaluation of the projection

$$
v_{k}=\left\langle v, \psi_{k}\right\rangle=\left\langle A u, \psi_{k}\right\rangle, \quad k=0, \ldots, M
$$

In more detail,

$$
\left\langle\sum_{i=0}^{M} v_{i} \psi_{i}(\xi), \psi_{k}\right\rangle=\left\langle\left(\sum_{\ell=0}^{M^{\prime}} A_{\ell} \psi_{\ell}(\xi)\right)\left(\sum_{j=0}^{M} u_{j} \psi_{j}(\xi)\right), \psi_{k}\right\rangle
$$

so the coefficients are

$$
v_{k}=\sum_{j=0}^{M} \sum_{\ell=0}^{M^{\prime}} c_{\ell j k} A_{\ell} u_{j}, \quad k=0, \ldots, M
$$

The use of this computation for the Rayleigh quotient is described next.

Stochastic Rayleigh Quotient

The stochastic Rayleigh quotient defines the coefficients of a stochastic expansion of the eigenvalue defined via a projection

$$
\lambda_{k}=\left\langle\lambda, \psi_{k}\right\rangle=\left\langle u^{T} v, \psi_{k}\right\rangle, \quad k=0, \ldots, M
$$

where the coeff's of v are computed using the matrix-vector multiplication. In more detail,

$$
\left\langle\sum_{i=0}^{M} \lambda_{i} \psi_{i}(\xi), \psi_{k}\right\rangle=\left\langle\left(\sum_{i=0}^{M} u_{i} \psi_{i}(\xi)\right)^{T}\left(\sum_{j=0}^{M} v_{j} \psi_{j}(\xi)\right), \psi_{k}\right\rangle
$$

so the coefficients are

$$
\lambda_{k}=\sum_{j=0}^{M} \sum_{i=0}^{M} c_{i j k}\left\langle u_{i}^{T} v_{j}\right\rangle_{\mathbb{R}}, \quad k=0, \ldots, M
$$

where $\langle\cdot, \cdot\rangle_{\mathbb{R}}$ is the inner product on Euclidean $N_{\text {dof }}$-dimensional space.

Normalization and the Gram-Schmidt process

The coeff's of a normalized vector are computed from the coeff's v_{k}^{1} as

$$
u_{k}^{1}=\sum_{q=1}^{N_{q}} \frac{v^{1}\left(\xi^{(q)}\right)}{\left\|v^{1}\left(\xi^{(q)}\right)\right\|_{2}} \psi_{k}\left(\xi^{(q)}\right) w^{(q)}, \quad k=0, \ldots, M
$$

The orthonormalization is achieved by a stochastic version of the modified Gram-Schmidt algorithm [Meidani and Ghanem (2014)], which is based on

$$
u^{s}=v^{s}-\sum_{t=1}^{s-1} \frac{\left\langle v^{s}, u^{t}\right\rangle_{\mathbb{R}}}{\left\langle u^{t}, u^{t}\right\rangle_{\mathbb{R}}} u^{t}, \quad s=2, \ldots, n_{s}
$$

noting that $\langle\cdot, \cdot\rangle_{\mathbb{R}}$ can be again evaluated at the collocation points.

Error assessment

We do not have the coefficients of the expansion of the true residual

$$
r_{k}^{s}=\left\langle A u^{s}-\lambda^{s} u^{s}, \psi_{k}\right\rangle, \quad k=0, \ldots, M, \quad s=1, \ldots, n_{s}
$$

Instead, we can use a residual indicator

$$
\widetilde{r}_{k}^{s,(i t)}=\sum_{j=0}^{M} \sum_{\ell=0}^{M^{\prime}} c_{\ell j k} A_{\ell} u_{j}^{s,(i t)}-\sum_{j=0}^{M} \sum_{i=0}^{M} c_{i j k} \lambda_{i}^{s,(i t)} u_{j}^{s,(i t)}
$$

Error assessment (cont'd)

In computations, for each pair $s=1, \ldots, n_{s}$, we can monitor:
(1) the norms of the expected value of the indicator and its variance,

$$
\varepsilon_{0}^{s,(i t)}=\left\|r_{0}^{s,(i t)}\right\|_{2}, \quad \varepsilon_{\sigma^{2}}^{s,(i t)}=\left\|\sum_{k=1}^{M}\left(\tilde{r}_{k}^{s_{k},(i t)}\right)^{2}\right\|_{2} .
$$

(2) the difference of the coefficients in two consecutive iterations.

