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PDEs with random parameters

Consider a differential problem

L(y; u) = G (*)

depending on a set of random parameters y = (y1, . . . , yN) ∈ Γ ⊂ RN with
joint probability measure µ on Γ.

We assume that (∗) has a unique solution u(y) in some suitable function
space V and we focus on a Quantity of Interest Q : V → R.

Goal: approximate the whole response function

y 7→ f (y) := Q(u(y)) : Γ→ R

by multivariate polynomials.

Possibly derive approximated statistics as E[f ], Var [f ], etc.
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Polynomial approximation on downward closed sets

Assume f ∈ L2
µ(Γ). We seek an approximation of f in a finite dimensional

polynomial subspace

VΛ = span
{∏N

n=1 y
pn
n , with p = (p1, . . . , pN) ∈ Λ

}
with Λ ⊂ NN a downward closed index set.
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Definition. An index set Λ is
downward closed if

p ∈ Λ and q ≤ p =⇒ q ∈ Λ
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Weighted discrete least squares approximation

Weighted discrete least squares approximation

1 sample independently M points (y(1), . . . , y(M)) ∈ ΓM from a
distribution ν � µ, with density ρ = dν

dµ

2 define the weight function w(y) = 1
ρ(y)

3 weighted discrete least squares approximation on VΛ

Π̂M f = argmin
v∈VΛ

‖f − v‖M , with ‖g‖2
M =

1

M

M∑
j=1

w(y(j))g(y(j))2

Remark: E[‖g‖2
M ] =

∫
Γ w(y)g(y)2ν(dy) =

∫
Γ g(y)2µ(dy) = ‖g‖2

L2
µ

Algebraic system: let {φj}
|Λ|
j=1 be a basis of VΛ orthonormal w.r.t. µ and

Π̂M f (y) =
∑|Λ|

j=1 cjφj(y). Then c = (c1, . . . , c|Λ|)
T satisfies

Gc = f̂, Gi ,j = (φi , φj)M , f̂i = (f , φi )M
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Weighted discrete least squares approximation

Optimality of discrete least squares approximation

Theorem [Cohen-Migliorati 2017] [Cohen-Davenport-Leviatan 2013]

For arbitrary r > 0 define

κr :=
1/2(1− log 2)

1 + r
, KΛ,w := sup

y∈Γ

w(y)

|Λ|∑
j=1

φi (y)2


If

M

logM
≥

KΛ,w

κr
, then

P(‖G − I‖ ≤ 1
2 ) > 1− 2M−r

‖f − Π̂M f ‖L2
µ
≤ (1 +

√
2) inf

v∈VΛ

‖f − v‖L∞√
w

with prob. > 1− 2M−r

E[f − Π̂c
M f ‖2

L2
µ

] ≤ CM inf
v∈VΛ

‖f − v‖2
L2
µ

+ 2‖f ‖2
L2
µ
M−r

where Π̂c
M f = Π̂M f · 1{‖G−I‖≤ 1

2
} and CM = (1 + 4κr

log M )
M→∞−−−−→ 1

F. Nobile (EPFL) Multilevel least squares QUIET 2017, SISSA 7



Weighted discrete least squares approximation

Sufficient number of points for stability

Uniform measure: µ = U(
∏N

i=1 Γi )
[Chkifa-Cohen-Migliorati-N.-Tempone 2015] When sampling from the same
distribution (ν = µ and w = 1) then

|Λ| ≤ KΛ,1 ≤ |Λ|2

Hence (unweighted) discrete least square is stable and optimally
convergence under the condition

M

logM
≥ |Λ|

2

κr
(quadratic proportionality)
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Weighted discrete least squares approximation

Sufficient number of points for stability - optimal measure

[Cohen-Migliorati 2017] For arbitrary µ, when sampling from the optimal
measure

dν∗

dµ
(y) = ρ∗(y) =

1

|Λ|

|Λ|∑
j=1

φj(y)2, =⇒ KΛ,w∗ = 1

weighted discrete least squares stable and optimal with

M

logM
≥ |Λ|
κr

(linear proportionality)
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Weighted discrete least squares approximation

Sampling algorithms

Sampling algorithms from the optimal distribution are available
(marginalization [Cohen-Migliorati 2017], acceptance rejection
[HajiAli-N.-Tempone-Wolfers, 2017])
However, the optimal distribution depends on Λ. Not good for
adaptive algorithms

Alternatively, for uniform measure µ (or more generally a product
measure µ = ⊗N

j=1µj , with µj doubling measure, i.e. µj(2I ) = Lµj(I ))
one can sample from the arcsin (Chebyshev) distribution.

