# **Conditional Expectation as the Basis for Bayesian Updating**

#### Hermann G. Matthies

Bojana V. Rosić, Elmar Zander, Alexander Litvinenko, Oliver Pajonk

Institute of Scientific Computing, TU Braunschweig Brunswick, Germany

wire@tu-bs.de

http://www.wire.tu-bs.de



# Overview

- 1. BIG DATA
- 2. Parameter identification
- 3. Stochastic identification Bayes's theorem
- 4. Conditional probability and conditional expectation
- 5. Updating filtering.





#### **Representation of knowledge**

Data from measurements, sensors, observations  $\Rightarrow$  one form of knowledge about a system.

'Big Data' considers only data — looking for patterns, interpolating, etc.

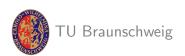
Mathematical / computational models of a system represent another form of knowledge — 'structural' knowledge — about a system.
 These models are often generated based on general physical laws (e.g. conservation laws), a very compressed form of knowledge.

These two views on systems are not in competition, they are complementary.

The challenge is to combine these forms of knowledge

— in form of a synthesis.

Knowledge may be uncertain.





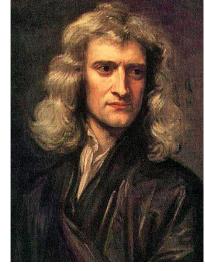
#### **Big Data 16th century**

Treto Brahe

Tycho Brahe (1546 – 1601)

#### Data

#### Johannes Kepler (1571 – 1630) <mark>Description</mark>



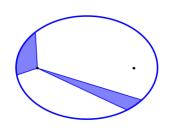
Isaac Newton (1643 – 1727) <mark>Understanding</mark>



Pierre-Simon Laplace (1749 – 1827) Perfection

I. Newton: The latest authors, like the most ancient, strove to subordinate the phenomena of nature to the laws of mathematics.

Kepler's 2nd law:



(adapted from M. Ortiz)



Institute of Scientific Computing



# **BIG DATA**

Mathematically speaking, big data algorithms (feature / pattern recognition) are regression (generalised interpolation) methods.

Often based on deep artificial neural networks (deep ANNs), combining many inputs (= high-dimensional data).

Deep networks are connected to sparse tensor decompositions (buzzword: deep-learning).

Although often spectacularly successful, as knowledge representation, it is difficult to extract insight.

But there is a connection of such regression to Bayesian updating.





## Inference

Our uncertain knowledge about some situation is described by probabilities. Now we obtain new information.
How does it change our knowledge — the probabilistic description?
Answered by T. Bayes and P.-S. Laplace more than 250 years ago.



Thomas Bayes (1701 – 1761)



Pierre-Simon Laplace (1749 – 1827)





#### **Synopsis of Bayesian inference**

We have a some knowledge about an event  $\mathcal{A}$ , but it can not be observed directly.

After some new information  $\mathcal{B}$  (an observation, a measurement), our knowledge has to be made consistent with the new information, i.e. we are looking for conditional probabilities  $\mathbb{P}(\mathcal{A}|\mathcal{B})$ .

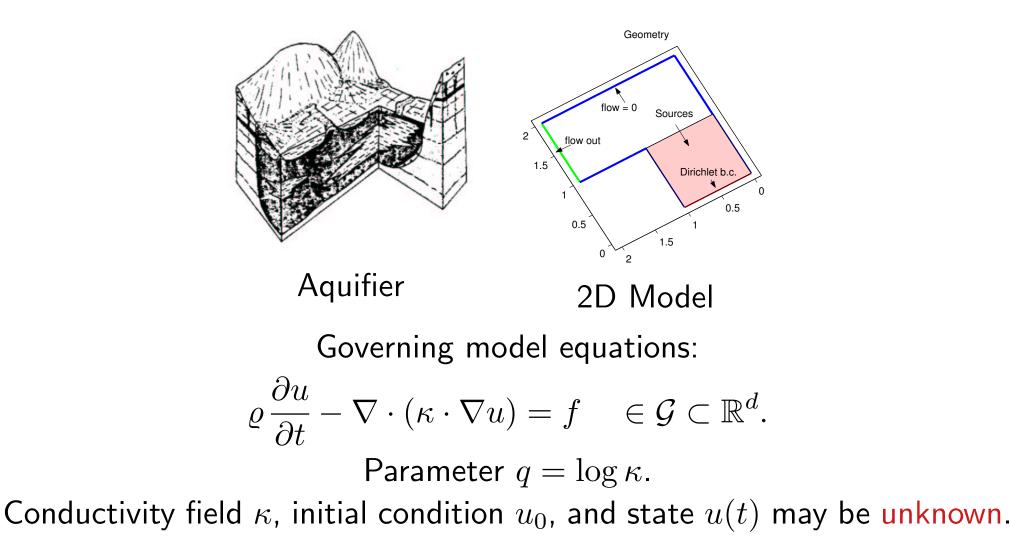
The idea is to change our present model by just so much — as little as possible — so that it becomes consistent.

