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Representation of knowledge

Data from measurements, sensors, observations =
one form of knowledge about a system.
‘Big Data’ considers only data — looking for patterns, interpolating, etc.

Mathematical / computational models of a system represent another
form of knowledge — ‘structural’ knowledge — about a system.
These models are often generated based on general physical laws
(e.g. conservation laws), a very compressed form of knowledge.

These two views on systems are not in competition,
they are complementary.
The challenge is to combine these forms of knowledge
— in form of a synthesis.

Knowledge may be uncertain.
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Big Data 16th century

Tycho Brahe Johannes Kepler Isaac Newton Pierre-Simon Laplace

(1546 — 1601) (1571 - 1630) (1643 — 1727) (1749 - 1827)
Data Description Understanding Perfection

|. Newton: The latest authors, like the most ancient, strove to subordinate
the phenomena of nature to the laws of mathematics.

Kepler's 2nd law: (adapted from M. Ortiz)
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BIG DATA

Mathematically speaking, big data algorithms
(feature / pattern recognition) are
regression (generalised interpolation) methods.

Often based on deep artificial neural networks (deep ANNs),
combining many inputs (= high-dimensional data).

Deep networks are connected to
sparse tensor decompositions
(buzzword: deep-learning).

Although often spectacularly successful,
as knowledge representation, it is difficult to extract insight.

But there is a connection of such regression to Bayesian updating.
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Inference

Our uncertain knowledge about some situation is described
by probabilities. Now we obtain new information.
How does it change our knowledge — the probabilistic description?
Answered by T. Bayes and P.-S. Laplace more than 250 years ago.

Thomas Bayes Pierre-Simon Laplace
(1701 — 1761) (1749 — 1827)
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Synopsis of Bayesian inference

We have a some knowledge about an event A,
but it can not be observed directly.

After some new information B (an observation, a measurement),
our knowledge has to be made consistent with the new information,
i.e. we are looking for conditional probabilities P(A|B).

The idea is to change our present model by just so much
— as little as possible — so that it becomes consistent.

For this we have to predict — with our present knowledge / model —
the probability of all possible observations and
compare with the actual observation.
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Model inverse problem

Geometry

flow=0 " gources

flow out
‘/

Dirichlet b.c.

Aquifier 2D Model
Governing model equations:
0
Qa—?—v-(/{-Vu):f c G C R

Parameter ¢ = log k.
Conductivity field &, initial condition ug, and state u(¢) may be unknown.
They have to be determined from observations Y (q;u).
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A possible realisation of x(z,w)

A sample reglization
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Measurement patches

1 sessn e » ade agt ® .e
sonne o % 88y, 10 00 0%

. ™ [ 3 L3 . [
.'.“".'.C‘. ‘-00.-"'-'.
8 00,0 2% s ssaes % 0

LS SN SOOI M B

o tet0etelene L enee? te e

-
8 8,000 R, Sesesne’ene
00 00080, % 080 s e st
RSP ends o % 00 .
e e s et st e
se_a" s

0 a% 000 banat st pratesiee’,

. . * I ALAL]
LIRS '0..§ N g-"..,-
2e® Py e%en, WAL XY
0 5088 ssss
et s ee » won

PRAL XN R

se v o0’y

Cawtlee 0,

S p 8 S0, S,

- L LA I

e sene,

—_ sas, 0-00“ L
. E2SSLCOUME)
B8 0 s00te

4 0'0:1'1.-..'.'

Sl etatetonen®

0 %y 4% 00

1 ’ L] L]

05 ® o: .. Yo . 'o'o.o '
0 LY ...o. ...:.'.':.n

120 measurement patches

Braunschweig

R S
0.5
O" c":'-','c ::;;-c::::::-:'-;"'

1

10 measurement patches

e
Institute of Scientific Computing ,\d}‘
Vs

10



11

Convergence plot of updates
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Forecast and assimilated pdfs
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Forecast and assimilated probability density functions (pdfs)
for k at a point where k; = 2.
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Setting for identification

General idea:
We observe / measure a system, whose structure we know in principle.
The system behaviour depends on some quantities (parameters),
which we do not know = uncertainty.