KΛ,w ≤ CN |Λ|, M

logM
≥ CN

κr
|Λ|

Still linear scaling but with a constant exponentially dependent on N.
Advantage: the sampling measure does not depend on Λ. Good for
adaptivity.

In both cases, the cost of computing Π̂M f is linear in |Λ|
up to logarithmic terms.

F. Nobile (EPFL) Multilevel least squares QUIET 2017, SISSA 10



Weighted discrete least squares approximation

Sampling algorithms

Sampling algorithms from the optimal distribution are available
(marginalization [Cohen-Migliorati 2017], acceptance rejection
[HajiAli-N.-Tempone-Wolfers, 2017])
However, the optimal distribution depends on Λ. Not good for
adaptive algorithms

Alternatively, for uniform measure µ (or more generally a product
measure µ = ⊗N

j=1µj , with µj doubling measure, i.e. µj(2I ) = Lµj(I ))
one can sample from the arcsin (Chebyshev) distribution.

KΛ,w ≤ CN |Λ|, M

logM
≥ CN

κr
|Λ|

Still linear scaling but with a constant exponentially dependent on N.
Advantage: the sampling measure does not depend on Λ. Good for
adaptivity.

In both cases, the cost of computing Π̂M f is linear in |Λ|
up to logarithmic terms.

F. Nobile (EPFL) Multilevel least squares QUIET 2017, SISSA 10



Weighted discrete least squares approximation

Sampling algorithms

Sampling algorithms from the optimal distribution are available
(marginalization [Cohen-Migliorati 2017], acceptance rejection
[HajiAli-N.-Tempone-Wolfers, 2017])
However, the optimal distribution depends on Λ. Not good for
adaptive algorithms

Alternatively, for uniform measure µ (or more generally a product
measure µ = ⊗N

j=1µj , with µj doubling measure, i.e. µj(2I ) = Lµj(I ))
one can sample from the arcsin (Chebyshev) distribution.

KΛ,w ≤ CN |Λ|, M

logM
≥ CN

κr
|Λ|

Still linear scaling but with a constant exponentially dependent on N.
Advantage: the sampling measure does not depend on Λ. Good for
adaptivity.

In both cases, the cost of computing Π̂M f is linear in |Λ|
up to logarithmic terms.

F. Nobile (EPFL) Multilevel least squares QUIET 2017, SISSA 10



Multilevel least squares approximation

Outline

1 Weighted discrete least squares approximation

2 Multilevel least squares approximation

3 Application to random elliptic PDEs

4 Conclusions

F. Nobile (EPFL) Multilevel least squares QUIET 2017, SISSA 11



Multilevel least squares approximation

Multilevel least squares approximation

In practice f (y) can not be evaluated exactly as it implies the solution of a
PDE.

We introduce a sequence of approximations fn` , n` ∈ N with
increasing cost, s.t.

lim
`→∞

‖f − fn`‖L2
µ

= 0

(or possibly a stronger norm)

Similarly, we introduce a sequence of nested downward closed sets

Λm0 ⊂ Λm1 ⊂ . . . ⊂ Λmk
⊂ . . .

such that
lim
k→∞

inf
v∈VΛk

‖f − v‖L2
µ

= 0

Correspondingly, for each Λmk
we introduce a weighted discrete least

squares projector Π̂Mk
using Mk

log Mk
= O(|Λmk

|) random points.
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Multilevel least squares approximation

Multilevel least squares approximation

Multilevel formula: given maximum level L ∈ N

SLf =
∑

k+`≤L
(Π̂Mk

− Π̂Mk−1
)(fn` − fn`−1

)

=
L∑
`=0

Π̂ML−`(fn` − fn`−1
)

In the multilevel formula one might consider more general index sets
(k, `) ∈ I ⊂ R2. However, one can always recast to k + ` ≤ L by
properly choosing {n`} and {mk}.
Question: How to properly choose {n`}, {mk} and {Mk}?
Issue: Since the least squares projection is random, we have to ensure
that it is stable and optimally convergent on all levels. (Need union
bound on failure probabilities)
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Multilevel least squares approximation

Tuning of the ML least squares algorithm

For the Multilevel algorithm to be effective, we have to rely on certain
“mixed regularity”

Let (F , ‖ · ‖F ) ↪→ (L2
µ, ‖ · ‖L2

µ
) be a normed vector space of “smooth”

functions (e.g. Hölder / Sobolev / analytic regularity)

Assumption 1 (regularity): f , fn` ∈ F for all ` ∈ N
Assumption 2 (PDE discretization): the sequence {fn`} is s.t.