$$
u_{\Delta}^{s,(i t)}=\left\|\left[\begin{array}{c}
\mathrm{u}_{0}^{s,(i t)} \\
\vdots \\
\mathrm{u}_{M}^{s,(i t)}
\end{array}\right]-\left[\begin{array}{c}
\mathrm{u}_{0}^{s,(i t-1)} \\
\vdots \\
\mathrm{u}_{M}^{s,(i t-1)}
\end{array}\right]\right\|_{2}
$$

(3) In addition, we can sample the true residual using Monte Carlo,

$$
r^{s}\left(\xi^{i}\right)=A\left(\xi^{i}\right) u^{s}\left(\xi^{i}\right)-\lambda^{s}\left(\xi^{i}\right) u^{s}\left(\xi^{i}\right), \quad i=1, \ldots N_{M C}
$$

Error assessment (cont'd)

We also report:
(1) pdf estimates of the normalized ℓ^{2}-norms of the true residual

$$
\varepsilon_{r}^{s}\left(\xi^{i}\right)=\frac{\left\|r^{s}\left(\xi^{i}\right)\right\|_{2}}{\left\|A\left(\xi^{i}\right)\right\|_{2}}, \quad i=1, \ldots N_{M C}, \quad s=1, \ldots, n_{s}
$$

(2) pdf estimates of the ℓ^{2}-norm of the relative eigenvector approx. errors

$$
\varepsilon_{u}^{s}\left(\xi^{(i)}\right)=\frac{\left\|u^{s}\left(\xi^{(i)}\right)-u_{M C}^{s}\left(\xi^{(i)}\right)\right\|_{2}}{\left\|u_{M C}^{s}\left(\xi^{(i)}\right)\right\|_{2}}, i=1, \ldots, N_{M C}, s=1, \ldots, n_{s}
$$

where $u^{s}\left(\xi^{(i)}\right)$ are samples of eigenvectors obtained from either stochastic inverse subspace iteration or stochastic collocation.

Numerical experiments: Vibration of undamped structures

We considered Young's modulus

$$
E(x, \xi)=\sum_{\ell=0}^{M^{\prime}} E_{\ell}(x) \psi_{\ell}(\xi)
$$

as a truncated lognormal process transformed from Gaussian r. process. Finite element spatial discretization leads to

$$
\mathcal{K}(\xi) u=\lambda \mathcal{M} u
$$

where $\mathcal{K}(\xi)=\sum_{\ell=0}^{M^{\prime}} K_{\ell} \psi_{\ell}(\xi)$ is the stochastic stiffness matrix, and \mathcal{M} is the deterministic mass matrix. Using Cholesky $\mathcal{M}=L L^{T}$,

$$
\begin{gathered}
L^{-1} \mathcal{K}(\xi) L^{-T} w=\lambda w \\
A=\sum_{\ell=0}^{M^{\prime}} A_{\ell} \psi_{\ell}(\xi)=\sum_{\ell=0}^{M^{\prime}}\left[L^{-1} K_{\ell}(\xi) L^{-T}\right] \psi_{\ell}(\xi) .
\end{gathered}
$$

Numerical experiments: Timoshenko beam

Physical parameters: $E_{0}=10^{8}, \nu=0.30$, with 20 finite elements (40 dof). Stochastic parameters: $N=3, P=3, P_{\log }=6$, size of $c_{\ell j k}: 20 \times 20 \times 84$, $N_{M C}=5 \times 10^{4}$, Smolyak sparse grid (Gauss-Hermite) with 69 points.
pdf of λ_{1} using only the stochastic Rayleigh quotient:

$$
\operatorname{CoV}=10 \%
$$

$$
\text { CoV }=25 \%
$$

Numerical experiments: Timoshenko beam (CoV =25\%)

The first ten coefficients of the gPC expansion of the smallest eigenvalue using 0,1 or 20 steps of stochastic inverse iteration, or stoch. collocation. Here d is the polynomial degree and k is the index of gPC basis function.

d	k	$\mathrm{RQ}^{(0)}$	$\mathrm{SII}^{(1)}$	$\mathrm{SII}^{(20)}$	SC
0	0	103.0823	102.1705	102.1670	102.1713
	1	14.0453	13.9402	13.9402	13.9408
1	2	-11.7568	-11.5862	-11.5859	-11.5848
	3	5.1830	5.0654	5.0651	5.0669
	4	1.4284	1.2919	1.2918	1.2909
	5	-1.5368	-1.6766	-1.6767	-1.6764
2	6	0.5090	0.9030	0.9032	0.9035
	7	1.1331	0.7533	0.7530	0.7529
	8	-0.8696	-0.2965	-0.2960	-0.2955
	9	0.5812	-0.2215	-0.2220	-0.2222

