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Introduction

High-fidelity model with costs wy; > 0

fO. DYy
uncertainty
Random variable Z, estimate ] quantification | |
s =E[fY(2)]
= 5
Monte Carlo estimator of s with samples Z3,...,Z, | B &S
iy g
_ 1o 3 N
=23 f0(Z)
i=1
high-fidelity

Computational costs high
. P model
» Many evaluations of high-fidelity model
» Typically 103 — 10° evaluations

» Intractable if f(1) expensive
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Surrogate models

Given is a high-fidelity model fV) : D — Y

» Large-scale numerical simulation

high-fidelity
model

» Achieves required accuracy

» Computationally expensive

. surrogate
Additionally, often have surrogate models model
surrogate
f(’) D y i—o K model
. ' Y : SuITogy surrogate
» Approximate high-fidelity (1) modd odel
> Often orders of magnitudes cheaper sedemmnnenian g LI >

Examples of surrogate models

data-fit models,
response surfaces,
machine learning

coarse-grid reduced basis, simplified models,
approximations proper orthogonal linearized models
decomposition
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Surrogate models in uncertainty quantification

Replace (1) with a surrogate model
» Costs of uncertainty quantification reduced

» Often orders of magnitude speedups

Estimate depends on surrogate accuracy
» Control with error bounds/estimators
» Rebuild if accuracy too low

» No guarantees without bounds/estimators

Issues
» Propagation of surrogate error on estimate

» Surrogates without error control
» Costs of rebuilding a surrogate model

output y

uncertainty
quantification

surrogate

model

z ndur
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Our approach: Multifidelity methods

Combine high-fidelity and surrogate models

» Leverage surrogate models for speedup

» Recourse to high-fidelity for accuracy uncertainty
— . )
quantification
Multifidelity speeds up computations
» Balance #solves among models > 5
» Adapt, fuse, filter with surrogate models é =1
2 N
Multifidelity guarantees high-fidelity accuracy high-fidelity
» Occasional recourse to high-fidelity model model
» High-fidelity model is kept in the loop surrogate
» Independent of error control for surrogates model

[P W|||:ox Gunzburger Survey of multifidelity methods in uncertainty propagation, inference, and opti-
le online as technical report, MIT, 2016]
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Multifidelity Monte Carlo (MFMC)

MFMC use control variates for var reduction

» Derives control variates from surrogates

[P., Willcox, Gunzburger: Optimal model management for multi-
fidelity Monte Carlo estimation. SIAM Journal on Scientific Com-
puting, 2016]

Multifidelity sensitivity analysis

Identify the parameters of model with largest

influence on quantity of interest

» Elizabeth Qian (MIT)/Earth Science (LANL)

Asymptotic analysis of MFMC

[P., Gunzburger, Willcox: C ly
Monte Carlo estimation, lubmltted 2016]

Ieifideli

is of

MFMC with information reuse

[Ng, Willcox: Monte Carlo Information-Reuse Approach to Air-
craft C | Design Optimization Under Uncertainty. 2015]

MFMC with optimally-adapted surrogates
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Multifidelity rare event simulation based on
importance sampling

with Karen Willcox and Boris Kramer
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MFCE: Problem setup

Threshold 0 < t € R and random variable

Z~p 5

x realizations

Estimate rare event probability density
4
Pr =P, [fM) < t]
3
Can be reformulated to estimating E 2
g
T2

Pr = Ep[ItV]
with indicator function

1, fMz)<t
I[(l) — ) =&y
ez {0, FD(2) > ¢

If P < 1, very unlikely that we hit f(1) <t
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MFCE: Importance sampling

Consider a biasing density g with

5
supp(p) C supp(q) x realizations
nominal
. . 4 —— biasin
Reformulate estimation problem :

= B[l =2 {H(l q]

Goal is constructing suitable g with

Varg {]19’2] < Varp[Hgl)]

= Use surrogate models
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MFCE: Literature review

Two-fidelity approaches

v

Switch between models [Li, Xiu et al., 2010, 2011, 2014]
Reduced basis models with error estimators [chen and Quarteroni, 2013]

Kriging models and importance sampling [pubours et al., 2013]

vV vV

Subset method with machine-learning-based models [gourinet <t al., 2011,

[Papadopoulos et al., 2012]

v

Surrogates and importance sampling (p., cui, Marzouk, Willcox, 2016]

Muiltilevel methods for rare event simulation
> Va”a nce I’ed uCtiOn Via COntr0| VariateS [Elfverson et al., 204, 2016], [Fagerlund et al., 2016]

