Conditional Expectation as the Basis for Bayesian Updating

Hermann G. Matthies

Bojana V. Rosić, Elmar Zander, Alexander Litvinenko, Oliver Pajonk

Institute of Scientific Computing, TU Braunschweig Brunswick, Germany

wire@tu-bs.de

http://www.wire.tu-bs.de

Overview

- 1. BIG DATA
- 2. Parameter identification
- 3. Stochastic identification Bayes's theorem
- 4. Conditional probability and conditional expectation
- 5. Updating filtering.

Representation of knowledge

Data from measurements, sensors, observations \Rightarrow one form of knowledge about a system.

'Big Data' considers only data — looking for patterns, interpolating, etc.

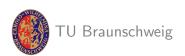
Mathematical / computational models of a system represent another form of knowledge — 'structural' knowledge — about a system.
 These models are often generated based on general physical laws (e.g. conservation laws), a very compressed form of knowledge.

These two views on systems are not in competition, they are complementary.

The challenge is to combine these forms of knowledge

— in form of a synthesis.

Knowledge may be uncertain.



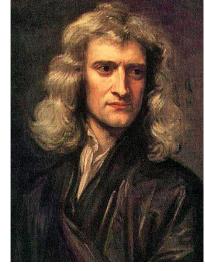
Big Data 16th century

Treto Brahe

Tycho Brahe (1546 – 1601)

Data

Johannes Kepler (1571 – 1630) <mark>Description</mark>

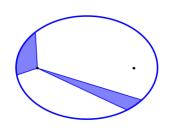


Isaac Newton (1643 – 1727) <mark>Understanding</mark>

Pierre-Simon Laplace (1749 – 1827) Perfection

I. Newton: The latest authors, like the most ancient, strove to subordinate the phenomena of nature to the laws of mathematics.

Kepler's 2nd law:



(adapted from M. Ortiz)

Institute of Scientific Computing

BIG DATA

Mathematically speaking, big data algorithms (feature / pattern recognition) are regression (generalised interpolation) methods.

Often based on deep artificial neural networks (deep ANNs), combining many inputs (= high-dimensional data).

Deep networks are connected to sparse tensor decompositions (buzzword: deep-learning).

Although often spectacularly successful, as knowledge representation, it is difficult to extract insight.

But there is a connection of such regression to Bayesian updating.

Inference

Our uncertain knowledge about some situation is described by probabilities. Now we obtain new information.
How does it change our knowledge — the probabilistic description?
Answered by T. Bayes and P.-S. Laplace more than 250 years ago.

Thomas Bayes (1701 – 1761)

Pierre-Simon Laplace (1749 – 1827)

Synopsis of Bayesian inference

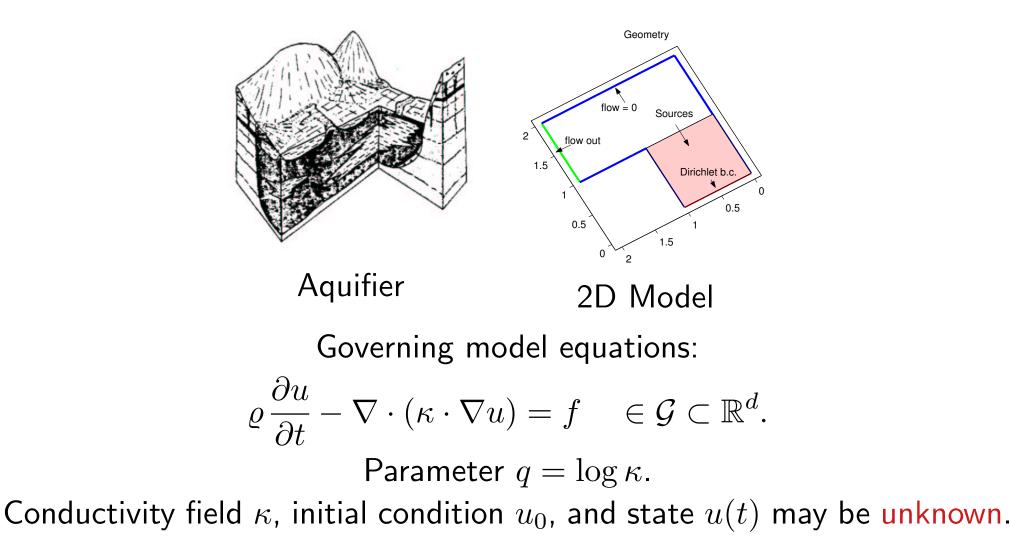
We have a some knowledge about an event \mathcal{A} , but it can not be observed directly.