Numerical experiments: Timoshenko beam (CoV =25\%)

Numerical experiments: Timoshenko beam (CoV =25\%)

Numerical experiments: Mindlin plate (CoV=25\%)

II.) Numerical solution of Navier-Stokes equations with stochastic viscosity

The viscosity is given by a gPC expansion

$$
\nu \equiv \nu(x, \xi)=\sum_{\ell=0}^{M_{\nu}-1} \nu_{\ell}(x) \psi_{\ell}(\xi)
$$

where $\left\{\nu_{\ell}(x)\right\}$ is a set of given deterministic spatial functions.
Possible applications:
(1) the exact value of viscosity may not be known due to

- measurement error
- contaminants with uncertain concentrations
- multiple phases with uncertain ratios
(2) fluid properties might be influenced by an external field (MHD).

Equivalently, stochastic Reynolds number $\operatorname{Re}(\xi)=\frac{U L}{\nu(\xi)}$.

Stochastic Galerkin formulation

Idea: perform a Galerkin projection on the space T_{Γ} (expectation \mathbb{E}), and seek random fields for velocity $\vec{u} \in V_{E} \otimes T_{\Gamma}$, and pressure $p \in Q_{D} \otimes T_{\Gamma}$:

$$
\begin{aligned}
\mathbb{E}\left[\int_{D} \nu \nabla \vec{u}: \nabla \vec{v}+\int_{D}(\vec{u} \cdot \nabla \vec{u}) \vec{v}-\int_{D} p(\nabla \cdot \vec{v})\right] & =\mathbb{E}\left[\int_{D} \vec{f} \cdot \vec{v}\right] \quad \forall \vec{v} \in V_{D} \otimes T_{\Gamma} \\
\mathbb{E}\left[\int_{D} q(\nabla \cdot \vec{u})\right] & =0 \quad \forall q \in Q_{D} \otimes T_{\Gamma}
\end{aligned}
$$

The stochastic counterpart of Newton iteration is

$$
\begin{aligned}
\mathbb{E}\left[\int_{D} \nu \nabla \delta \vec{u}^{n}: \nabla \vec{v}+c\left(\vec{u}^{n} ; \delta \vec{u}^{n}, \vec{v}\right)+c\left(\delta \vec{u}^{n} ; \vec{u}^{n}, \vec{v}\right)-\int_{D} \delta p^{n}(\nabla \cdot \vec{v})\right] & =R^{n} \\
\mathbb{E}\left[\int_{D} q\left(\nabla \cdot \delta \vec{u}^{n}\right)\right] & =r^{n}
\end{aligned}
$$

where

$$
\begin{aligned}
R^{n}(\vec{v}) & =\mathbb{E}\left[\int_{D} \vec{f} \cdot \vec{v}-\int_{D} \nu \nabla \vec{u}^{n}: \nabla \vec{v}-c\left(\vec{u}^{n} ; \vec{u}^{n}, \vec{v}\right)+\int_{D} p^{n}(\nabla \cdot \vec{v})\right] \\
r^{n}(q) & =-\mathbb{E}\left[\int_{D} q\left(\nabla \cdot \vec{u}^{n}\right)\right] .
\end{aligned}
$$

Stochastic Galerkin FEM: Ordering of unknowns

We seek a discrete approximation of the solution of the form

$$
\begin{aligned}
& \vec{u}(x, \xi) \approx \sum_{k=0}^{M-1} \sum_{i=1}^{N_{u}} u_{i k} \phi_{i}(x) \psi_{k}(\xi)=\sum_{k=0}^{M-1} \vec{u}_{k}(x) \psi_{k}(\xi) \\
& p(x, \xi) \approx \sum_{k=0}^{M-1} \sum_{j=1}^{N_{p}} p_{j k} \varphi_{j}(x) \psi_{k}(\xi)=\sum_{k=0}^{M-1} \vec{p}_{k}(x) \psi_{k}(\xi)
\end{aligned}
$$

Structure of operators depends on the ordering of the coeffs $\left\{u_{i k}\right\},\left\{p_{j k}\right\}$. We will group velocity-pressure pairs for each k, the index of stochastic basis functions, giving the ordered list of coefficients

$$
u_{1: N_{u}, 0}, p_{1: N_{p}, 0}, u_{1: N_{u}, 1}, p_{1: N_{p}, 1}, \ldots, u_{1: N_{u}, M-1}, p_{1: N_{p}, M-1}
$$

