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Spatial scales and typical dynamics

Individual pore: 10 m – 10 mm radii, 0.1 – 10 cm length 

Dynamics: Poiseuille Eqn, Navier-Stokes Eqns

Explicit porous microstructures: 1 cm  – 1 m sample lengths

Dynamics: Navier-Stokes Eqns

Laboratory: 1 – 10 m3 blocks   

Dynamics: Stokes Flows / Darcy’s Law

Field: 10m – 1 km    

Dynamics: Darcy’s Law

Local aquifer:  1 – 10 km  Dynamics: Diffusion (Darcy’s Law)

Basin-scale:  1 – 104 km  Dynamics: Diffusion (Darcy’s Law)

} Typical
Scales of

Measurement/
Observation



Flow through porous media: alternate representations
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Porous microstructure
• Void and solid phases
• Navier-Stokes equations
• Detailed pore geometry

(x) =
1 if x  pore space  

0 otherwise

Continuum
• Darcy’s Law, advection-diffusion
• Effective parameters
• Hydraulic conductivity [L/t] 
• Head [L], velocity, concentration



Highly heterogeneous media



Model (theory)
Domain of 
Application

Scales

Assumptions in 
addition to IBCs 
& forcing 
functions

   
 

NSE
Pore-Pore 
network - cms

(1) Newton's 2nd 
Law

     
(2) Conservation 
of mass

   
 

Darcy's law
Elementary 
volume of a 

porous medium
cm-m

Continuum 
representation of 
porous medium.  
Uniform material

Continuity eqn  

Eqn of state  

Flow eqn      

   
 

2D 
Transmissivity 

with Sy

Unconfined 
aquifer

km
T doesn't vary 
with head

2D 
Transmissivity 

with S
Confined aquifer km

(1) Confining 
beds are plane 
and parallel, (2) 
One principal 
direction of K 
perpendicular to 
confining beds, 
(3) head gradient 
independent of z, 
(4) h/t doesn't 
depend on z

   
 

Diffusion eqn   cm-km Known K(x)

Models, their 
applications, scales, and 
assumptions

The … equations for the 
circulation of a fluid in a 
porous medium [relating to 
Darcy’s law] are 
significant only for [small] 
volumes of a porous 
medium

-- Marsily



Measurement scales: REV

Measurement
scale

1

0

Porosity
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REV?

Photo 0.15 cm tip 0.31 cm tip

0.63cm tip 1.27 cm tip

Berea sandstone

Puff permeameter images.  
Tidwell et al., 1999



Pore microstructures

Berea Sandstone 
(Courtesy Ming Zang)

Simulation

Berea Sandstone



Biological Porous Media: Human Pancreas

Murakami et al., “Microcirculatory Patterns in Human Pancreas,”  (1994)



Flow through porous media: Lab scale

Center for experimental study of subsurface environmental processes
Colorado School of Mines



Flow through porous media: Field scale

Capillary rise

Infiltration
Plant uptake

(transpiration)
Evaporation

usgs

Recharge

Interflow



System of aquifers



Aquifer systems



High Plains Aquifer

450,000 km2

Elevation: 2400m – 355m 
Few streams 

The Great Plains produce 
about 25% of US crops and 
livestock.

Great reliance on ground 
water for agriculture

30% of all ground water 
pumped for irrigation in the 
United States.

Courtesy USGS



Karst systems



Sources of uncertainty

Winter and Tartakovsky, 2013



Flow through porous structures: experiments

Moroni et al., 2001 

Computational

 Eulag CFD Simulator (Prussa et al., 2006).  
 Immersed boundary method for pore spaces 

(Smolarkiewicz and Winter, 2010)

Physical



Computational experiments

Hyman et al. (2012)

Particle trajectories – Yellow is fast

Synthetic Beads Volcanic Tuf

Smolarkiewicz and Winter (2010)

Synthetic medium



Heterogeneous velocities



Expanding (left) and Contracting Regions (right)

(Hyman and Winter, Phys Rev E, 2013)



