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Introduction

High-fidelity model with costs w1 � 0

f (1) : D → Y

Random variable Z , estimate

s = E[f (1)(Z )]

Monte Carlo estimator of s with samples Z1, . . . ,Zn

ȳ (1)
n =

1
n

n∑
i=1

f (1)(Zi )

Computational costs high
I Many evaluations of high-fidelity model
I Typically 103 − 106 evaluations
I Intractable if f (1) expensive
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Surrogate models
Given is a high-fidelity model f (1) : D → Y

I Large-scale numerical simulation
I Achieves required accuracy
I Computationally expensive

Additionally, often have surrogate models

f (i) : D → Y , i = 2, . . . , k

I Approximate high-fidelity f (1)

I Often orders of magnitudes cheaper
Examples of surrogate models
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Surrogate models in uncertainty quantification

Replace f (1) with a surrogate model
I Costs of uncertainty quantification reduced
I Often orders of magnitude speedups

Estimate depends on surrogate accuracy
I Control with error bounds/estimators
I Rebuild if accuracy too low
I No guarantees without bounds/estimators

Issues
I Propagation of surrogate error on estimate
I Surrogates without error control
I Costs of rebuilding a surrogate model
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Our approach: Multifidelity methods
Combine high-fidelity and surrogate models

I Leverage surrogate models for speedup
I Recourse to high-fidelity for accuracy

Multifidelity speeds up computations
I Balance #solves among models
I Adapt, fuse, filter with surrogate models

Multifidelity guarantees high-fidelity accuracy
I Occasional recourse to high-fidelity model
I High-fidelity model is kept in the loop
I Independent of error control for surrogates

[P., Willcox, Gunzburger, Survey of multifidelity methods in uncertainty propagation, inference, and opti-
mization; available online as technical report, MIT, 2016]
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Multifidelity Monte Carlo (MFMC)
MFMC use control variates for var reduction

I Derives control variates from surrogates
I Uses number of samples that minimize error

[P., Willcox, Gunzburger: Optimal model management for multi-
fidelity Monte Carlo estimation. SIAM Journal on Scientific Com-
puting, 2016]

Multifidelity sensitivity analysis
I Identify the parameters of model with largest

influence on quantity of interest
I Elizabeth Qian (MIT)/Earth Science (LANL)

Asymptotic analysis of MFMC
[P., Gunzburger, Willcox: Convergence analysis of multifidelity
Monte Carlo estimation, submitted. 2016]

MFMC with information reuse
[Ng, Willcox: Monte Carlo Information-Reuse Approach to Air-
craft Conceptual Design Optimization Under Uncertainty. 2015]

MFMC with optimally-adapted surrogates
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Multifidelity rare event simulation based on
importance sampling

with Karen Willcox and Boris Kramer
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MFCE: Problem setup

Threshold 0 < t ∈ R and random variable

Z ∼ p

Estimate rare event probability

Pf = Pp[f (1) ≤ t]

Can be reformulated to estimating E

Pf = Ep[I(1)t ]

with indicator function

I(1)t (z) =

{
1, f (1)(z) ≤ t ,

0, f (1)(z) > t

If Pf � 1, very unlikely that we hit f (1) ≤ t
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MFCE: Importance sampling

Consider a biasing density q with

supp(p) ⊆ supp(q)

Reformulate estimation problem

Pf = Ep[I(1)t ] = Eq

[
I(1)t

p

q

]
Goal is constructing suitable q with

Varq

[
I(1)t

p

q

]
� Varp[I(1)t ]

⇒ Use surrogate models -0.5 0 0.5 1 1.5
outputs f (1)(z)
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MFCE: Literature review

Two-fidelity approaches
I Switch between models [Li, Xiu et al., 2010, 2011, 2014]

I Reduced basis models with error estimators [Chen and Quarteroni, 2013]

I Kriging models and importance sampling [Dubourg et al., 2013]

I Subset method with machine-learning-based models [Bourinet et al., 2011],

[Papadopoulos et al., 2012]

I Surrogates and importance sampling [P., Cui, Marzouk, Willcox, 2016]