> Subset method with coarse-grid approximations [ullmann and Papaicanncu, 2015]

Combining multiple general types of surrogates

» Importance sampling + control variates (p., kramer, Willcox, 2017]

10/24



MFCE: Direct sampling of surrogate models

Directly sampling surrogate models to construct biasing density
» Reduces costs per sample
» Number of samples to construct biasing density remains the same

» Works well for probabilities > 1075
= Insufficient for very rare event probabilities in range of 10~°

4
35+
3t
2.5 ¢
2 L
15+

1L |
0.5+ |
0 S

t mean
realizations of f1)(Z)

density

[P., Cui, Marzouk, Willcox, 2016], [P., Kramer, Willcox, 2017]
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MFCE: Construct biasing density iteratively

Threshold t controls “rareness”’ of event

1, fMz)<t,
1(z) = (1)( )
0, fW(z)>t

Cross-entropy method constructs densities iteratively t; > t, > --- >t

4
35+

3,
2.5t

1+ |
0.5+ 1
0 " S

t mean
realizations of f1)(Z)

density
N

[Rubi: in, 1999], [Rubi in, 2001]
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4
3.5+
3 L
. 25
]
© 15+
1 7 /
0.5+
0 . L/ .l
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MFCE: Cross-entropy method — in each step

Need to find biasing density in each step i =1,..., T
» Optimal biasing density that reduces variance to 0

1
4i(2) < I (2)p(2)
= Unknown normalizing constant (quantity we want to estimate)
» Find g, € @ ={qv : v € P} with min Kullback-Leibler distance to g;

min D (aillqv,)
» Reformulate as (independent of normalizing constant of g;)
E, (11" log(qy,
max [, (L, " log(qv, )]

> Solve approximately by replacing E, with Monte Carlo estimator

25" 19(Z) log(qu,(Z: Ziyeo Zo~
yggmz 0 (Z))log(av,(Z)) 1 p

= Optlmlzatlon problems affected by rareness of event ]I(l)(Z)

[Ruk in, 1999], [Rul in, 2001]
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MFCE: lterative cross-entropy procedure

Reuse q,, , as biasing density for constructing g,

maxEg, [H(t})

log(qy.
max og(qv,)]

Vi1

v

Choose t; > t, solve for v; € P with

E, (11" log(g,
max B, [l 1og(qv, )]

> Select t, < t1, solve for v, € P with
max E ]I() id I
Vzg;() qvl[ v, og(qu)]

» Repeat until threshold t is reached and parameter v, is obtained
» Reweighed optimization problems have same optimum as original problems
Once g,, has been found, cross-entropy estimator of Ps is

> Z) * *
PCE = ZH () Z5, .. 2~ qy,
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MFCE: Costs of the cross-entropy method

Step t; defined by quantile parameter p
» Quantile parameter typically p € [1072,107}]

» Step t; is p quantile corresponding to qy,_,

Number of steps T

4
» Introduce minimal step size § > 0 35|
» Number steps T is bounded as 37
> 25+
tp —t I

T=s—5 S 15
1 7 /
Costs of cross-entropy method bounded as (5| b
XA,
~ tp — t) mwy ttrte ts by t3 tr t; mean
C('DEE) < % realizations of f((Z)

= Critically depends on t; and thus on density used in first step
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MFCE: Multifidelity-preconditioned cross-entropy method

Our approach: Use surrogates to reduce t; and thus #iters with f(1)

2 k) .
A K.z
Muiltifidelity-preconditioned cross-entropy (MFCE) method
surrogate model high-fidelity model
4 ‘ — 4
35 ] 35
3 § 3
> 25 ] > 25
a 2 2 2
L [
< 15 © 15
1 . ] 1
’ A
05 ~ ] 05
0 = = M 0
t mean t mean
realizations of f?)(Z) realizations f()(Z)
Find biasing density gi) with F(4)
» Find blasing density qy,” with surrogate

(k

» Start with q.(,ﬁ) to find biasing density gy D with F(k=1)

> Repeat until gi¥ is found with F()
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[9] I ! o
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with surrogate (%)
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(k
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MFCE: Analysis for two models

Consider high-fidelity f(V) and low-fidelity model f(®
> Let g{?) be the biasing density found with (@

> Set t{l) to be the p-quantile corresponding to q.(,z;)

> Set t, to be the p-quantile corresponding to the nominal density p
» Need to show

o[£ 4], 0 1]
to have t§1) <t,

Make two assumptions
» A “local” bound 0 < « on the error |f(1)(z) — f(2)(2)]

