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Overview

1. BIG DATA

2. Parameter identification

3. Stochastic identification — Bayes’s theorem

4. Conditional probability and conditional expectation

5. Updating — filtering.
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Representation of knowledge

Data from measurements, sensors, observations ⇒
one form of knowledge about a system.

‘Big Data’ considers only data — looking for patterns, interpolating, etc.

Mathematical / computational models of a system represent another

form of knowledge — ‘structural’ knowledge — about a system.

These models are often generated based on general physical laws

(e.g. conservation laws), a very compressed form of knowledge.

These two views on systems are not in competition,

they are complementary.

The challenge is to combine these forms of knowledge

— in form of a synthesis.

Knowledge may be uncertain.
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Big Data 16th century

Tycho Brahe

(1546 – 1601)

Data

Johannes Kepler

(1571 – 1630)

Description

Isaac Newton

(1643 – 1727)

Understanding

Pierre-Simon Laplace

(1749 – 1827)

Perfection
I. Newton: The latest authors, like the most ancient, strove to subordinate

the phenomena of nature to the laws of mathematics.

Kepler’s 2nd law: (adapted from M. Ortiz)
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BIG DATA

Mathematically speaking, big data algorithms

(feature / pattern recognition) are

regression (generalised interpolation) methods.

Often based on deep artificial neural networks (deep ANNs),

combining many inputs (= high-dimensional data).

Deep networks are connected to

sparse tensor decompositions

(buzzword: deep-learning).

Although often spectacularly successful,

as knowledge representation, it is difficult to extract insight.

But there is a connection of such regression to Bayesian updating.
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Inference

Our uncertain knowledge about some situation is described

by probabilities. Now we obtain new information.

How does it change our knowledge — the probabilistic description?

Answered by T. Bayes and P.-S. Laplace more than 250 years ago.

Thomas Bayes

(1701 – 1761)

Pierre-Simon Laplace

(1749 – 1827)
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Synopsis of Bayesian inference

We have a some knowledge about an event A,

but it can not be observed directly.

After some new information B (an observation, a measurement),

our knowledge has to be made consistent with the new information,

i.e. we are looking for conditional probabilities P(A|B).

The idea is to change our present model by just so much

— as little as possible — so that it becomes consistent.

For this we have to predict — with our present knowledge / model —

the probability of all possible observations and

compare with the actual observation.
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Model inverse problem

Aquifier
0

0.5

1

1.5

2

0

0.5

1

1.5

2

Geometry

flow out 

Dirichlet b.c. 

flow = 0 Sources

2D Model

Governing model equations:

%
∂u

∂t
−∇ · (κ · ∇u) = f ∈ G ⊂ Rd.

Parameter q = log κ.

Conductivity field κ, initial condition u0, and state u(t) may be unknown.

They have to be determined from observations Y (q;u).
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A possible realisation of κ(x, ω)
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Measurement patches
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Convergence plot of updates
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Forecast and assimilated pdfs
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Setting for identification

General idea:

We observe / measure a system, whose structure we know in principle.

The system behaviour depends on some quantities (parameters),

which we do not know ⇒ uncertainty.

We model (uncertainty in) our knowledge in a Bayesian setting:

as a probability distribution on the parameters.

We start with what we know a priori, then perform a measurement.

This gives new information, to update our knowledge (identification).

Update in probabilistic setting works with conditional probabilities

⇒ Bayes’s theorem.

Repeated measurements lead to better identification.
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Mathematical formulation of model

Consider operator equation, physical system modelled by A:

du+A(u; q) dt = g dt+B(u; q) dW u ∈ U ,
U — space of states, g a forcing, W noise, q ∈ Q unknown parameters.

Well-posed problem: for q, g and initial cond. u(t0) = u0
a unique solution u(t), given by the flow or solution operator,

S : (u0, t0, q, g,W, t) 7→ u(t; q) = S(u0, t0, q, g,W, t).

Set extended state ξ = (u, q) ∈ X = U ×Q,

advance from ξn−1 = (un−1, qn−1) at time tn−1 to ξn = (un, qn) at tn,

ξn =(un, qn) = (S(un−1, tn−1, qn, g,W, tn), qn) =: f(ξn−1, wn−1).