After some new information \mathcal{B} (an observation, a measurement), our knowledge has to be made consistent with the new information, i.e. we are looking for conditional probabilities $\mathbb{P}(\mathcal{A}|\mathcal{B})$.

The idea is to change our present model by just so much — as little as possible — so that it becomes consistent.

For this we have to predict — with our present knowledge / model — the probability of all possible observations and compare with the actual observation.

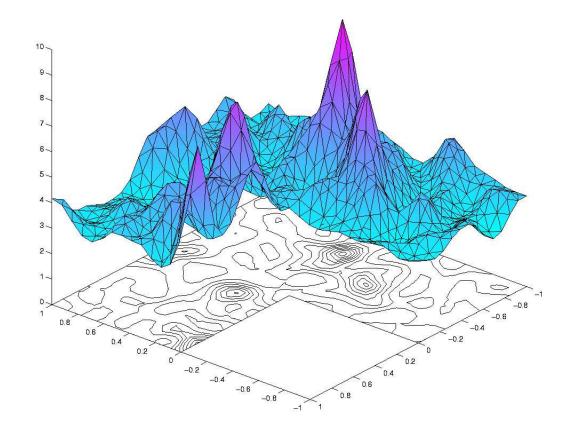
Model inverse problem



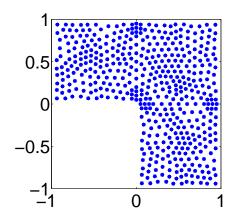
They have to be determined from observations Y(q; u).