For this we have to predict — with our present knowledge / model — the probability of all possible observations and compare with the actual observation.





#### Model inverse problem



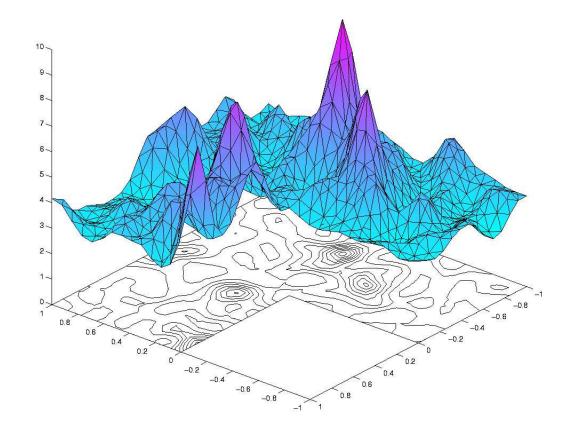
They have to be determined from observations Y(q; u).





# A possible realisation of $\kappa(x,\omega)$

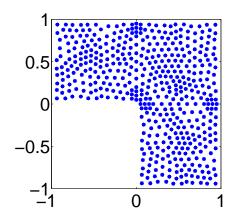
A sample realization



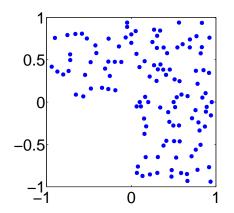




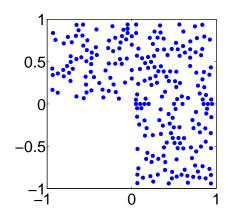
#### **Measurement patches**



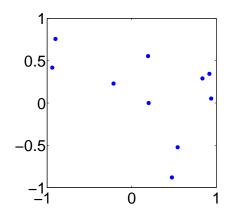
447 measurement patches



120 measurement patches



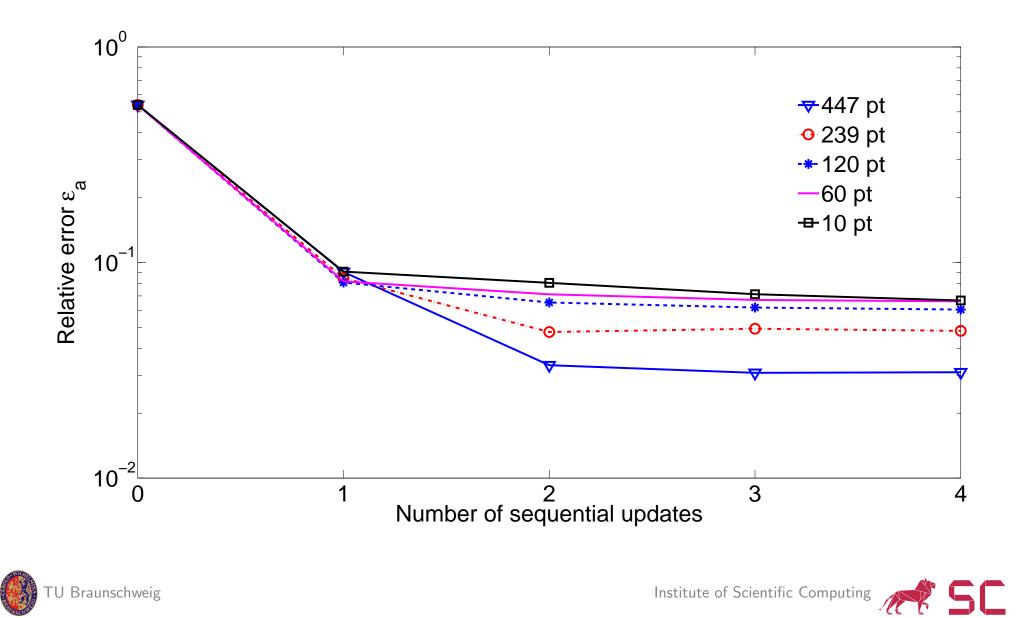
239 measurement patches



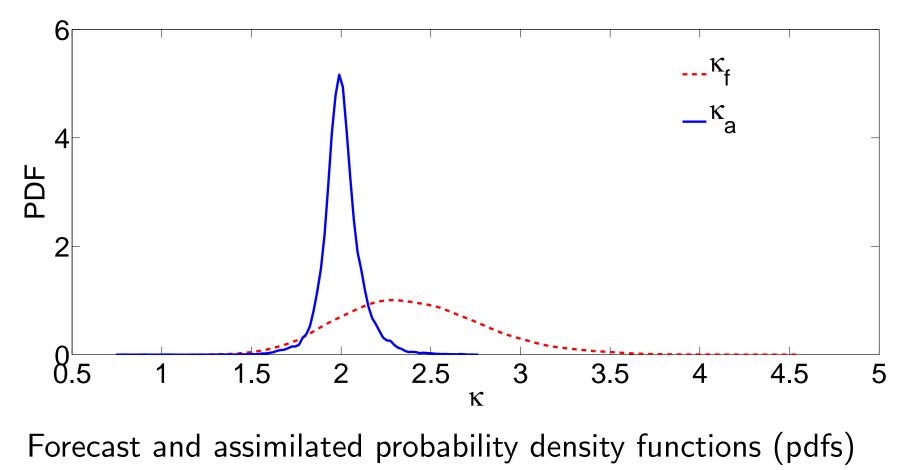
10 measurement patches



### **Convergence plot of updates**



### Forecast and assimilated pdfs



for  $\kappa$  at a point where  $\kappa_t = 2$ .



Institute of Scientific Computing

# Setting for identification

General idea:

We observe / measure a system, whose structure we know in principle. The system behaviour depends on some quantities (parameters), which we do not know  $\Rightarrow$  uncertainty.

We model (uncertainty in) our knowledge in a Bayesian setting: as a probability distribution on the parameters.

We start with what we know a priori, then perform a measurement. This gives new information, to update our knowledge (identification).

Update in probabilistic setting works with conditional probabilities  $\Rightarrow$  Bayes's theorem.

Repeated measurements lead to better identification.





#### Mathematical formulation of model

Consider operator equation, physical system modelled by A:

$$du + A(u;q) dt = g dt + B(u;q) dW \qquad u \in \mathcal{U},$$

 $\mathcal{U}$  — space of states, g a forcing, W noise,  $q \in \mathcal{Q}$  unknown parameters.