This is the model for the system observed at times tn.

Applies also to stationary case A(u; q) = g.
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Mathematical formulation of observation

Measurement operator Y with values in Y:

ηn = Y (un; q) = Y (S(un−1, tn−1, q, g,W, tn); q).

But observed at time tn, it is noisy yn with noise εn

yn =H(ηn, εn) = H(Y (un; q), εn) =: h(ξn, εn) = h(f(ξn−1, wn−1), εn).

For given g, w, measurement η = Y (u(q); q) is just a function of q.

This function is usually not invertible ⇒ ill-posed problem,

measurement η does not contain enough information.

Parameters q and initial state u0 uncertain, modelled as RVs

q ∈ Q = Q⊗S ⇒ u ∈ U = U ⊗ S, with e.g. S = L2(Ω,P) a RV-space.

Bayesian setting allows updating of information about ξ = (u, q).

The problem of updating becomes well-posed.
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Mathematical formulation of filtering

We want to track the extended state ξn
by a tracking equation for a RV xn through observations ŷn.

• Prediction / forecast state is a RV xn,f = f(xn−1, wn−1);

• Forecast observation is a RV yn = h(xn,f , εn), actual observation ŷn,

• Updated / assimilated xn = xn,f +Ξ(xn,f , yn, ŷn),

• Hopefully xn ≈ ξn, and the update map Ξ has to be determined.

xn,i := Ξ(xn,f , yn, ŷn) is called the innovation.

We concentrate on one step from forecast to assimilated variables.

• Forecast state xf := xn,f , forecast observation yf := yn,

• Actual observation ŷ and assimilated variable

xa :=xf +Ξ(xf , yf , ŷ) = xn = xn,f +Ξ(xn,f , yn,f , ŷn).

This is the filtering or update equation.
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Setting for updating

Knowledge prior to new observation is also called forecast:

the state uf ∈ U = U ⊗ S and parameters qf ∈ Q = Q⊗ S
modelled as random variables (RVs),

also the extended state xf = (uf , qf) ∈X = X ⊗ S and

the measurement y(xf , ε) ∈ Y = Y ⊗ S.

Then an observation ŷ is performed,

and is compared to predicted measurement y(xf , ε).

Bayes’s theorem gives only probability distribution of

posterior or assimilated extended state xa.

Here we want more: a filter xa := xf +Ξ(xf , yf , ŷ).
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Using Bayes’s theorem

Classically, Bayes’s theorem gives conditional probability

P(Ix|My) =
P(My|Ix)
P(My)

P(Ix) for P(My) > 0.

Well-known special form with densities of RVs x, y

(w.r.t. some background measure µ):

π(x|y)(x|y) =
πxy(x, y)

πy(y)
=
π(y|x)(y|x)

Zy
πx(x);

with marginal density Zy := πy(y) =
∫
X πxy(x, y) µ(dx)

(from German Zustandssumme) — only valid when πxy(x, y) exists.

Problems / paradoxa appear when P(My) = 0 (and P(My|Ix) = 0)

e.g. Borel-Kolmogorov paradox. Problem is limit P(My)→ 0,

or when no joint density πxy(x, y) exists.
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Conditional probability

“Many quite futile arguments have raged—between otherwise competent

probabilists—over which of these results is ’correct’.” E.T. Jaynes

“The concept of a conditional probability with regard to an isolated

hypothesis whose probability equals zero is inadmissible.” A. Kolmogorov

⇒ How to use conditioning in these typical singular cases,

where Bayes’s formula is not applicable? ⇐

With posterior / conditional measure P(·|My) one may compute

the conditional expectation E (ψ|My) =
∫
Ω
ψ(ω) P(dω|My).

Kolmogorov turns it around and starts from conditional expectation

operator E (·|My), from this conditional probability via

P(Ix|My) := E (1Ix|My) , 1Ix(ξ) = 1 for ξ ∈ Ix, 0 otherwise.
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Conditional expectation and probability

Expectation of a RV ψ: E (ψ) =
∫
Ω
ψ(ω) P(dω).