We model (uncertainty in) our knowledge in a Bayesian setting:
as a probability distribution on the parameters.

We start with what we know a priori, then perform a measurement.
This gives new information, to update our knowledge (identification).

Update in probabilistic setting works with conditional probabilities
= Bayes's theorem.

Repeated measurements lead to better identification.

13
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Mathematical formulation of model

Consider operator equation, physical system modelled by A:
du + A(u; q)dt = gdt + B(u;q)dW u €U,

U — space of states, g a forcing, W noise, ¢ € Q unknown parameters.

Well-posed problem: for ¢, g and initial cond. u(tg) = ug
a unique solution u(t), given by the flow or solution operator,

S : (u()athCIag)Wat) — ’U,(t,Q) — S(u07t07Q7g7W7 t)

Set extended state £ = (u,q) € X =U x O,
advance from &, 1 = (Un_1,qn_1) at time t,_1 to &, = (un, q,) at t,,

gn :(un7 Qn) — (S(un—la tn—lv 4n, 9, Wa tn)7 Qn) —. f(fn—la wn—1)°
This is the model for the system observed at times t,,.
Applies also to stationary case A(u;q) = g.
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Mathematical formulation of observation

Measurement operator Y with values in ):

N =Y (Un;q) =Y (S(Un_1,tn-1,9,9, W,tn); q).

But observed at time t,,, it is noisy y,, with noise €,

YUn :H(Un, En) — H(Y(una Q)v en) —- h(gna en) — h(f(fn—la wn—1)7 en)-

For given g, w, measurement n = Y (u(q);q) is just a function of q.
This function is usually not invertible = ill-posed problem,
measurement 17 does not contain enough information.

Parameters ¢ and initial state ug uncertain, modelled as RVs
€E2=0R8S=ue =UXS, withe.g. S =15(2,P) a RV-space.

Bayesian setting allows updating of information about & = (u, q).
The problem of updating becomes well-posed.
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Mathematical formulation of filtering

We want to track the extended state &,
by a tracking equation for a RV z,, through observations gj,,.

Prediction / forecast state is a RV x,, = f(Tp—1, Wn—1);

Forecast observation is a RV y,, = h(z, ¢, €,), actual observation ¢,
Updated / assimilated z,, = zy, ¢ + = (Zn ) Yn, Un),

Hopefully xz,, =~ &,,, and the update map = has to be determined.
T i = Z(Tn,t,Yn, Yn) is called the innovation.

We concentrate on one step from forecast to assimilated variables.

Forecast state x s := x,,_f, forecast observation y¢ := y,,
Actual observation y and assimilated variable

To =rp+ Z(2p YY) = Tn = Tn g + S (@n,f, Yn,f Un).
This is the filtering or update equation.
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Setting for updating
Knowledge prior to new observation is also called forecast:

the state ur €  =U ® S and parameters g € 2 =0 ® S
modelled as random variables (RVs),
also the extended state x5 = (uy,qf) € £ =X ®S and
the measurement y(zs,e) €% =Y ®S.

Then an observation ¢ is performed,
and is compared to predicted measurement y(xy,€).

Bayes's theorem gives only probability distribution of
posterior or assimilated extended state z,,.

Here we want more: a filter z, := 2 + Z(xf,ys, 9).

17
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Using Bayes’'s theorem

Classically, Bayes's theorem gives conditional probability
P(My|Z.)

P(Z,) for P(M,) >0.

Well-known special form with densities of RVs z,y
(w.r.t. some background measure p):

_ Tay(®y) _ T le)
7T(x|y)($‘y) — Wy(y) — Z, ”3( )’

with marginal density Z, := 7, (y) = [, mzy(x,y) p(dz)
(from German Zustandssumme) — only valid when 7., (x,y) exists.

Problems / paradoxa appear when P(M,) =0 (and P(M,|Z,) = 0)
e.g. Borel-Kolmogorov paradox. Problem is limit P(M,,) — 0,
or when no joint density 7., (x,y) exists.