A possible realisation of $\kappa(x,\omega)$

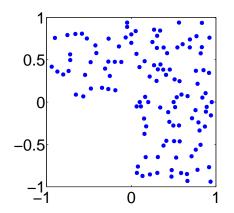
A sample realization



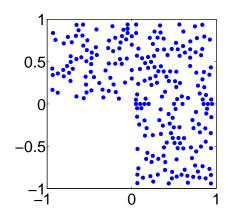
Measurement patches



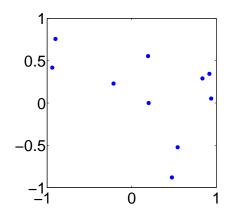
447 measurement patches



120 measurement patches

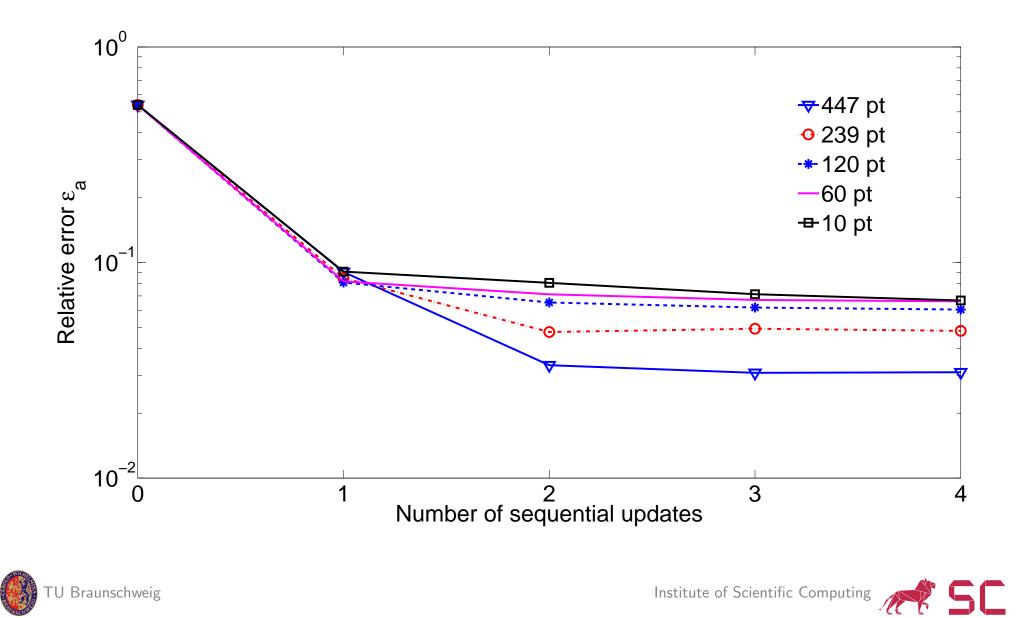


239 measurement patches

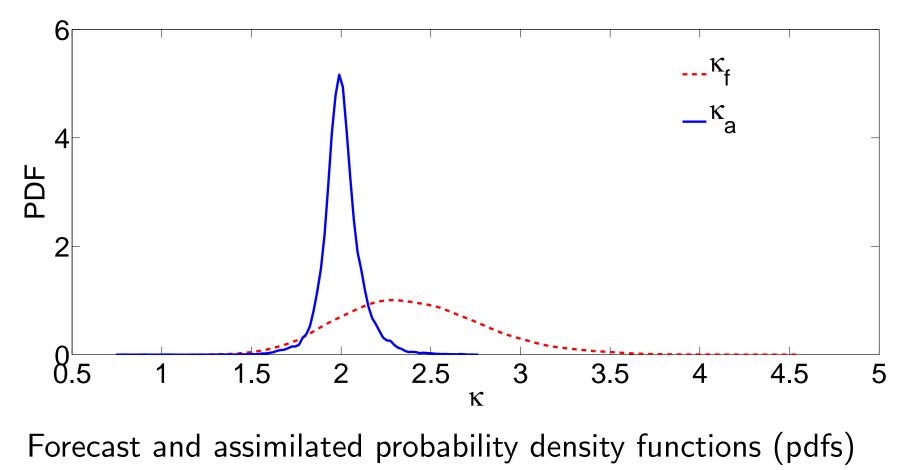


10 measurement patches

Convergence plot of updates



Forecast and assimilated pdfs



for κ at a point where $\kappa_t = 2$.

Institute of Scientific Computing

Setting for identification

General idea:

We observe / measure a system, whose structure we know in principle. The system behaviour depends on some quantities (parameters), which we do not know \Rightarrow uncertainty.

We model (uncertainty in) our knowledge in a Bayesian setting: as a probability distribution on the parameters.

We start with what we know a priori, then perform a measurement. This gives new information, to update our knowledge (identification).

Update in probabilistic setting works with conditional probabilities \Rightarrow Bayes's theorem.

Repeated measurements lead to better identification.

Mathematical formulation of model

Consider operator equation, physical system modelled by A:

$$du + A(u;q) dt = g dt + B(u;q) dW \qquad u \in \mathcal{U},$$

 \mathcal{U} — space of states, g a forcing, W noise, $q \in \mathcal{Q}$ unknown parameters.

Well-posed problem: for q, g and initial cond. $u(t_0) = u_0$ a unique solution u(t), given by the flow or solution operator,

$$S: (u_0, t_0, q, g, W, t) \mapsto u(t; q) = S(u_0, t_0, q, g, W, t).$$

Set extended state $\xi = (u, q) \in \mathcal{X} = \mathcal{U} \times \mathcal{Q}$, advance from $\xi_{n-1} = (u_{n-1}, q_{n-1})$ at time t_{n-1} to $\xi_n = (u_n, q_n)$ at t_n , $\xi_n = (u_n, q_n) = (S(u_{n-1}, t_{n-1}, q_n, g, W, t_n), q_n) =: f(\xi_{n-1}, w_{n-1}).$

> This is the model for the system observed at times t_n . Applies also to stationary case A(u;q) = g.

