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Spatial scales and typical dynamics

Individual pore: 10 um — 10 mm radii, 0.1 — 10 cm length
Dynamics: Poiseuille Eqn, Navier-Stokes Eqns

Explicit porous microstructures: 1 cm — 1 m sample lengths
Dynamics: Navier-Stokes Eqns

Laboratory: 1 — 10 m? blocks

Typical
Dynamics: Stokes Flows / Darcy’s Law Scales of
Field: 10m — 1 km Measurement/
Observation

Dynamics: Darcy’s Law
Local aquifer: 1 - 10 km Dynamics: Diffusion (Darcy’s Law)

Basin-scale: 1 — 10*km Dynamics: Diffusion (Darcy’s Law)



Flow through porous media: alternate representations

Porous microstructure Pore Space
* Void and solid phases N
* Navier-Stokes equations
* Detailed pore geometry Jmmm
1 if x € pore space
x(x) = | v
0 otherwise
Continuum N %
* Darcy’s Law, advection-diffusion oy
* Effective parameters
. . cm-km
* Hydraulic conductivity [L/t] :
. : K(x) »
* Head [L], velocity, concentration I

Porous Continuum



Highly heterogeneous media
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Domain of

Assumptions in
addition to IBCs

Model (theory) Application Scales & forcing
functions
Pore-Pore (1) Newton's 2nd
M network p-cms ) ow
(2) Conservation
of mass
Elementary Continuum
Darcy's law volume of a cm-m representation of
porous medium porous medium.
A Uniform material
Continuity egn
Eqgn of state
Flow egn
2D : T doesn't vary
Transmissivity Uncon_ﬁned km with head
with S, aquifer
(1) Confining
beds are plane
and parallel, (2)
One principal
2D direction of K
Transmissivity |Confined aquifer km perpendicular to
with S confining beds,
(3) head gradient
independent of z,
(4) Ah/At doesn't
depend on z
Diffusion egn cm-km Known K(x)

Models, their
applications, scales, and
assumptions

The ... equations for the
circulation of a fluid in a
porous medium [relating to
Darcy’s law] are
significant only for [small]
volumes of a porous
medium

-- Marsily



Porosity

1

Measurement scales: REV

Measurement
scale



REV?

0.31 cm_tip

1.27 cm tip

0.15cm tip

0.63cm tip
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Berea sandstone

Puff permeameter images.

Tidwell et al., 1999



Pore microstructures

Berea Sandstone
(Courtesy Ming Zang)

Simulation



Biological Porous Media: Human Pancreas

Murakami et al., “Microcirculatory Patterns in Human Pancreas,” (1994)



Flow through porous media: I.ab scale

X-ray frame hosting 2 experimental flow cells Homogeneous reservoir
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Center for experimental study of subsurface environmental processes
Colorado School of Mines




Flow through porous media: Field scale
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System of aquifers

Tk iy Water Tahle Flood Main Al
Consalidated . '[_.u-nm.rli.l:l.ll'[i:
Bedrock Bedrock

ffrdf S g
S m SN
; s III 5 e o ey
W' 3 ]r|||1 -rmeable Layer
':P#% Pleistocens
4 :}' . Aquile
PR"am a
il up Eh‘lst-np
{above and below Miocene ."|.|:_|_uiFEr

water table)




Aquifer systems
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High Plains Aquifer

450,000 km?

Elevation: 2400m — 355m
Few streams

The Great Plains produce
about 25% of US crops and
livestock.

Great reliance on ground
water for agriculture

30% of all ground water
pumped for irrigation in the
United States.

Courtesy USGS



Karst systems

Stream disappears
underground

Sinkholes

Debris (soil,
rock, etc.)

Groundwater
table



Sources of uncertainty

Probabilistic risk Handbook of Environmental Fleid Dynamics, Vidume One
asseszment Winter and Tartakovsky, 2013
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Flow through porous structures: experiments

Spheres
Spheres and ghycenod
High rasolution camera |
s
High resolution camera
Paistaltic pump
m -
I m Thermmosiatic vessel
] o,
——
SUN SPARC station 10
equippad with 3 acquisiion boards

Figure 1. Sketch of the experimental setup.