Well-posed problem: for q, g and initial cond.  $u(t_0) = u_0$ a unique solution u(t), given by the flow or solution operator,

$$S: (u_0, t_0, q, g, W, t) \mapsto u(t; q) = S(u_0, t_0, q, g, W, t).$$

Set extended state  $\xi = (u, q) \in \mathcal{X} = \mathcal{U} \times \mathcal{Q}$ , advance from  $\xi_{n-1} = (u_{n-1}, q_{n-1})$  at time  $t_{n-1}$  to  $\xi_n = (u_n, q_n)$  at  $t_n$ ,  $\xi_n = (u_n, q_n) = (S(u_{n-1}, t_{n-1}, q_n, g, W, t_n), q_n) =: f(\xi_{n-1}, w_{n-1}).$ 

> This is the model for the system observed at times  $t_n$ . Applies also to stationary case A(u;q) = g.





#### Mathematical formulation of observation

Measurement operator Y with values in  $\mathcal{Y}$ :

$$\eta_n = Y(u_n; q) = Y(S(u_{n-1}, t_{n-1}, q, g, W, t_n); q).$$

But observed at time  $t_n$ , it is noisy  $y_n$  with noise  $\epsilon_n$ 

 $y_n = H(\eta_n, \epsilon_n) = H(Y(u_n; q), \epsilon_n) =: h(\xi_n, \epsilon_n) = h(f(\xi_{n-1}, w_{n-1}), \epsilon_n).$ 

For given g, w, measurement  $\eta = Y(u(q); q)$  is just a function of q. This function is usually not invertible  $\Rightarrow$  ill-posed problem, measurement  $\eta$  does not contain enough information.

Parameters q and initial state  $u_0$  uncertain, modelled as RVs  $q \in \mathscr{Q} = \mathscr{Q} \otimes \mathscr{S} \Rightarrow u \in \mathscr{U} = \mathscr{U} \otimes \mathscr{S}$ , with e.g.  $\mathscr{S} = L_2(\Omega, \mathbb{P})$  a RV-space.

Bayesian setting allows updating of information about  $\xi = (u, q)$ . The problem of updating becomes well-posed.



#### Mathematical formulation of filtering

We want to track the extended state  $\xi_n$ by a tracking equation for a RV  $x_n$  through observations  $\hat{y}_n$ .