E (·) as a functional L2(Ω,A) = S → R, but also orthogonal projection

E : S = span{1Ω} ⊕ {φ ∈ S | E (φ) = 0} → span{1Ω}, (1Ω ≡ 1).

Conditional expectation is an orthogonal projection onto subspaces

L2(Ω,B,P) =: S∞ defined by sub-σ-algebras B ⊆ A:

Here B = σ(y) — generated by measurement y, and

the subspace S∞ is the space of all (measurable) functions of y.

E(·|σ(y)) := E(·|B) : L2(Ω,A) = S = S∞ ⊕ S⊥∞→ S∞
Call E(·|y) := E(·|σ(y)) =: P∞ the pre-conditional expectation.

E(ψ|y) ∈ S∞ is a RV, because y is. After observing ŷ one has

post-conditional expectation E(ψ|ŷ) ∈ R—new expectation after new ŷ.

The state of knowledge has changed, hence so has the expectation.
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Conditional expectation

With orthogonal direct sum S = S∞ ⊕ S⊥∞ one has decomposition

ψ = P∞ψ + (I− P∞)ψ = E(ψ|y) + (ψ − E(ψ|y)).

According to Pythagoras:

‖ψ‖2S = ‖P∞ψ‖2S + ‖(I− P∞)ψ‖2S = ‖E(ψ|y)‖2S + ‖(ψ − E(ψ|y))‖2S
Simple cases:

1. B = {Ω, ∅} ⇒ E (·|B) = E (·), the normal expectation.

2. B = A⇒ E (·|B) = IL2, the identity on L2(Ω,A,P).

3. In our case B = σ(y), the σ-algebra generated by

measurement RV y (not so simple!).

Question: How to compute P∞ = E (·|y), and

how to build filter Ξ to obtain xa := xf +Ξ(xf , yf , ŷ)?
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Representing and using the conditional expectation

As P∞ = E (·|y) is an orthogonal projection, for any ψ

E(ψ(x)|y) := P∞(ψ(x)) = arg min
p∈S∞

‖ψ(x)− p‖2S

The subspace S∞ represents the available information,

conditional expectation P∞ψ minimises Φ(·) := ‖ψ(x)− (·)‖2S over S∞.

More general loss functions than minimising mean square error (MMSE)

are possible, used in decision processes.

Taking ψ1(x) = x, one obtains P∞x = E (x|y) and x̄|ŷ := E (x|ŷ).

Taking ψ2(x) = x⊗ x = x⊗2, one obtains P∞(x⊗ x) = E (x⊗ x|y),

from which one may compute the post-conditional covariance of x:

cov|ŷx = E (x⊗ x|ŷ)− x̄|ŷ ⊗ x̄|ŷ.
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Update through conditional expectation

Reminder: want to find mapping / filter Ξ for assimilated xa:

xa := xf +Ξ(xf , yf , ŷ);

xa with Bayesian posterior distribution resp. E (ψ(xa)|ŷ) for all ψ.

As Bayesian update is costly, several approximations possible:

• The conditional expectation (CE-filter) update, with correct E (xa|ŷ).

• Approximated by linearised version of the CE-update — the

Gauss-Markov-Kalman filter (GMKF), where Ξ is linear in ŷ − y.

• The conditional expectation variance (CEV) update, both

conditional expectation and covariance of xa are correct.

• Approximated by linearised version of the CEV-update; (best linear Ξ).

• Computing an expansion (with truncation) of Ξ, resp. xa.

• Better approximations using conditional expectation . . .

TU Braunschweig Institute of Scientific Computing



24

Possibility: CE-update / filter

The space S∞ = L2(Ω, σ(y),P) is the space of all

functions of measurement / observation y. Taking first ψ(x) = x

E (x|y) =: φx(y) = arg min{‖x− p‖2S : p ∈ S∞ = {p ∈ S : p = ϕ(y)}}.
With this operator (conditional expectation) one may construct

a new RV xa with correct posterior.

First step: the “MMSE Bayesian update” xa with

correct conditional expectation x̄|ŷ (CE-filter).