Moroni et al., 2001

Computational

Cartesian Domain

Ly Lyw L, =12T=107% % 127 % 107 x 256 = 107% m
Resolved with N, = N, = N, = 128 = 128 » 250
Ar=Ay=A=10 ‘' m

At=5-10""s

-
o= 10 Ymte—, g constant.

Periodic in the vertical with Neumann Boundary Conditions along
horizontal boundaries.

Run the simulation past steady state then evaluate the velocity and
pressure fields.

Eulag CFD Simulator (Prussa et al., 2006).

Immersed boundary method for pore spaces
(Smolarkiewicz and Winter, 2010)



Computational experiments

Particle trajectories — Yellow is fast

Synthetic medium

Beads Volcanic Tuff

Synthetic

Hyman et al. (2012)

Smolarkiewicz and Winter (2010)



Heterogeneous velocities

Figure: Normalized velocity magnitudes for a cross sections of a porous medium
with of expected porosity of (.50



Expanding (left) and Contracting Regions (right)

FIG. 1. (Color online) Contour plots of the forward (left) and
backward (right) FTLE fields in one-fourth of a horizontal cross
section from a porous medium with porosity (.38 show that regions

of high FTLE values are fragmented. Solid matrix shown in black.
(Hyman and Winter, Phys Rev E, 2013)



Field scale and larger

Physical Computational

WATER-TABLE DRAWDOWN AND RECOVERY AFTER PUMPING
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Cone of Depression Steady-state drawdown

Uncenfined aquifer

zone of influence
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Bedrock |

Kansas Geological Survey https://www.swstechnology.com/

USGS Modflow
https://water.usgs.gov/ogw/modflow/



System dynamics: Continuum representation

Darcy’s Law

qg = —-Kx)Vh

Flow

V.KVh = Sah + F
ot

Parameters

Conductivity: K(x), [K] = m/s
Permeability: k(x) = (L/ g p) K=m?
Transmissivity: T(x), [T] = m?/s
Storativity: S, [S] = 1

Dispersion coefficient: D, [D] = m?%/s

Veg + (

Continuity
Sah + F)= 0

Mass Transport

(90,,(;” Ve (DVC- uC)

State variables

Hydraulic head: h(x, t), [h] =
Darcy flux: q(x, t), [q] = m/s
Flow rate: Q(x, t), [Q] = m3/s
Concentration: c(x, t), [c] = M/m3



Groundwater Flow: Some Foundational Problems

Inverse problem. Estimate basic parameters (hydraulic conductivity) at a
given scale of analysis (porous microstructures -- aquifers) from data.

Most are highly heterogeneous, e.g., K(x) = K(x) if x € material i

1t Forward Problem (Heterogeneities). Determine effects of material
heterogeneities on flow/transport at a given scale.

Scale-up. Scale observations of heterogeneous parameters up to effective
parameters at a larger scale.

Scale-Down. Scale parameters averaged at a larger scale down to
realistic distribution of heterogeneities at a smaller scale.

2"d Forward Problem (Prediction). Quantify uncertainties about system
states arising from incomplete knowledge of parameters and model
structure for a specific aquifer.



Scale-up

Effective parameters
Statistically uniform

* Stationary and ergodic. Glimm and Kim,
1998

* Single hydro-geological material
produced at more or less the same time
by more or less the same process.

5:
H
e)

—

* Asymptotic expansions. Gelhar and e
Axness, 1983, Winter et al., 1984; .

10*F .

Fannjiang and Papanicolaou, 1997 ”

Statistically heterogeneous media T

10 2 .

* Separable scales. Winter and i 7 s
Tartakovsky, 2001. Clark et al., in prep. ,

A (m)

Lambda = 0.1 x Fleld Length

100 707105 107 10° 10° 10° 107 10° 10° 1g°
. . . Field Length (m)
* Self-similarity. Neuman, 1994. Molz, g 1: Comelation scale A of matural log e

conductivities and transmissivities at various sites versus
2 004 field length (data from Gelhar [1993, Table 6.1]).