Multilevel methods for rare event simulation
I Variance reduction via control variates [Elfverson et al., 204, 2016], [Fagerlund et al., 2016]

I Subset method with coarse-grid approximations [Ullmann and Papaioannou, 2015]

Combining multiple general types of surrogates
I Importance sampling + control variates [P., Kramer, Willcox, 2017]
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MFCE: Direct sampling of surrogate models

Directly sampling surrogate models to construct biasing density
I Reduces costs per sample
I Number of samples to construct biasing density remains the same
I Works well for probabilities > 10−5

⇒ Insufficient for very rare event probabilities in range of 10−9
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[P., Cui, Marzouk, Willcox, 2016], [P., Kramer, Willcox, 2017]
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MFCE: Construct biasing density iteratively

Threshold t controls “rareness” of event

I(1)t (z) =

{
1 , f (1)(z) ≤ t ,

0 , f (1)(z) > t

Cross-entropy method constructs densities iteratively t1 > t2 > · · · > t
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[Rubinstein, 1999], [Rubinstein, 2001]
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MFCE: Cross-entropy method – in each step

Need to find biasing density in each step i = 1, . . . ,T
I Optimal biasing density that reduces variance to 0

qi (z) ∝ I(1)ti (z)p(z)

⇒ Unknown normalizing constant (quantity we want to estimate)
I Find qv i ∈ Q = {qv : v ∈ P} with min Kullback-Leibler distance to qi

min
v i∈P

DKL(qi ||qv i )

I Reformulate as (independent of normalizing constant of qi )

max
v i∈P

Ep[I(1)ti log(qv i )]

I Solve approximately by replacing Ep with Monte Carlo estimator

max
v i∈P

1
m

m∑
i=1

I(1)ti (Zi ) log(qv i (Zi )) , Z1, . . . ,Zm ∼ p

⇒ Optimization problems affected by rareness of event I(1)ti (Z )
[Rubinstein, 1999], [Rubinstein, 2001]
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MFCE: Iterative cross-entropy procedure
Reuse qv i−1 as biasing density for constructing qv i

max
v i∈P

Eqv i−1
[I(1)ti

p

qv i−1

log(qv i )]

I Choose t1 � t, solve for v1 ∈ P with

max
v1∈P

Ep[I(1)t1 log(qv1)]

I Select t2 < t1, solve for v2 ∈ P with

max
v2∈P

Eqv1
[I(1)t2

p

qv1

log(qv2)]

I Repeat until threshold t is reached and parameter v∗ is obtained
I Reweighed optimization problems have same optimum as original problems

Once qv∗ has been found, cross-entropy estimator of Pf is

P̂CE
t =

1
m

m∑
i=1

I(1)t (Z∗i )
p(Z∗i )

qv∗(Z
∗
i )
, Z∗1 , . . . ,Z

∗
m ∼ qv∗
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MFCE: Costs of the cross-entropy method

Step ti defined by quantile parameter ρ
I Quantile parameter typically ρ ∈ [10−2, 10−1]

I Step ti is ρ quantile corresponding to qv i−1

Number of steps T

I Introduce minimal step size δ > 0
I Number steps T is bounded as

T ≤ t1 − t

δ

Costs of cross-entropy method bounded as

c(P̂CE
t ) ≤ (t1 − t)mw1

δ
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⇒ Critically depends on t1 and thus on density used in first step
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MFCE: Multifidelity-preconditioned cross-entropy method

Our approach: Use surrogates to reduce t1 and thus #iters with f (1)

f (2), . . . , f (k) : Z → Y
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surrogate model high-fidelity model

0
0.5
1

1.5
2

2.5
3

3.5
4

t mean

de
ns
ity

realizations of f (2)(Z )

0
0.5
1

1.5
2

2.5
3

3.5
4

t mean
de
ns
ity

realizations f (1)(Z )

I Find biasing density q
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v∗ to find biasing density q

(k−1)
v∗ with f (k−1)

I Repeat until q(1)v∗ is found with f (1)
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MFCE: Analysis for two models

Consider high-fidelity f (1) and low-fidelity model f (2)

I Let q(2)v∗ be the biasing density found with f (2)

