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Parametrization Dimension Information

# pixels K = 12 # modes K = 1

P. Chen (ICES – UT Austin) Hessian-based sampling for model order reduction 18 July, 2017 2 / 32



Parametrization Dimension Information

# pixels K = 22 # modes K = 2
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Parametrization Dimension Information

# pixels K = 42 # modes K = 4
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Parametrization Dimension Information

# pixels K = 82 # modes K = 8
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Parametrization Dimension Information

# pixels K = 162 # modes K = 16
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Parametrization Dimension Information

# pixels K = 322 # modes K = 32
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Parametrization Dimension Information

# pixels K = 642 # modes K = 64
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Parametrization Dimension Information

# pixels K = 1282 # modes K = 128
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Parametrization Dimension Information

# pixels K = 2562 # modes K = 256
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Parametrization Dimension Information

# pixels K = 5122 # modes K = 512
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Parametrization Dimension Information

# pixels K = 10242 # modes K = 1024
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Parameters

Let P ⊂ RK denote a K-dimensional parameter space, where K ∈ N ∪∞.

p = (p1, . . . , pK) ∈ P.

The parameter p lives in a box, w.l.o.g., P = [−
√

3,
√

3]K , with uniform distribution

p ∼ µ = U([−
√

3,
√

3]K),

with mean p̄ = 0, and covariance C = I.

The parameter p lives in the whole space, i.e., P = RK , with Gaussian distribution

p ∼ µ = N (p̄,C),

with mean p̄, and covariance C, s.p.d.

Eg., C is discretized from a covariance operator C, given by

C = (−δ4+ γI)−α,

which is self adjoint, positive, and of trace class.
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Parametric PDEs

Let V denote a Hilbert space with dual V ′.
Given p ∈ P, µ-a.e., find u ∈ V such that

a(u, v; p) = f (v) ∀v ∈ V.

a(·, ·; p) : V × V → R is a bilinear form, e.g.,

a(u, v; p) =

∫
D
κ(p)∇u · ∇vdx.

f (·) ∈ V ′ is a linear functional.

s(p) = s(u(p)) ∈ R is a QoI.

Ex 1. heat conduction in thermal blocks

κ(p) =
K∑

k=1

k−βχDk (x)pk

p ∼ U([−
√

3,
√

3]K)

K = 162 = 256
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a(u, v; p) = f (v) ∀v ∈ V.

a(·, ·; p) : V × V → R is a bilinear form, e.g.,

a(u, v; p) =

∫
D
κ(p)∇u · ∇vdx.

f (·) ∈ V ′ is a linear functional.

s(p) = s(u(p)) ∈ R is a QoI.

Ex 2. subsurface flow in a porous medium

κ(p) = ep

log-normal diffusion with

p ∈ N (p̄,C)

K = 1292 = 16, 641
P. Chen (ICES – UT Austin) Hessian-based sampling for model order reduction 18 July, 2017 5 / 32



Model order reduction – formulation (Maday, Patera, Rozza, et. al.)

Finite element approximation
Finite element space Vh,

dim(Vh) = Nh

Given p ∈ P, find uh ∈ Vh s.t.

a(uh, vh; p) = f (vh) ∀vh ∈ Vh

The algebraic system is

Ah(p)uh = fh

V = [ψ1, . . . ,ψN ]

VT uh = uN

VTAh(p)V = AN(p)

VT fh = fN

Reduced basis approximation
Reduced basis space VN ⊂ Vh,

dim(VN) = N

Given p ∈ P, find uN ∈ VN s.t.

a(uN , vN ; p) = f (vN) ∀vN ∈ VN

The algebraic system is

AN(p)uN = fN
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Model order reduction – algorithms (Maday, Patera, Rozza, et. al.)

POD/SVD
Samples

Ξt = {pn, n = 1, . . . ,Nt}

Compute snapshots

U = [uh(p1), . . . , uh(pNt )]

Perform SVD

U = VΣWT

Extract bases V[1 : N, :]

N = argminn En(Σ) ≥ 1− ε

Greedy algorithm
Samples

Ξt = {pn, n = 1, . . . ,Nt}

Initialize VN for N = 1 as

VN = span{uh(p1)}

Pick next sample such that

pN+1 = argmaxp∈Ξt
∆N(p)

Update bases VN+1 as

VN ⊕ span{uh(pN+1)}

Offline-Online
Affine assumption/approx.

a =
∑Q

q=1 θq(p)aq

Offline computation once

Aq
N = VTAq

hV, fN = VT fh

Online assemble

AN(p) =
∑Q

q=1 θq(p)Aq
N

Online solve and evaluate

AN(p)uN = fN , s(p) = sT
NuN

Goal-oriented a-posteriori error estimate ∆N(p) – dual weighted residual

∆N(p) = f (ϕN)− a(uN , ϕN ; p), where dual Prob.: a(wN , ϕN ; p) = s(wN) ∀wN ∈ WN .