Neuman, 1994



Scale-down and Inverse Problem

Statistical interpolation Thresholded Gaussian Fields

* Spatial covariance, structure
function, Kriging:

YA = B[ [K(x + )= KQIP]

* Monte Carlo simulation Thresholded surface Simulated pore space

Sequential estimation
Thresholded fields

Realizations of pore spaces with
specified correlations (Adler,
1992) or physical properties, e.g.,
Minkowski functionals of integral
geometry (Hyman and Winter,
2014) can be produced by
thresholding Gaussian random
fields.




st Forward problem: Effect of heterogeneities
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Figure 7. Aquifer-stream discharges of different streams From refined maode]
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Figure B, Stream-aguifer leakages of different sireams from refined model .



1st Forward problem: Effect of heterogeneities
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20d Forward Problem: Prediction

Example. Predict hydraulic head, 4, in an aquifer based on
incomplete measurements, D, of parameters (IT), forcings, and
initial and boundary conditions.

An [ll-Posed Problem A Well-Posed Problem
Solve the flow equation under these First, it's not just the head, h, that
conditions. we don’t know.
It can’t be done. We don’t know the parameters, the
The usual response is to fill in the forcings or the IBCs either. Call
missing data via calibration, which them II.
makes a numerical solution The solution is the joint probability
possible, but doesn’t solve the of the system state and parameters,
problem of uncertainty. P[h, 11 | D]

- ion?
How good is that solution: conditioned on the measurements.



Bayesian Hydrogeology

Start by making P[A,I1|D] more precise,

P[DIM M ]
Pl JUD]=PIM, M 1D]= P[l/;] ILPIM, M)

M), are the moments of the system state £, e.g., &, O’%.

My are the moments of the system parameters like /BCs, forcings,
K, S.
Determining P[D|My,M H]/P[D] 1s a geo-statistical problem.

The 2™ term is hydrogeological. It can be further decomposed,
PIM, M |=PM, IM_1P[M].

Berliner et al., 2000; Wikle, 2003



Predictions

Monte Carlo simulations. Freeze, 1975

Moment differential equations. Zhang and Neuman, 1995;
Tartakovsky and Neuman, 1998

K@x)=K((x)+K'(x), K'(x) =0and h(x) = h(x) + h'(x), K'(x)=0
VeKVh=VeKVh + Ve K'Vh'

Orthogonal polynomials. Xiu and Karniadakis, 2003; Zhang and
Lu, 2004; Xiu and Tartakovsky, 2006

High heterogeneity. Winter and Tartakovsky, 2001; Guadagnini et
al., 2003.

p(h, K) = p(h | K) p(K)



Models of reduced complexity

Reduced dimensionality

Orthogonal polynomials. Xiu and Karniadakis, 2003; Zhang and Lu, 2004,

Xiu and Tartakovsky, 2006
Wavelet transforms. Foufoula-Georgieu

Reduced physics
Lattice Boltzmann.
Chen and Doolen,

Continuous time random walk
https://www.weizmann.ac.il/EPS/People/Bria

n/CTRW/
Berkowitz, 2006.
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State transition diagrams.
Winter and Tartakovsky (2009)
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RCM for particcle breakthrough
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Transitions and break through
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Results

n ~ number of transitions
v,(t) ~ # particles that have made » transitions by ¢

B,(t) ~ # particles that have broken thru by ¢ after n transitions

PIN() = n] = *7)

_ _ o _ Py
P [T<{]=P[T<t|N®=n] VZ(t)

P[T<t]= SP[T <t]P[N(t)=n]

|




Continuous time Markov chain model
P, [T <t]=P,[Z(t) > [] before ¢ 4
To +Ty=t, Z(t) = Vol p T vsTy h

P[T<t]=P[Tw=t-T,, Tx= l“;chcbl] ‘
>

vpt -1
Vg Vg

P[T<#=3,P,[T<{P[N® =n]

Assume CTMC
Residence times exponential
T"s ~ I(ts; ns, 5)

t ®

P [T<t]loc [ p,(t-ty.ty)dty
l_VEt o010}

Vo~ Vs :

I .
111 & s bbb

!
P[N(t) — n] X gpn(t_t(b,tq))dt(l) s 10 15 20
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