I Set t(1)1 to be the ρ-quantile corresponding to q
(2)
v∗

I Set tp to be the ρ-quantile corresponding to the nominal density p
I Need to show

P
q
(2)
v∗

[
f (1) ≤ t

(1)
1

]
− Pp

[
f (1) ≤ t

(1)
1

]
≥ 0

to have t
(1)
1 ≤ tp

Make two assumptions
I A “local” bound 0 < α on the error |f (1)(z)− f (2)(z)|
I Lipschitz continuous distribution functions F (i)

q (t) = Pq[f (i) ≤ t]

Proposition 2 in [P., Kramer, Willcox, 2017]

P
q
(2)
v∗

[
f (1) ≤ t

(1)
1

]
− Pp

[
f (1) ≤ t

(1)
1

]
& −α
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MFCE: Numerical examples: Heat transfer

Consider

−∇ · (a(ω, ξ)∇u(ω, ξ)) = 1 , ξ ∈ (0, 1) , (1)
u(ω, 0) = 0 , (2)

∂nu(ω, 1) = 0 , (3)

I Coefficient a is given as

a(ω, ξ) = ez1(ω)e−0.5
|ξ−0.5|
0.0225 + ez2(ω)e−0.5

|ξ−0.8|
0.0225

I Random vector Z = [z1, z2] normally distributed
I System response

f (Z (ω)) = u(ω, 1)

I Discretize with varying mesh width h ∈ {2−8, 2−7, . . . , 2−4}
I Obtain models f (1), . . . , f (5)

Goal is to estimate Pf = Pp[f (1) ≤ 1.4] with reference Pf ≈ 6× 10−9
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MFCE: Numerical examples: Speedup
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(a) biasing runtime (b) total runtime

I Single-fidelity approach uses f (1)

I MFCE uses f (1), . . . , f (5)

I MFCE reduces runtime by almost 2 orders of magnitude
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MFCE: Numerical examples: Number of iterations
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I Number of iterations averaged over 30 runs
I MFCE performs most iterations with coarse-grid models
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MFCE: Numerical examples: Reacting flow

x
1
 [cm]

x 2 [c
m

]

 

 

0 0.5 1 1.5

0.2

0.4

0.6

0.8

te
m

p 
[K

]

0

500

1000

1500

2000

1e-04

1e-03

1e-02

1e-01

1e+00 1e+01 1e+02 1e+03 1e+04 1e+05

es
t.
sq
ua
re
d
co
eff

.o
f
va
r.

runtime biasing construction [s]

CE, single model
MFCE

1e-04

1e-03

1e-02

1e-01

1e+01 1e+02 1e+03 1e+04 1e+05
es
t.
sq
ua
re
d
co
eff

.o
f
va
r.

total runtime [s]

CE, single model
MFCE

(a) biasing runtime (b) total runtime

Reacting-flow problem
I Three models: data-fit, projection-based, and high-fidelity model
I Estimate probability that temperature is below threshold, ref Pf ≈ 10−6
I MFCE reduces iterations with high-fidelity model from ≈ 5 to ≈ 1
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MFCE: Apply to OpenAeroStruct

Consider baseline UAV definition in OpenAeroStruct
I Design variables are thickness and position of control points
I Uncertain flight conditions (angle of attack, air density, Mach number)
I Output is fuel burn

Estimate 10−6-quantile γ (value-at-risk)

Pp[f (1) ≤ γ] = 10−6

Derive a data-fit surrogate
I Take a 3× 3× 3 equidistant grid in stochastic domain
I Evaluate high-fidelity model at those 27 points
I Derive linear interpolant of output

Apply multifidelity pre-conditioned cross-entropy method
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MFCE: OpenAeroStruct: Value-at-Risk computation
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I Computing 10−6-quantile for a fixed design point
I Multifidelity approach achieves up to one order of magnitude speedup
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Conclusions
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Multifidelity rare event simulation
I Leverage surrogate models for runtime speedup
I Recourse to high-fidelity model for accuracy guarantees
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PostDoc position
available
• data-driven model reduction
• uncertainty propagation
• Bayesian inverse problems

https://pehersto.engr.wisc.edu
peherstorfer@wisc.edu
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