Field scale and larger

https://www.swstechnology.com/Kansas Geological Survey

USGS Modflow
https://water.usgs.gov/ogw/modflow/

ComputationalPhysical



System dynamics: Continuum representation

Parameters
Conductivity: K(x), [K] = m/s
Permeability: k(x) = (/ g m

Transmissivity: T(x), [T] = m2/s
Storativity: S, [S] = 1
Dispersion coefficient: D, [D] = m2/s

State variables
Hydraulic head:  h(x, t), [h] = m
Darcy flux: q(x, t), [q] = m/s
Flow rate: Q(x, t), [Q] = m3/s
Concentration: c(x, t), [c] = M/m3



K∇h



S∂h
∂t

+ F=

Flow Mass Transport


K(x)∇hq  = 

Darcy’s Law Continuity



q  +  F) =  0



(S∂h
∂t



Groundwater Flow: Some Foundational Problems

Inverse problem. Estimate basic parameters (hydraulic conductivity) at a 
given scale of analysis (porous microstructures -- aquifers) from data. 

Most are highly heterogeneous, e.g., K(x) = Ki(x) if x  material i 

1st Forward Problem (Heterogeneities).  Determine effects of material 
heterogeneities on flow/transport at a given scale.

Scale-up.  Scale observations of heterogeneous parameters up to effective 
parameters at a larger scale.

Scale-Down.  Scale parameters averaged  at a larger scale down to 
realistic distribution of heterogeneities at a smaller scale.

2nd Forward Problem (Prediction).  Quantify uncertainties about system 
states arising from incomplete knowledge of parameters and model 
structure for a specific aquifer. 



Scale-up
Effective parameters

Statistically uniform

• Stationary and ergodic.  Glimm and Kim, 
1998

• Single hydro-geological material 
produced at more or less the same time 
by more or less the same process.

• Asymptotic expansions. Gelhar and 
Axness, 1983, Winter et al., 1984; 
Fannjiang and Papanicolaou, 1997

Statistically heterogeneous media

• Separable scales.  Winter and 
Tartakovsky, 2001.  Clark et al., in prep.

• Self-similarity. Neuman, 1994.  Molz, 
2004

Yeh et al, 2009

Neuman, 1994



Scale-down and Inverse Problem

Realizations of pore spaces with 
specified correlations (Adler, 
1992) or physical properties, e.g., 
Minkowski functionals of integral 
geometry (Hyman and Winter, 
2014) can be produced by 
thresholding Gaussian random 
fields. 

Statistical interpolation

• Spatial covariance, structure 
function, Kriging: 

(x) = E[ ||K(x + ) – K(x)||2]

• Monte Carlo simulation

Sequential estimation

Thresholded fields

Thresholded surface Simulated pore space

Thresholded Gaussian Fields



1st Forward problem: Effect of heterogeneities

Zhu et al, 2015
12 realizations



1st Forward problem: Effect of heterogeneities

Zhu et al, 2015



2nd Forward Problem: Prediction



Bayesian Hydrogeology



Predictions



Models of reduced complexity

Reduced physics
Lattice Boltzmann. 
Chen and Doolen, 

Continuous time random walk
https://www.weizmann.ac.il/EPS/People/Bria
n/CTRW/
Berkowitz, 2006.

State transition diagrams.  
Winter and Tartakovsky (2009)

Jump processes

Reduced dimensionality
Orthogonal polynomials.  Xiu and Karniadakis, 2003; Zhang and Lu, 2004; 
Xiu and Tartakovsky, 2006

Wavelet transforms. Foufoula-Georgieu

LBM

CTRW



RCM for particcle breakthrough

105 particles
~ slow and fast states
Lx = Ly  = 1.28 cm, Lz = 2,56 cm
~ residence times per state
vv~ constant velocities
v>> v

Vertical velocities

C. Clark – UA
J. Hyman – LANL
A. Guadagnini -- Politecnico



Transitions and break through



Results



Continuous time Markov chain model
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