‖f − fn`‖L2
µ
. n−βw` , ‖f − fn`‖F . n−βs`

and for a single y ∈ Γ, the cost of computing fn`(y) is

Work(fn`) . nγl .
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Multilevel least squares approximation

Tuning the ML least squares algorithm

Assumption 3 (polynomial approximability): the sequence {Λmk
}

is s.t.
dim(VΛmk

) = |Λmk
| . mσ

k

inf
v∈VΛmk

‖f − v‖L∞√
w
. m−αp‖f ‖F , ∀f ∈ F

(Alternatively inf
v∈VΛmk

‖f − v‖L2
µ
. m−αe‖f ‖F , ∀f ∈ F )
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Multilevel least squares approximation

Tuning the ML least squares algorithm

We now choose

n` = C exp{ `

γ + βs
}, ` = 0, . . . , L (space discr.)

mk = C exp{ k

σ + αp
}, k = 0, . . . , L (Polynomial approx.)

mk

κL
≤ Mk

logMk
≤

2mσ
k

κL
, k = 0, . . . , L (sample size with r = L)

By taking r = L we guarantee that

P(∃k : ‖Gk − I‖ > 1

2
) ≤

L∑
k=0

P(‖Gk − I‖ > 1

2
) . L−L

Remark: This formulation is analogous to the anisotropic sparse approx.

SLf =
∑

(σ+αp)k+(γ+βs)`≤L

(Π̂Mk
−Π̂Mk−1

)(fn`−fn`−1
), with n` = Ce`, mk = Cek .
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Multilevel least squares approximation

Complexity result

Theorem [HajiAli-N.-Tempone-Wolfers 2017]

Given ε > 0, we can chose L ∈ N such that

‖f − SLf ‖L2
µ
≤ ε, with prob. ≥ 1− Cεlog | log ε|

Work(SLf ) . ε−λ| log ε|t log | log ε|

with

λ =

{
σ/αp if γ/βs ≤ σ/αp

γ/βs if γ/βs > σ/αp

t =


2 if γ/βs < σ/αp

3 + σ/αp if γ/βs = σ/αp

1 if γ/βs > σ/αp

Analogous result holds in expectation with αp replaced by αe .
F. Nobile (EPFL) Multilevel least squares QUIET 2017, SISSA 17
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Multilevel least squares approximation

Sketch of the proof

Bound on Mk : use that
√
Mk ≤ Mk

log Mk
≤ 2mσk

κL
and κL ≈ 1/(L + 1)

Mk ≤
2

κL
mσ

k logMk . (L + 1)e
kσ
σ+αp

. (L + 1) log(L + 1)e
kσ
σ+αp (k + 1)

Bound on total work:

Work(SLf ) .
L∑
`=0

ML−`n
γ
`

. (L + 1) log(L + 1)e
Lσ

σ−αp

L∑
`=0

exp

{
−l
(

σ

σ − αp
− γ

γ + βs

)}
(L− `+ 1)

hence, distinguish three cases γ/βs <,=, > σ/αp
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Multilevel least squares approximation

Sketch of the proof

Bound on Mk : use that
√
Mk ≤ Mk

log Mk
≤ 2mσk

κL
and κL ≈ 1/(L + 1)

Mk ≤
2

κL
mσ

k logMk . (L + 1)e
kσ
σ+αp

. (L + 1) log(L + 1)e
kσ
σ+αp (k + 1)

Bound on total work:

Work(SLf ) .
L∑
`=0

ML−`n
γ
`

. (L + 1) log(L + 1)e
Lσ

σ−αp

L∑
`=0

exp

{
−l
(

σ

σ − αp
− γ

γ + βs

)}
(L− `+ 1)

hence, distinguish three cases γ/βs <,=, > σ/αp
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Multilevel least squares approximation

Sketch of the proof

Bound on the error in probability:

‖f − SLf ‖L2
µ

= ‖f − fL +
L∑
`=0

(Id − Π̂ML−`)(f` − f`−1)‖L2
µ

≤ ‖f − fL‖L2
µ

+
L∑
`=0

‖Id − Π̂ML−`‖F→L2
µ
‖f` − f`−1‖F

. e−
Lβw
γ+βs + e−

Lα
σ+α

L∑
`=0

exp

{
`

(
α

σ + αp
− βs
γ + βs

)}

Again split the three cases γ/βs <,=, > σ/αp and notice that the first term

e−
Lβw
γ+βs is always negligible as βw > βs .
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Multilevel least squares approximation

Improved complexity in the case γ/βs > σ/α

In the case γ/βs > σ/α and βw > βs the complexity can be improved by
taking

mk = C exp

{
k

σ + αp
+

L(βw − βs)

α(γ + βs)

}
In this case the complexity result becomes

‖f − SLf ‖L2
µ
≤ ε, with prob. ≥ 1− Cεlog | log ε|

Work(SLf ) . ε−λ| log ε|t log | log ε|

with t = 1 and

λ =
γ

βw
+

(
1− βs

βw

)
σ

αp

which always improves the single level rate λSL = γ
βw

+ σ
αp

.
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Application to random elliptic PDEs

Application to random elliptic PDEs

Consider {
− div(a(y)∇u(y)) = g , in D ⊂ Rd

u(y) = 0, on ∂D

with y ∈ Γ = [−1, 1]N and Q linear bounded functional in L2(D) (e.g.
Q(u) =

∫
D u).

Goal: approximate f (y) = Q(u(y)).

Assumptions:

0 > amin ≤ a(x, y) ≤ amax , ∀(x, y) ∈ D × Γ.

g and D sufficiently smooth.
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Application to random elliptic PDEs

Application to random elliptic PDEs

Proposition

Let un be a finite element approximation of order r ≥ 1 with maximal
element diameter h = n−1 and fn(y) = Q(un(y).

If a ∈ C r (D × Γ), then

‖f − fn‖L2
µ(Γ) . hr+1, ‖f − fn‖C r−1(Γ) . h2

If a ∈ C r ,s(D × Γ) = {v : D × Γ→ R : ‖∂r
x∂

s
yv‖C0(D×Γ) <∞,

∀|r|1 ≤ r , |s|1 ≤ s}, then

‖f − fn‖Cp(Γ) . hr+1, ∀p = 0, . . . , s.
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Application to random elliptic PDEs

ML least squares complexity – mixed regularity

Consider the coefficient

a(x, y) = 1 + ‖x‖r2 + ‖y‖s2 ∈ C r−1,1(D)⊗ C s−1,1(Γ)

smoother space: F = C s−1,1(Γ)

Spacial approximation: continuous finite elements of degree r

error:
‖f − fn‖L2

µ
= O(n−(r+1)) = ‖f − fn‖C s−1,1 =⇒ βw = βs = r + 1

cost: Work(fn) = nd with optimal solver =⇒ γ = d

Polynomial approximation: VΛm = Pm= polynomial space of total
degree m

error: ‖f − ΠPm f ‖L∞ = O(m−s), =⇒ αp = s

cost: dim(VΛm) =
(
m+N
N

)
. mN , =⇒ σ = s
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Application to random elliptic PDEs

ML least squares complexity – mixed regularity

Complexity of Single Level

WorkSL = O
(
ε−

d
r+1
−N

s log ε−1
)

Complexity of Multi Level

WorkML = O
(
ε−max{ d

r+1
,N
s }(log ε−1)t

)
with

t =


1, if d

r+1 >
N
s ,

3 + d
r+1 , if d

r+1 = N
s ,

2, if d
r+1 <

N
s
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Application to random elliptic PDEs

N = 2

N = 4

N = 3

N = 6
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Conclusions

Conclusions

We have derived a MultiLevel discrete least squares method for polynomial
approximation of an output quantity of interest of a random PDE.

The method uses the classical “Combination technique” and sparsifies sequences
of polynomial approximations, obtained by weighted discrete least squares and
sequences of spatial discretizations of the underlying PDE.

In particular, we have proposed a way to select the number of sample points on
each level, to guarantee the overall stability and accuracy of the ML formula with
high probability.

Currently working on adaptive algorithms for infinite dimensional problems.
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Conclusions

Thank you for your attention!
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