∆N(p) = f̄T
NϕN −

Q∑
q=1

θq(p)ϕT
NĀ

q
NuN , where f̄N = WT fh, and Āq

N = WTAq
hV
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Model order reduction – samples

random quasi-random centroidal Voronoi tessellation
(Du, Gunzburger, et. al. )
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Model order reduction – samples

tensor grid sparse grid anisotropic sparse grid
(Liao, Elman, et. al. ) (C., Schwab, et. al. )
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Model order reduction – samples

hp-adaptive-rb adaptive-add-remove hybrid goal-oriented adaptive
(Eftang, Patera, et. al. ) (Hesthaven, Stamm, et. al.) (C., Quarteroni, et. al. )
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Hessian-based sampling – Hessian

Hessian H ∈ RK×K , the second-order partial
derivatives of s with respect to p, i.e.,

Hkl =
∂2s

∂pk∂pl
, k, l ∈ 1, . . . ,K.

The eigendirections corresponding to the
leading eigenvalues of the Hessian are the
directions along which the s changes the most
in the parameter space. H =

(
2 −2
−2 2

)
, λ1 = 1, λ2 = 0

Thus, sampling in the subspace of leading eigendirections presumably provide
the most representative samples that capture the variation of the s, at least locally.

It has been widely used in large-scale computation for
solving nonlinear problems,

control/optimization, parameter estimation, data assimilation

P. Chen (ICES – UT Austin) Hessian-based sampling for model order reduction 18 July, 2017 10 / 32



Hessian-based sampling – Hessian

Hessian H ∈ RK×K , the second-order partial
derivatives of s with respect to p, i.e.,

Hkl =
∂2s

∂pk∂pl
, k, l ∈ 1, . . . ,K.

The eigendirections corresponding to the
leading eigenvalues of the Hessian are the
directions along which the s changes the most
in the parameter space. H =

(
2 −2
−2 2

)
, λ1 = 1, λ2 = 0

Thus, sampling in the subspace of leading eigendirections presumably provide
the most representative samples that capture the variation of the s, at least locally.

It has been widely used in large-scale computation for
solving nonlinear problems,

control/optimization, parameter estimation, data assimilation

P. Chen (ICES – UT Austin) Hessian-based sampling for model order reduction 18 July, 2017 10 / 32



Hessian-based sampling – Hessian

Hessian H ∈ RK×K , the second-order partial
derivatives of s with respect to p, i.e.,

Hkl =
∂2s

∂pk∂pl
, k, l ∈ 1, . . . ,K.

The eigendirections corresponding to the
leading eigenvalues of the Hessian are the
directions along which the s changes the most
in the parameter space. H =

(
2 −2
−2 2

)
, λ1 = 1, λ2 = 0

Thus, sampling in the subspace of leading eigendirections presumably provide
the most representative samples that capture the variation of the s, at least locally.

It has been widely used in large-scale computation for
solving nonlinear problems,

control/optimization, parameter estimation, data assimilation

P. Chen (ICES – UT Austin) Hessian-based sampling for model order reduction 18 July, 2017 10 / 32



Hessian-based sampling – Hessian

Hessian H ∈ RK×K , the second-order partial
derivatives of s with respect to p, i.e.,

Hkl =
∂2s

∂pk∂pl
, k, l ∈ 1, . . . ,K.

The eigendirections corresponding to the
leading eigenvalues of the Hessian are the
directions along which the s changes the most
in the parameter space. H =

(
2 −2
−2 2

)
, λ1 = 1, λ2 = 0

Thus, sampling in the subspace of leading eigendirections presumably provide
the most representative samples that capture the variation of the s, at least locally.