Mathematical formulation of observation

Measurement operator Y with values in \mathcal{Y} :

$$\eta_n = Y(u_n; q) = Y(S(u_{n-1}, t_{n-1}, q, g, W, t_n); q).$$

But observed at time t_n , it is noisy y_n with noise ϵ_n

 $y_n = H(\eta_n, \epsilon_n) = H(Y(u_n; q), \epsilon_n) =: h(\xi_n, \epsilon_n) = h(f(\xi_{n-1}, w_{n-1}), \epsilon_n).$

For given g, w, measurement $\eta = Y(u(q); q)$ is just a function of q. This function is usually not invertible \Rightarrow ill-posed problem, measurement η does not contain enough information.

Parameters q and initial state u_0 uncertain, modelled as RVs $q \in \mathscr{Q} = \mathscr{Q} \otimes \mathscr{S} \Rightarrow u \in \mathscr{U} = \mathscr{U} \otimes \mathscr{S}$, with e.g. $\mathscr{S} = L_2(\Omega, \mathbb{P})$ a RV-space.

Bayesian setting allows updating of information about $\xi = (u, q)$. The problem of updating becomes well-posed.

Mathematical formulation of filtering

We want to track the extended state ξ_n by a tracking equation for a RV x_n through observations \hat{y}_n .

- Prediction / forecast state is a RV $x_{n,f} = f(x_{n-1}, w_{n-1})$;
- Forecast observation is a RV $y_n = h(x_{n,f}, \epsilon_n)$, actual observation \hat{y}_n ,
- Updated / assimilated $x_n = x_{n,f} + \Xi(x_{n,f}, y_n, \hat{y}_n)$,
- Hopefully $x_n \approx \xi_n$, and the update map Ξ has to be determined. $x_{n,i} := \Xi(x_{n,f}, y_n, \hat{y}_n)$ is called the innovation.

We concentrate on one step from forecast to assimilated variables.

- Forecast state $x_f := x_{n,f}$, forecast observation $y_f := y_n$,
- Actual observation \hat{y} and assimilated variable

$$x_a := x_f + \Xi(x_f, y_f, \hat{y}) = x_n = x_{n,f} + \Xi(x_{n,f}, y_{n,f}, \hat{y}_n).$$

This is the filtering or update equation.

Setting for updating

Knowledge prior to new observation is also called forecast:

the state $u_f \in \mathscr{U} = \mathcal{U} \otimes S$ and parameters $q_f \in \mathscr{Q} = \mathcal{Q} \otimes S$ modelled as random variables (RVs), also the extended state $x_f = (u_f, q_f) \in \mathscr{X} = \mathcal{X} \otimes S$ and the measurement $y(x_f, \varepsilon) \in \mathscr{Y} = \mathcal{Y} \otimes S$.

Then an observation \hat{y} is performed, and is compared to predicted measurement $y(x_f, \varepsilon)$.

Bayes's theorem gives only probability distribution of posterior or assimilated extended state x_a .

Here we want more: a filter $x_a := x_f + \Xi(x_f, y_f, \hat{y})$.

Using Bayes's theorem

Classically, Bayes's theorem gives conditional probability $\mathbb{P}(\mathcal{I}_x|\mathcal{M}_y) = \frac{\mathbb{P}(\mathcal{M}_y|\mathcal{I}_x)}{\mathbb{P}(\mathcal{M}_y)} \mathbb{P}(\mathcal{I}_x) \quad \text{for} \quad \mathbb{P}(\mathcal{M}_y) > 0.$

Well-known special form with densities of RVs x, y(w.r.t. some background measure μ):

$$\pi_{(x|y)}(x|y) = \frac{\pi_{xy}(x,y)}{\pi_y(y)} = \frac{\pi_{(y|x)}(y|x)}{Z_y}\pi_x(x);$$

with marginal density $Z_y := \pi_y(y) = \int_{\mathcal{X}} \pi_{xy}(x,y) \, \mu(\mathrm{d}x)$ (from German Zustandssumme) — only valid when $\pi_{xy}(x,y)$ exists.