> Lipschitz continuous distribution functions Féi)(t) =P,[f() < ¢]
Proposition 2 in [P., Kramer, Willcox, 2017]

P [FV <] - P, [0 <] 2 -a
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MFCE: Numerical examples: Heat transfer

Consider
-V (a(w,§)Vu(w, &)= 1, ¢€(0,1), (1)
u(w, O) =0 ) (2)
anu(wa 1) = 07 (3)
» Coefficient a is given as

|£—0.5] |€—o0.8|
a(w,ﬁ) _ ezl(w)e—o.Sm + ezz(w)e—o.Sm

v

Random vector Z = [z, z5] normally distributed

v

System response
f(Z(w)) = u(w,1)
» Discretize with varying mesh width h € {278 277 ... 274}
» Obtain models f( ... ()
Goal is to estimate Pr = IP’p[f(l) < 1.4] with reference Pr ~ 6 x 10~°

18 /24



MFCE: Numerical examples: Speedup

= le01 CE, single model —— = le-01 CE, single model ——
& MFCE —— & MFCE —¢—
o le-02 o le-02 t E
(o] o
% 1e-03 “g 1e-03 |
T 1e04 B 1e04 |
e e
% 1e05 % 1e05 |
g g
le-06 le-06
1le+00 1e+01 1e402 1e+03 1le+04 le+05 1le+00 1e+01 1e402 1e+03 1le+04 le405
runtime biasing construction [s] total runtime [s]
(a) biasing runtime (b) total runtime

» Single-fidelity approach uses f(1)
» MFCE uses f(M) ... (%)

» MFCE reduces runtime by almost 2 orders of magnitude
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MFCE: Numerical examples: Number of iterations

10 \ \ \
I CE, single model
w
S 8| N MFCE il
=]
[
2
w6 1
O
[,
(o]
3 4 1
Q0
£
3
c
w 2 F 1
>
(o]
0 p: p: }l P
R < < <
Q) Q) © Q
/y /\5\ /5 4

» Number of iterations averaged over 30 runs
» MFCE performs most iterations with coarse-grid models
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MFCE: Numerical examples: Reacting flow

08
T 0§
L

S04

0.2]

° 05 xl[ch]

- 1e-01 CE, single model —+—
g E —¢—
G

g—q_)' 1e-02 +

3

el

o

c 1e-03 }

3

fs

le-04 : : : :
le+00 1le+01 le+02 le+03 le+04 le+05
runtime biasing construction [s]

(a) biasing runtime

Reacting-flow problem

15

est. squared coeff. of var.

2000

1500_,
X,
1ooo§
500 ©
o
1e-01 CE, single model ——
MFCE —»—
1le-02
1e-03 ¢

le-04 : : :
le+01 1e4+02 1e+03 1le+04 1le+05
total runtime [s]

(b) total runtime

» Three models: data-fit, projection-based, and high-fidelity model
» Estimate probability that temperature is below threshold, ref Ps = 107°

» MFCE reduces iterations with high-fidelity model from ~ 5 to ~ 1
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MFCE: Apply to OpenAeroStruct

Consider baseline UAV definition in OpenAeroStruct
» Design variables are thickness and position of control points

» Uncertain flight conditions (angle of attack, air density, Mach number

» Output is fuel burn

Estimate 10~°-quantile v (value-at-risk)
P[fM) <4l =107°

Derive a data-fit surrogate =
» Take a 3 x 3 x 3 equidistant grid in stochastic domain
» Evaluate high-fidelity model at those 27 points

» Derive linear interpolant of output
Apply multifidelity pre-conditioned cross-entropy method
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MFCE: OpenAeroStruct: Value-at-Risk computation
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» Computing 10~%-quantile for a fixed design point
» Multifidelity approach achieves up to one order of magnitude speedup
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Conclusions
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Multifidelity rare event simulation
> Leverage surrogate models for runtime speedup
» Recourse to high-fidelity model for accuracy guarantees

Our references
1 P., Cui, Marzouk, Willcox: Multifidelity Importance Sampling. Computer Methods in Applied
Mechanics and Engineering, 300:490-509, 2016.
2 P., Kramer, Willcox: Combining multiple surrogate models to accelerate failure probability
estimation with expensive high-fidelity models. J. of Computational Physics, 341:61-75, 2017.
3 P., Kramer, Willcox: Multifidelity preconditioning of the cross-entropy method for rare event
simulation and failure probability estimation. submitted, 2017.

24 /24



e Bayesian inverse problems , .

I

https: / /pehersto.engr.wisc.edu
peherstorfer@wisc.edu




	Conclusions