As E (x|y) =: P∞x is orthogonal projection onto S∞, one has

S = S∞ ⊕ S⊥∞ ⇒ x = P∞x+ (I− P∞)x = φx(y) + (x− φx(y)).

From this xa ≈ φx(ŷ) + (xf − φx(yf)) = xf + (φx(ŷ)− φx(yf)).

Obviously E (xa|ŷ) = E (xf |ŷ) = φx(ŷ) = x̄|ŷ.

Further improvements by transforming xa − x̄|ŷ = xf − φx(yf).
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BIG DATA — Gauss-Markov-Kálmán filter

If one only wants E (xf |ŷ) = φx(ŷ) = x̄|ŷ, then the function

φx can be found through regression or machine learning / deep networks.

Estimation of (xf − φx(yf)) is possible.

Further simplification / approximation:

if only linear (affine) functions ϕ(y) = Ay + b are allowed:

Kx y + c = arg min{‖x− p‖2S : p ∈ S1 := {p ∈ S : p = Ay + b}},
φx(y) ≈ Kx y + c =: P1x with Kálmán gain Kx. As S1 ⊆ S∞,

‖x− φx(y)‖2S = ‖x− P∞x‖2S ≤ ‖x− P1x‖2S = ‖x− (Kx y + c)‖2S.

From Kálmán gain Kx

⇒ Gauss-Markov-Kálmán filter (GMKF)

xa ≈ xf + (Kx ŷ −Kx yf) = xf +Kx(ŷ − yf). Rudolf Kálmán
(1930 – 2016)
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Numerical Remarks

• Parametric or stochastic problems — like stochastic PDEs —

lead to solutions (states) in tensor product space.

• Stochastic forward solution allows identification

• “Curse of dimensionality” has to be controlled.

• Reduced order models can yield sparse (or low-rank) representations,

with all work carried out on the low-rank approximation.

• After solution has been computed, is has to be processed further.

• If further processing is a tensor function, this might often be

computed with little effort.
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Computation of conditional expectation

Minimisation to compute conditional expectation for any RV ψ(x):

E (ψ|y) := P∞ψ = φψ(y) := arg min
p∈S∞

‖ψ(x)− p‖2S.

Variational equation / Galerkin condition from minimisation:

∀p ∈ S∞ : 〈ψ(x)− φψ(y) | p〉S = E ((ψ(x)− φψ(y)) · p) = 0.

GMKF was obtained by Galerkin approximation S1 ⊆ S∞.

Minimisation may also be performed by Gauss-Newton methods.

Each iteration looks similar to Gauss-Markov-Kalman-filter (GMKF).

Various variations of iteration are possible,

e.g. BFGS-methods instead of Gauss-Newton.

In any case, it is in principle possible to compute E (ψ(x)|y) for any RV

ψ(x) to any desired accuracy, including a posteriori error control.
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Example 1: Identification of multi-modal dist

Setup: Scalar RV x with

non-Gaussian multi-modal

“truth” p(x); wide Gaussian prior;

“large” Gaussian measurement

errors.

Aim: Identification of p(x).

10 updates of N = 10, 100, 1000

measurements.

Filter: GMK-filter

— optimal linear filter —

in PCE representation
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Example 2: Lorenz-84 chaotic model

Setup: Non-linear, chaotic system

u̇ = f(u), u = [x, y, z]

Small uncertainties in initial

conditions u0 have large impact.

Aim: Sequentially identify state ut.

Methods: GMK-filter in

PCE representation

and PCE updating

Poincaré cut for x = 1.
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Example 2: Lorenz-84 PCE representation

PCE: Variance

reduction and shift of

mean at update points.

Skewed structure clearly

visible, preserved by

updates.
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Summary

• UQ allows stochastic inverse identification as a well-posed problem,

this Bayesian update is based on conditioning.

• Conditional probability is based on conditional expectation,

starting point for numerics, connects to MMSE.

• Bayesian update may be presented as a filter,

a simple approximation is GMKF, even simpler by machine learning.

• Works for

– non-Gaussian distributions.

– linear and nonlinear models and observation operator Y .

– possible for ODEs, PDEs, processes, fields, etc.
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