Problems / paradoxa appear when $\mathbb{P}(\mathcal{M}_y) = 0$ (and $\mathbb{P}(\mathcal{M}_y | \mathcal{I}_x) = 0$) e.g. Borel-Kolmogorov paradox. Problem is limit $\mathbb{P}(\mathcal{M}_u) \to 0$, or when no joint density $\pi_{xy}(x,y)$ exists.

Conditional probability

"Many quite futile arguments have raged—between otherwise competent probabilists—over which of these results is 'correct'." E.T. Jaynes

"The concept of a conditional probability with regard to an isolated hypothesis whose probability equals zero is inadmissible." A. Kolmogorov

- \Rightarrow How to use conditioning in these typical singular cases, where Bayes's formula is **not** applicable? *\leftarrow*
- With posterior / conditional measure $\mathbb{P}(\cdot|\mathcal{M}_y)$ one may compute the conditional expectation $\mathbb{E}(\psi|\mathcal{M}_y) = \int_{\Omega} \psi(\omega) \mathbb{P}(\mathrm{d}\omega|\mathcal{M}_y).$

Kolmogorov turns it around and starts from conditional expectation operator $\mathbb{E}(\cdot | \mathcal{M}_{y})$, from this conditional probability via

 $\mathbb{P}(\mathcal{I}_x|\mathcal{M}_y) := \mathbb{E}\left(\mathbf{1}_{\mathcal{I}_x}|\mathcal{M}_y\right), \quad \mathbf{1}_{\mathcal{I}_x}(\xi) = 1 \text{ for } \xi \in \mathcal{I}_x, 0 \text{ otherwise.}$

Conditional expectation and probability

Expectation of a RV ψ : $\mathbb{E}(\psi) = \int_{\Omega} \psi(\omega) \mathbb{P}(d\omega)$.

 $\mathbb{E}(\cdot)$ as a functional $L_2(\Omega, \mathfrak{A}) = S \to \mathbb{R}$, but also orthogonal projection

 $\mathbb{E}: \mathcal{S} = \operatorname{span}\{\mathbf{1}_{\Omega}\} \oplus \{\phi \in \mathcal{S} \mid \mathbb{E}(\phi) = 0\} \to \operatorname{span}\{\mathbf{1}_{\Omega}\}, \quad (\mathbf{1}_{\Omega} \equiv 1).$

Conditional expectation is an orthogonal projection onto subspaces $L_2(\Omega, \mathfrak{B}, \mathbb{P}) =: \mathcal{S}_{\infty}$ defined by sub- σ -algebras $\mathfrak{B} \subseteq \mathfrak{A}$: Here $\mathfrak{B} = \sigma(y)$ — generated by measurement y, and the subspace \mathcal{S}_{∞} is the space of all (measurable) functions of y.

 $\mathbb{E}(\cdot|\sigma(y)) := \mathbb{E}(\cdot|\mathfrak{B}) : L_2(\Omega,\mathfrak{A}) = \mathcal{S} = \mathcal{S}_{\infty} \oplus \mathcal{S}_{\infty}^{\perp} \to \mathcal{S}_{\infty}$

Call $\mathbb{E}(\cdot|y) := \mathbb{E}(\cdot|\sigma(y)) =: P_{\infty}$ the pre-conditional expectation. $\mathbb{E}(\psi|y) \in \mathcal{S}_{\infty}$ is a RV, because y is. After observing \hat{y} one has post-conditional expectation $\mathbb{E}(\psi|\hat{y}) \in \mathbb{R}$ —new expectation after new \hat{y} .

The state of knowledge has changed, hence so has the expectation.