Stochastic Galerkin FEM: structure of Stokes operator

The discrete stochastic Stokes operator is built using matrices

$$
\mathbf{A}_{\ell}=\left[a_{\ell, a b}\right], \quad a_{\ell, a b}=\left(\int_{D} \nu_{\ell}(x) \nabla \phi_{b}: \nabla \phi_{a}\right), \quad \ell=1, \ldots, M_{\nu}-1
$$

which are incorporated into the block matrices

$$
\mathcal{S}_{0}=\left[\begin{array}{cc}
\mathbf{A}_{0} & \mathbf{B}^{T} \\
\mathbf{B} & \mathbf{0}
\end{array}\right], \quad \mathcal{S}_{\ell}=\left[\begin{array}{cc}
\mathbf{A}_{\ell} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array}\right], \quad \ell=1, \ldots, M_{\nu}-1 .
$$

These operators will be coupled with matrices arising from terms in T_{P},
$\mathbf{H}_{\ell}=\left[h_{\ell, j k}\right], \quad h_{\ell, j k} \equiv \mathbb{E}\left[\psi_{\ell} \psi_{j} \psi_{k}\right], \quad \ell=0, \ldots, M_{\nu}-1, \quad j, k=0, \ldots, M-1$.
The discrete stochastic (Galerkin) Stokes system is

$$
\left(\sum_{\ell=0}^{M_{\nu}-1} \mathbf{H}_{\ell} \otimes \mathcal{S}_{\ell}\right) \mathbf{v}=\mathbf{y}
$$

where \otimes corresponds to the matrix Kronecker product.

Stochastic Galerkin FEM: block saddle-point structure

The stochastic (Galerkin) Stokes matrix

$$
\left(\sum_{\ell=0}^{M_{\nu}-1} \mathbf{H}_{\ell} \otimes \mathcal{S}_{\ell}\right)
$$

contains a set of M block 2×2 matrices of saddle-point structure

$$
\mathcal{S}_{0}+\sum_{\ell=1}^{M_{\nu}-1} h_{\ell, j j} \mathcal{S}_{\ell}, \quad j=0, \ldots, M-1
$$

along its block diagonal \Longrightarrow enables use of existing deterministic solvers for the individual diagonal blocks.

Stochastic Galerkin FEM: linearized N-S operators

Step n of the stochastic nonlinear iteration entails

$$
\left[\sum_{\ell=0}^{\widehat{M}-1} \mathbf{H}_{\ell} \otimes \mathcal{F}_{\ell}^{n}\right] \delta \mathbf{v}^{n}=\mathcal{R}^{n} \quad \mathbf{v}^{n+1}=\mathbf{v}^{n}+\delta \mathbf{v}^{n}
$$

where

$$
\mathcal{R}^{n}=\mathbf{y}-\left[\sum_{\ell=0}^{\widehat{M}-1} \mathbf{H}_{\ell} \otimes \mathcal{P}_{\ell}^{n}\right] \mathbf{v}^{n}
$$

and \mathbf{v}^{n} and $\delta \mathbf{v}^{n}$ are current velocity and pressure coefficients and updates. Here

$$
\mathcal{F}_{0}^{n}=\left[\begin{array}{cc}
\mathbf{F}_{0}^{n} & \mathbf{B}^{T} \\
\mathbf{B} & \mathbf{0}
\end{array}\right] \quad \mathcal{F}_{\ell}^{n}=\left[\begin{array}{cc}
\mathbf{F}_{\ell} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array}\right]
$$

$$
\mathbf{F}_{\ell}^{n}=\mathbf{A}_{\ell}+\mathbf{N}_{\ell}^{n}+\mathbf{W}_{\ell}{ }^{n} \quad \text { for the stochastic Newton method }
$$

$$
\mathbf{F}_{\ell}^{n}=\mathbf{A}_{\ell}+\mathbf{N}_{\ell}^{n}
$$ for stochastic Picard iteration.

Question: How are the matrices $\mathbf{A}_{\ell}, \mathbf{N}_{\ell}^{n}, \mathbf{W}_{\ell}{ }^{n}$ computed?