It has been widely used in large-scale computation for
solving nonlinear problems,

control/optimization, parameter estimation, data assimilation

P. Chen (ICES – UT Austin) Hessian-based sampling for model order reduction 18 July, 2017 10 / 32



Hessian-based sampling – C-preconditioned Hessian

Let squad denote the quadratic/Taylor approximation of s given by

squad(p) = s(p̄) + gT
p̄ (p− p̄) +

1
2

(p− p̄)THp̄(p− p̄), (1)

where gp̄ and Hp̄ represent the gradient and the Hessian of s at p̄.
The expectation of squad can be computed as

E[squad] = s(p̄) +
1
2

tr(H̃p̄), (2)

tr(H̃p̄): trace of the covariance preconditioned Hessian H̃p̄ = CHp̄ at the mean p̄.
It is equivalent to the sum of all the eigenvalues, i.e.,

tr(H̃p̄) =

K∑
k=1

λk(H̃p̄). (3)

If λk decay fast, sampling in a low-dimensional subspace of eigenvectors:

pL =

L∑
l=1

(p,ϕl)2ϕl. (4)
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Hessian-based sampling – from local to global Hessian

Hessian at the mean: let (λk,ϕk)
K
k=1 denote the eigenpairs of H̃p̄ = CHp̄, or

equivalently the generalized eigenpairs of (Hp̄,C−1) for computational efficiency

Hp̄ϕk = λkC−1ϕk. (5)

Averaged Hessian: we can replace the Hessian at the mean by

H =

∫
P
Hpdµ(p) ≈ 1

M

M∑
m=1

Hpm , (6)

with pm sampled according to its probability distribution µ.

Combined Hessian: we compute the eigenvectors of Hessian at different samples

Hpmϕm
k = λm

k C−1ϕm
k , m = 1, . . . ,M. (7)

Then we combine them with weights (e.g. wm
k =

√
λm

k ) and compress them by SVD

Φ = (w1
1ϕ

1
1, . . . ,w

1
L1ϕ

1
L1
, . . . ,wM

1 ϕ
M
1 , . . . ,w

M
LMϕ

M
LM

). (8)
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Hessian-based sampling – Hessian action

We employ a Lagrange multiplier method to compute the action of Hessian:

L(u, v, p) = s(u) + f (v)− a(u, v; p), (9)

where v is the adjoint variable or the Lagrange multiplier.
With first order variation, we obtain the adjoint problem: find v ∈ V such that

a(w, v; p) = s(w) ∀w ∈ V. (10)

Given (u, v, p), we compute the Hessian action in p̂ by the second order variation ∂uuL ∂uvL ∂upL
∂vuL ∂vvL ∂vpL
∂puL ∂pvL ∂ppL

 û
v̂
p̂

 =

 0
0

Hpp̂

 , (11)

the incremental adjoint problem: find v̂ ∈ V such that

a(ũ, v̂; p) = −∂pa(ũ, v; p)p̂ ∀ũ ∈ V, (12)

the incremental state problem: find û ∈ V such that

a(û, ṽ; p) = −∂pa(u, ṽ; p)p̂ ∀ṽ ∈ V, (13)

and the Hessian action in direction p̂ as

Hpp̂ = −∂pa(û, v; p)− ∂pa(u, v̂; p)− ∂ppa(u, v; p)p̂. (14)
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Hessian-based sampling – Randomized SVD

Algorithm 1 Randomized SVD for generalized eigenvalue problem (Hp,C−1)

Input: Hp,C−1, the number of eigenpairs L, an oversampling factor l = 5 ∼ 10.
Output: eigenpairs (ΛL,ΨL) with ΛL = diag(λ1, . . . , λL) and ΨL = (ψ1, . . . , ψL).
1. Draw a Gaussian random matrix Ω ∈ RK×(L+l).
2. Compute Y = C(HpΩ).
3. Compute QR-factorization Y = QR such that Q>C−1Q = IL+l.
4. Form T = Q>HpQ and compute eigendecomposition T = SΛS>.
5. Extract ΛL = Λ(1 : L, 1 : L) and ΨL = QSL with SL = S(:, 1 : L).

Computational cost is dominated by two (so-called double pass algorithm)

HpΩ, HpQ

which needs 4(L + l) linearized PDE solves, i.e., incremental problems.