Conditional expectation

With orthogonal direct sum $\mathcal{S} = \mathcal{S}_{\infty} \oplus \mathcal{S}_{\infty}^{\perp}$ one has decomposition

$$\psi = P_{\infty}\psi + (\mathbf{I} - P_{\infty})\psi = \mathbb{E}(\psi|y) + (\psi - \mathbb{E}(\psi|y)).$$

According to Pythagoras:

 $\|\psi\|_{\mathcal{S}}^{2} = \|P_{\infty}\psi\|_{\mathcal{S}}^{2} + \|(I - P_{\infty})\psi\|_{\mathcal{S}}^{2} = \|\mathbb{E}(\psi|y)\|_{\mathcal{S}}^{2} + \|(\psi - \mathbb{E}(\psi|y))\|_{\mathcal{S}}^{2}$ Simple cases:

- 1. $\mathfrak{B} = \{\Omega, \emptyset\} \Rightarrow \mathbb{E}(\cdot | \mathfrak{B}) = \mathbb{E}(\cdot)$, the normal expectation.
- 2. $\mathfrak{B} = \mathfrak{A} \Rightarrow \mathbb{E}(\cdot|\mathfrak{B}) = I_{L_2}$, the identity on $L_2(\Omega, \mathfrak{A}, \mathbb{P})$.
- 3. In our case $\mathfrak{B} = \sigma(y)$, the σ -algebra generated by measurement RV y (not so simple!).

Question: How to compute $P_{\infty} = \mathbb{E}(\cdot|y)$, and how to build filter Ξ to obtain $x_a := x_f + \Xi(x_f, y_f, \hat{y})$?

Representing and using the conditional expectation

As
$$P_{\infty} = \mathbb{E}(\cdot|y)$$
 is an orthogonal projection, for any ψ
 $\mathbb{E}(\psi(x)|y) := P_{\infty}(\psi(x)) = \arg\min_{p \in S_{\infty}} \|\psi(x) - p\|_{S}^{2}$

The subspace S_{∞} represents the available information, conditional expectation $P_{\infty}\psi$ minimises $\Phi(\cdot) := \|\psi(x) - (\cdot)\|_{\mathcal{S}}^2$ over \mathcal{S}_{∞} .

More general loss functions than minimising mean square error (MMSE) are possible, used in decision processes.

Taking
$$\psi_1(x) = x$$
, one obtains $P_{\infty}x = \mathbb{E}(x|y)$ and $\bar{x}^{|\hat{y}|} := \mathbb{E}(x|\hat{y})$.

Taking $\psi_2(x) = x \otimes x = x^{\otimes 2}$, one obtains $P_{\infty}(x \otimes x) = \mathbb{E}(x \otimes x|y)$, from which one may compute the post-conditional covariance of x:

$$\operatorname{cov}_{x}^{|\hat{y}|} = \mathbb{E}\left(x \otimes x | \hat{y}\right) - \bar{x}^{|\hat{y}|} \otimes \bar{x}^{|\hat{y}|}.$$

Reminder: want to find mapping / filter Ξ for assimilated x_a :

$$x_a := x_f + \Xi(x_f, y_f, \hat{y});$$

 x_a with Bayesian posterior distribution resp. $\mathbb{E}(\psi(x_a)|\hat{y})$ for all ψ . As Bayesian update is costly, several approximations possible:

- The conditional expectation (CE-filter) update, with correct $\mathbb{E}(x_a|\hat{y})$.
- Approximated by linearised version of the CE-update the Gauss-Markov-Kalman filter (GMKF), where Ξ is linear in $\hat{y} y$.
- The conditional expectation variance (CEV) update, both conditional expectation and covariance of x_a are correct.
- Approximated by linearised version of the CEV-update; (best linear Ξ).
- Computing an expansion (with truncation) of Ξ , resp. x_a .
- Better approximations using conditional expectation . . .