Stochastic Galerkin FEM: components of N-S operators

At step n of the nonlinear iteration, let

$$
\vec{u}_{\ell}^{n}(x) \text { the } \ell \text { th term of the velocity iterate, } \ell=1, \ldots, M
$$

and let

$$
\begin{aligned}
\mathbf{N}_{\ell}^{n}=\left[n_{\ell, a b}^{n}\right] & n_{\ell, a b}^{n}=\int_{D}\left(\vec{u}_{\ell}^{n} \cdot \nabla \phi_{b}\right) \cdot \phi_{a} \\
\mathbf{W}_{\ell}^{n}=\left[w_{\ell, a b}^{n}\right] & w_{\ell, a b}^{n}=\int_{D}\left(\phi_{b} \cdot \nabla \vec{u}_{\ell}^{n}\right) \cdot \phi_{a}
\end{aligned}
$$

and as before

$$
\mathbf{A}_{\ell}=\left[a_{\ell, a b}\right], \quad a_{\ell, a b}=\left(\int_{D} \nu_{\ell}(x) \nabla \phi_{b}: \nabla \phi_{a}\right) \quad \ell=1, \ldots, M_{\nu}-1
$$

Model problem: Flow around an obstacle

Flow around an obstacle with 12640 velocity and 1640 pressure dofs.

Stochastic Galerkin method implemented using the IFISS 3.3 package. ${ }^{1}$ Viscosity with mean $\nu_{0}=1 / 50$ or $1 / 150$ and lognormal distribution,

$$
\operatorname{CoV}=\frac{\sigma_{\nu}}{\nu_{0}}, \quad \quad \operatorname{Re}_{0}=\frac{U L}{\nu_{0}}=100 \text { or } 300 .
$$

${ }^{1}$ http://www.cs.umd.edu/~elman/ifiss.html

Model problem: Random viscosity

Viscosity ν : a truncated lognormal process ($\nu_{0}=1 / 50$ or $1 / 150$), its representation computed from Gaussian random process (Ghanem, 1999) with the covariance function

$$
C\left(X_{1}, X_{2}\right)=\sigma_{g}^{2} \exp \left(-\frac{\left|x_{2}-x_{1}\right|}{L_{x}}-\frac{\left|y_{2}-y_{1}\right|}{L_{y}}\right)
$$

L_{x} and L_{y} : correlation lengths of ξ_{i} in the x and y directions, respectively, (set to be equal to 25% of the domain size, i.e. $L_{x}=3$ and $L_{y}=0.5$ σ_{g} : the standard deviation of the Gaussian random field.
N : the stochastic dimension $(N=2)$
P : the degree for the polynomial expansion of the solution $(P=3)$, the degree for the expansion of the lognormal process was $2 P$ $\operatorname{CoV}=\sigma_{\nu} / \nu_{0}$: coefficient of variation of the lognormal field (10% or 30%). $\Longrightarrow M=10, M_{\nu}=28$ and 142,800 dof in the global stochastic matrix.

Model problem: Nonlinear solvers

Hybrid scheme: Stokes \rightarrow Picard \rightarrow Newton (direct solvers for the linear systems, rel. res. 10^{-8})

$$
\begin{array}{lll}
R e=100, \quad \operatorname{CoV}=10 \%: & 6 \text { Picard steps } & 1 \text { Newton step(s) } \\
R e=100, \quad \operatorname{CoV}=30 \%: & 6 & 3 \\
R e=300, \quad \operatorname{CoV}=10 \%: & 20 & 1 \\
R e=300, \quad \operatorname{CoV}=30 \%: & 20 & 2
\end{array}
$$

Variant with an inexact Picard iteration (block diagonal matrix $\mathbf{H}_{0} \otimes \mathcal{F}_{0}^{n}$): for $\mathrm{CoV}=10 \%$ at most one extra Newton step (both $R e=100$ and 300), for $\mathrm{CoV}=30 \%$ this inexact method failed to converge.

Model problem: Mean velocity and pressure ($\mathrm{Re}=100$ and $\operatorname{CoV}=10 \%$)

Mean of horizontal and vertical velocity:

Model problem: Variance of velocity and pressure $(\operatorname{Re}=100, \mathrm{CoV}=10 \%)$

Variance of horizontal and vertical velocity:

Model problem: Mean velocity and pressure $(\operatorname{Re}=300$ and $\operatorname{CoV}=10 \%)$

Mean of horizontal and vertical velocity:

Model problem: Variance of velocity and pressure ($\mathrm{Re}=300, \operatorname{CoV}=10 \%$)

Model problem: Variance of velocity and pressure ($\mathrm{Re}=300, \mathrm{CoV}=30 \%$)

Model problem: pdf of horizontal velocity and pressure at point $(3.6436,0)$

CoV $=10 \%$

CoV $=30 \%$

References

R
Bedřich Sousedík, Howard C. Elman:
Inverse subspace iteration for spectral stochastic finite element methods, SIAM/ASA Journal on Uncertainty Quantification 4(1), 163-189, 2016.
易
Bedřich Sousedík, Howard C. Elman:
Stochastic Galerkin methods for the steady-state Navier-Stokes equations, Journal of Computational Physics 316, 435-452, 2016.