18
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Conditional probability

“Many quite futile arguments have raged—between otherwise competent
probabilists—over which of these results is 'correct’.” E.T. Jaynes

“The concept of a conditional probability with regard to an isolated
hypothesis whose probability equals zero is inadmissible.” A. Kolmogorov

= How to use conditioning in these typical singular cases,
where Bayes's formula is not applicable? <

With posterior / conditional measure ]P( M,,) one may compute
the conditional expectation E (¢|M,) = [, ¥(w) P(dw|M,).

Kolmogorov turns it around and starts from conditional expectation
operator E (-] M,,), from this conditional probability via

P(Z,|M,) =E1g,|M,), 1z, (&) =1for& € Z,, 0 otherwise.
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Conditional expectation and probability

Expectation of a RV ¢: E () = [, ¥(w) P(dw).

E () as a functional Ly(£2,20) =S — R, but also orthogonal projection
E:S=span{lp}®{p e S|E(¢p) =0} = span{lp}, (Ap=1).
Conditional expectation is an orthogonal projection onto subspaces
Lo(£2,8,P) =: S, defined by sub-o-algebras 96 C A:

Here B = o(y) — generated by measurement y, and
the subspace S is the space of all (measurable) functions of .

E(-|lo(y)) :== E(|B) : La(2,2) =S = Soo @ S — Se

Call E(-|y) := E(:|o(y)) =: P the pre-conditional expectation.
E(y|y) € Sso is @ RV, because y is. After observing ¢ one has
post-conditional expectation E(1|7) € R—new expectation after new 7.

The state of knowledge has changed, hence so has the expectation.
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Conditional expectation

With orthogonal direct sum S = S, @ SL one has decomposition

Y = Poctp + (I — Poo)¥ = E(¢]y) + (¥ — E(¥]y)).
According to Pythagoras:

9115 = [[Pctll5 + (1= Poc)¥l5 = E@ 9IS + (¥ — E(]y))lls
Simple cases:
1. B={2,0} = E(-|B) =E(:), the normal expectation.
2.8 =A=E(:|*B) =1Ip,, the identity on Lo(£2,2(, P).
3. In our case B = o(y), the o-algebra generated by
measurement RV y (not so simple!).

Question: How to compute P, = E (-|y), and
how to build filter = to obtain x, :=x¢ + = (z¢,ys,9)7?
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Representing and using the conditional expectation

As P, = E (-|y) is an orthogonal projection, for any 1
E(¢(x)]y) := Poo(1(x)) = arg min [[¢)(z) — p||3

PESo
The subspace S, represents the available information,
conditional expectation Pt minimises @(-) := ||1(x) — (+)||% over Seo.

More general loss functions than minimising mean square error (MMSE)
are possible, used in decision processes.

Taking 91(z) = x, one obtains Poox = E (z|y) and /7 := E (z|9).

Taking 1o(7) = v ® x = %2, one obtains Po(z ® ) = E (z ® x|y),
from which one may compute the post-conditional covariance of x:

covl? = E(z @ z|§) — 29 ® z!9.
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Update through conditional expectation

Reminder: want to find mapping / filter = for assimilated z,:

Lg :— L f +E(xfayf7:&)7
r, with Bayesian posterior distribution resp. E (¢(x,)|y) for all 9.
As Bayesian update is costly, several approximations possible:

e The conditional expectation (CE-filter) update, with correct E (x,|7).

e Approximated by linearised version of the CE-update — the
Gauss-Markov-Kalman filter (GMKF), where = is linear in § — y.

e The conditional expectation variance (CEV) update, both
conditional expectation and covariance of z, are correct.

e Approximated by linearised version of the CEV-update; (best linear =).
e Computing an expansion (with truncation) of =, resp. x,.

e Better approximations using conditional expectation . . .
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Possibility: CE-update / filter

The space S, = La($2,0(y),P) is the space of all
functions of measurement / observation y. Taking first ¢(z) = x

E(z|y) =: d.(y) = argmin{flz —p[§:p € S ={p €S :p = 0(y)}}.
With this operator (conditional expectation) one may construct

a new RV x, with correct posterior.