Possibility: CE-update / filter

The space $\mathcal{S}_{\infty} = L_2(\Omega, \sigma(y), \mathbb{P})$ is the space of all functions of measurement / observation y. Taking first $\psi(x) = x$ $\mathbb{E}(x|y) := \phi_x(y) = \arg\min\{\|x - p\|_{\mathcal{S}}^2 : p \in \mathcal{S}_{\infty} = \{p \in \mathcal{S} : p = \varphi(y)\}\}.$ With this operator (conditional expectation) one may construct a new RV x_a with correct posterior. First step: the "MMSE Bayesian update" x_a with correct conditional expectation $\bar{x}^{|\hat{y}|}$ (CE-filter). As $\mathbb{E}(x|y) =: P_{\infty}x$ is orthogonal projection onto \mathcal{S}_{∞} , one has $\mathcal{S} = \mathcal{S}_{\infty} \oplus \mathcal{S}_{\infty}^{\perp} \Rightarrow x = P_{\infty}x + (I - P_{\infty})x = \phi_x(y) + (x - \phi_x(y)).$ From this $x_a \approx \phi_x(\hat{y}) + (x_f - \phi_x(y_f)) = x_f + (\phi_x(\hat{y}) - \phi_x(y_f)).$ Obviously $\mathbb{E}(x_a|\hat{y}) = \mathbb{E}(x_f|\hat{y}) = \phi_x(\hat{y}) = \bar{x}^{|\hat{y}|}$. Further improvements by transforming $x_a - \bar{x}^{|\hat{y}|} = x_f - \phi_x(y_f)$.

BIG DATA — Gauss-Markov-Kálmán filter

If one only wants $\mathbb{E} (x_f | \hat{y}) = \phi_x(\hat{y}) = \bar{x}^{|\hat{y}|}$, then the function ϕ_x can be found through regression or machine learning / deep networks. Estimation of $(x_f - \phi_x(y_f))$ is possible. Further simplification / approximation: if only linear (affine) functions $\varphi(y) = Ay + b$ are allowed: $K_x y + c = \arg \min\{||x - p||_S^2 : p \in S_1 := \{p \in S : p = Ay + b\}\},$ $\phi_x(y) \approx K_x y + c =: P_1 x$ with Kálmán gain K_x . As $S_1 \subseteq S_\infty$, $||x - \phi_x(y)||_S^2 = ||x - P_\infty x||_S^2 \le ||x - P_1 x||_S^2 = ||x - (K_x y + c)||_S^2.$

From Kálmán gain K_x \Rightarrow Gauss-Markov-Kálmán filter (GMKF)

 $x_a \approx x_f + (K_x \,\hat{y} - K_x \, y_f) = x_f + K_x (\hat{y} - y_f).$

Rudolf Kálmán (1930 – 2016)

Numerical Remarks

- Parametric or stochastic problems like stochastic PDEs lead to solutions (states) in tensor product space.
- Stochastic forward solution allows identification
- "Curse of dimensionality" has to be controlled.
- Reduced order models can yield sparse (or low-rank) representations, with all work carried out on the low-rank approximation.
- After solution has been computed, is has to be processed further.
- If further processing is a tensor function, this might often be computed with little effort.

Computation of conditional expectation

Minimisation to compute conditional expectation for any RV $\psi(x)$:

$$\mathbb{E}(\psi|y) := P_{\infty}\psi = \phi_{\psi}(y) := \arg\min_{p \in \mathcal{S}_{\infty}} \|\psi(x) - p\|_{\mathcal{S}}^{2}.$$

Variational equation / Galerkin condition from minimisation:

 $\forall p \in \mathcal{S}_{\infty} : \quad \langle \psi(x) - \phi_{\psi}(y) \mid p \rangle_{\mathcal{S}} = \mathbb{E}\left((\psi(x) - \phi_{\psi}(y)) \cdot p \right) = 0.$

GMKF was obtained by Galerkin approximation $S_1 \subseteq S_{\infty}$.

Minimisation may also be performed by Gauss-Newton methods. Each iteration looks similar to Gauss-Markov-Kalman-filter (GMKF). Various variations of iteration are possible, e.g. BFGS-methods instead of Gauss-Newton.

In any case, it is in principle possible to compute $\mathbb{E}\left(\psi(x)|y\right)$ for any RV $\psi(x)$ to any desired accuracy, including a posteriori error control.