Approximation error is bounded by remaining eigenvalues ≤ C(L, l)(
∑

l≥L λ
2
l )

1/2.
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Heat conduction in thermal blocks

Let V denote a Hilbert space with dual V ′.
Given p ∈ P, µ-a.e., find u ∈ V such that

a(u, v; p) = f (v) ∀v ∈ V.

a(·, ·; p) : V × V → R is a bilinear form, e.g.,

a(u, v; p) =

∫
D
κ(p)∇u · ∇vdx.

f = 0, u = 1 on top, u = 0 on bottom.

The QoI s(u(p)) = 100
∫

[0,0.1]2 u(p)dx.

Nt = 1000, uniform mesh of 65× 65.

Ex 1. heat conduction in thermal blocks

κ(p) =
K∑

k=1

k−βχDk (x)pk, β = 1

p ∼ U([−
√

3,
√

3]K)
K = 162 = 256
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RB errors POD vs Greedy for solution
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RB errors POD vs Greedy for QoI

0 50 100 150 200
# RB basis functions (N)

10-6

10-5

10-4

10-3

10-2

10-1
re

la
ti

v
e
 e

rr
o
r

E[|sfe−srb|], POD, random

max[|sfe−srb|], POD, random

E[|sfe−srb|], Greedy, random

max[|sfe−srb|], Greedy, random

P. Chen (ICES – UT Austin) Hessian-based sampling for model order reduction 18 July, 2017 18 / 32



RB errors random vs Hessian for solution
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RB errors random vs Hessian for QoI
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RB errors with different # Hessian modes for solution
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RB errors with different # Hessian modes for QoI
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Decay of the eigenvalues of Hessian at mean
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Comparison of different Hessians for solution
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Comparison of different Hessians for QoI
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Subsurface flow in porous medium

Let V denote a Hilbert space with dual V ′.
Given p ∈ P, µ-a.e., find u ∈ V such that

a(u, v; p) = f (v) ∀v ∈ V.

a(·, ·; p) : V × V → R is a bilinear form, e.g.,

a(u, v; p) =

∫
D
κ(p)∇u · ∇vdx.

f = 0, u = 1 on top, u = 0 on bottom.

The QoI s(u(p)) = 100
∫

[0,0.1]2 u(p)dx.

Nt = 1000, uniform mesh of 129× 129.

Ex 2. subsurface flow in a porous medium

κ(p) = ep

log-normal diffusion with

p ∈ N (p̄,C), C = (−∆ + 0.5I)−2

K = 1292 = 16, 641
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RB errors random vs Hessian for solution

0 50 100 150 200
# RB basis functions (N)

10-3

10-2

10-1

100
re

la
ti

v
e
 e

rr
o
r

E[||ufe−urb||], POD, random

max[||ufe−urb||], POD, random

E[||ufe−urb||], POD, Hessian

max[||ufe−urb||], POD, Hessian

P. Chen (ICES – UT Austin) Hessian-based sampling for model order reduction 18 July, 2017 27 / 32



RB errors random vs Hessian for QoI

0 20 40 60 80 100
# RB basis functions (N)

10-4

10-3

10-2

10-1

100
re
la
ti
v
e
 e
rr
o
r

POD, random
POD, Hessian, 1
POD, Hessian, 3
POD, Hessian, 7
POD, Hessian, 15

P. Chen (ICES – UT Austin) Hessian-based sampling for model order reduction 18 July, 2017 28 / 32



Decay of eigenvalues of Hessian Hp̄ and covariance C
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Comparison of different Hessians for QoI
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Summary

Even the solution manifold is high-dimensional, the manifold of the QoI may be
low-dimensional, which can be detected by the eigenvalues of the Hessian.

A scalable Hessian-based sampling algorithm is developed, whose cost is
independent of the nominal dimensions but only intrinsic dimensions for QoI.

Further investigation on adaptive Hessian sampling, local–global sampling,
empirical interpolation, nonlinear problems, properties of different QoI.

Rigorous analysis of goal-oriented error estimate for Hessian-based sampling.

P. Chen, and O. Ghattas. Hessian-based sampling in high-dimensional parameter space for
goal-oriented model order reduction, preprint, 2017.

P. Chen, U. Villa, and O. Ghattas. Hessian-based adaptive sparse quadrature for
infinite-dimensional Bayesian inverse problems, preprint, 2017.

P. Chen, U. Villa, and O. Ghattas. Taylor approximation and variance reduction for
PDE-constrained optimal control problems under uncertainty, preprint, 2017.
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Parametrization Dimension Information

# pixels K = 642 # modes K = 64
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