First step: the “"MMSE Bayesian update” x, with
correct conditional expectation z!¥ (CE-filter).
As E (z|y) =: Pyx is orthogonal projection onto S, one has

S=8.®S5 = v=Pur+(I— P)z = duly) + (z — 6u(y)).

From this zq &~ (7)) + (27 — ¢2(y5)) = x5 + (02(9) — 02(yy))-
Obviously E (z4|9) = E (x¢|§) = ¢.(9) = z!7.
Further improvements by transforming x, — 219 =z — ¢, (y7).
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BIG DATA — Gauss-Markov-Kalman filter

If one only wants E (z¢]7) = ¢.(9) = 2|7, then the function
¢, can be found through regression or machine learning / deep networks.
Estimation of (x s — ¢.(y¢)) is possible.
Further simplification / approximation:
if only linear (affine) functions ¢(y) = Ay + b are allowed:

ny+c:argmin{|]x—p||?g peS ={peS:p=Ay+b}},

bx(y) ~ K,y + ¢ =: Pz with Kdlman gain K,. As §; C S,
Iz — ¢(W)|ls = llz — Poozllg < ||z — Prz]|5 = llz — (Ko y + o) |5

EE—

From Kalman gain K,
= Gauss-Markov-Kalman filter (GMKF) |

2o xp 4+ (Kp§ — Koyp) =25+ K9 — yy). Rudolf Kalman
(1930 — 2016)
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Numerical Remarks

e Parametric or stochastic problems — like stochastic PDEs —
lead to solutions (states) in tensor product space.

e Stochastic forward solution allows identification
e 'Curse of dimensionality” has to be controlled.

e Reduced order models can yield sparse (or low-rank) representations,
with all work carried out on the low-rank approximation.

e After solution has been computed, is has to be processed further.

e If further processing is a tensor function, this might often be
computed with little effort.
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Computation of conditional expectation

Minimisation to compute conditional expectation for any RV ) (x):
E (¢]y) := Pot) = dy(y) == arg min [[¢(z) — |35

PESco
Variational equation / Galerkin condition from minimisation:

Vp € St (U(x) — dy(y) | p)s = E ((¥(z) — ¢u(y)) - p) =0.
GMKF was obtained by Galerkin approximation &1 C S...

Minimisation may also be performed by Gauss-Newton methods.
Each iteration looks similar to Gauss-Markov-Kalman-filter (GMKEF).
Various variations of iteration are possible,

e.g. BFGS-methods instead of Gauss-Newton.

In any case, it is in principle possible to compute E (¢(x)|y) for any RV
Y(x) to any desired accuracy, including a posteriori error control.
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Example 1: ldentification of multi-modal dist

Setup: Scalar RV x with
non-Gaussian multi-modal (a) N =1
“truth” p(x); wide Gaussian prior; = 1
“large” Gaussian measurement —ooackee . S

Errors.

Aim: Identification of p(x).

10 updates of N = 10,100, 1000
measurements.

Filter: GMK-filter
— optimal linear filter —
in PCE representation

.-i.' T T o

2 4

-
—_—

------ posterior
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Example 2: Lorenz-84 chaotic model

Jf
Setup: Non-linear, chaotic system ™
uw= f(u), u=|z,y, 2| 1
Small uncertainties in initial 05

conditions ug have large impact. « o %

Aim: Sequentially identify state u;. *°
Methods: GMK-filter in B
PCE representation |

and PCE updating s 4 i o5 o o5 1 15 s s
y

Poincaré cut for x = 1.
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Example 2: Lorenz-84 PCE representation

PCE: Variance
reduction and shift of
mean at update points.

Skewed structure clearly
visible, preserved by
updates.

0 10 20 30 40 50 60 70 80 90
time (days)
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Summary

e UQ allows stochastic inverse identification as a well-posed problem,
this Bayesian update is based on conditioning.

e Conditional probability is based on conditional expectation,
starting point for numerics, connects to MMSE.

e Bayesian update may be presented as a filter,
a simple approximation is GMKF, even simpler by machine learning.

e Works for

— non-Gaussian distributions.
— linear and nonlinear models and observation operator Y .
— possible for ODEs, PDEs, processes, fields, etc.
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