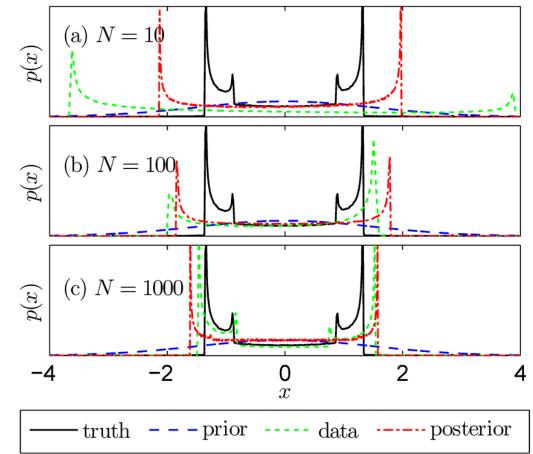
Example 1: Identification of multi-modal dist

Setup: Scalar RV x with non-Gaussian multi-modal "truth" p(x); wide Gaussian prior; "large" Gaussian measurement errors.

Aim: Identification of p(x).

10 updates of N = 10, 100, 1000 measurements.

Filter: GMK-filter — optimal linear filter in PCE representation



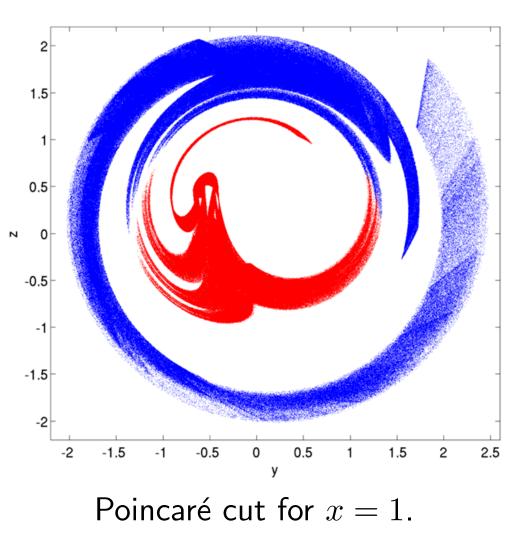


Example 2: Lorenz-84 chaotic model

Setup: Non-linear, chaotic system $\dot{u} = f(u), \ u = [x, y, z]$ Small uncertainties in initial conditions u_0 have large impact.

Aim: Sequentially identify state u_t .

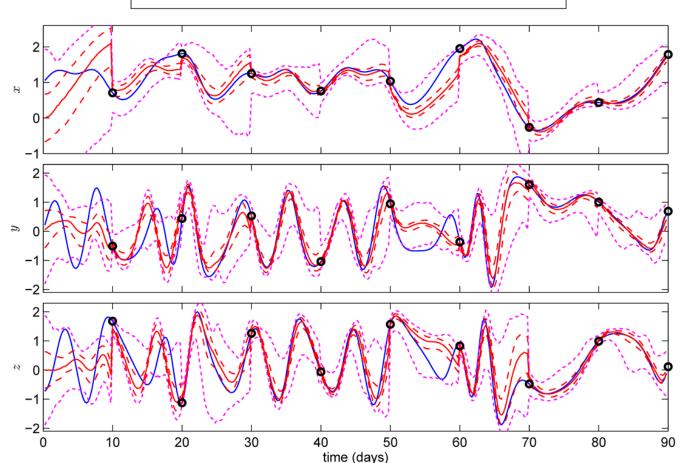
Methods: GMK-filter in PCE representation and PCE updating



Example 2: Lorenz-84 PCE representation

PCE: Variance reduction and shift of mean at update points.

Skewed structure clearly visible, preserved by updates.



-truth ----- $p_5(\mathbf{X}), p_{95}(\mathbf{X}) - - - p_{25}(\mathbf{X}), p_{75}(\mathbf{X})$ -

 $-p_{50}(\mathbf{X})$

Summary

- UQ allows stochastic inverse identification as a well-posed problem, this Bayesian update is based on conditioning.
- Conditional probability is based on conditional expectation, starting point for numerics, connects to MMSE.
- Bayesian update may be presented as a filter, a simple approximation is GMKF, even simpler by machine learning.
- Works for
 - non-Gaussian distributions.
 - linear and nonlinear models and observation operator Y.
 - possible for ODEs, PDEs, processes, fields, etc.