- Prediction / forecast state is a RV  $x_{n,f} = f(x_{n-1}, w_{n-1})$ ;
- Forecast observation is a RV  $y_n = h(x_{n,f}, \epsilon_n)$ , actual observation  $\hat{y}_n$ ,
- Updated / assimilated  $x_n = x_{n,f} + \Xi(x_{n,f}, y_n, \hat{y}_n)$ ,
- Hopefully  $x_n \approx \xi_n$ , and the update map  $\Xi$  has to be determined.  $x_{n,i} := \Xi(x_{n,f}, y_n, \hat{y}_n)$  is called the innovation.

We concentrate on one step from forecast to assimilated variables.

- Forecast state  $x_f := x_{n,f}$ , forecast observation  $y_f := y_n$ ,
- Actual observation  $\hat{y}$  and assimilated variable

$$x_a := x_f + \Xi(x_f, y_f, \hat{y}) = x_n = x_{n,f} + \Xi(x_{n,f}, y_{n,f}, \hat{y}_n).$$

This is the filtering or update equation.





# Setting for updating

Knowledge prior to new observation is also called forecast:

the state  $u_f \in \mathscr{U} = \mathcal{U} \otimes S$  and parameters  $q_f \in \mathscr{Q} = \mathcal{Q} \otimes S$ modelled as random variables (RVs), also the extended state  $x_f = (u_f, q_f) \in \mathscr{X} = \mathcal{X} \otimes S$  and the measurement  $y(x_f, \varepsilon) \in \mathscr{Y} = \mathcal{Y} \otimes S$ .

Then an observation  $\hat{y}$  is performed, and is compared to predicted measurement  $y(x_f, \varepsilon)$ .

Bayes's theorem gives only probability distribution of posterior or assimilated extended state  $x_a$ .

Here we want more: a filter  $x_a := x_f + \Xi(x_f, y_f, \hat{y})$ .





### Using Bayes's theorem

Classically, Bayes's theorem gives conditional probability  $\mathbb{P}(\mathcal{I}_x|\mathcal{M}_y) = \frac{\mathbb{P}(\mathcal{M}_y|\mathcal{I}_x)}{\mathbb{P}(\mathcal{M}_y)} \mathbb{P}(\mathcal{I}_x) \quad \text{for} \quad \mathbb{P}(\mathcal{M}_y) > 0.$ 

Well-known special form with densities of RVs x, y(w.r.t. some background measure  $\mu$ ):

$$\pi_{(x|y)}(x|y) = \frac{\pi_{xy}(x,y)}{\pi_y(y)} = \frac{\pi_{(y|x)}(y|x)}{Z_y}\pi_x(x);$$

with marginal density  $Z_y := \pi_y(y) = \int_{\mathcal{X}} \pi_{xy}(x,y) \, \mu(\mathrm{d}x)$ (from German Zustandssumme) — only valid when  $\pi_{xy}(x,y)$  exists.

Problems / paradoxa appear when  $\mathbb{P}(\mathcal{M}_y) = 0$  (and  $\mathbb{P}(\mathcal{M}_y | \mathcal{I}_x) = 0$ ) e.g. Borel-Kolmogorov paradox. Problem is limit  $\mathbb{P}(\mathcal{M}_u) \to 0$ , or when no joint density  $\pi_{xy}(x,y)$  exists.





# **Conditional probability**

"Many quite futile arguments have raged—between otherwise competent probabilists—over which of these results is 'correct'." E.T. Jaynes

"The concept of a conditional probability with regard to an isolated hypothesis whose probability equals zero is inadmissible." A. Kolmogorov

- $\Rightarrow$  How to use conditioning in these typical singular cases, where Bayes's formula is **not** applicable? *\leftarrow*
- With posterior / conditional measure  $\mathbb{P}(\cdot|\mathcal{M}_y)$  one may compute the conditional expectation  $\mathbb{E}(\psi|\mathcal{M}_y) = \int_{\Omega} \psi(\omega) \mathbb{P}(\mathrm{d}\omega|\mathcal{M}_y).$

Kolmogorov turns it around and starts from conditional expectation operator  $\mathbb{E}(\cdot | \mathcal{M}_{y})$ , from this conditional probability via

 $\mathbb{P}(\mathcal{I}_x|\mathcal{M}_y) := \mathbb{E}\left(\mathbf{1}_{\mathcal{I}_x}|\mathcal{M}_y\right), \quad \mathbf{1}_{\mathcal{I}_x}(\xi) = 1 \text{ for } \xi \in \mathcal{I}_x, 0 \text{ otherwise.}$ 





#### **Conditional expectation and probability**

Expectation of a RV  $\psi$ :  $\mathbb{E}(\psi) = \int_{\Omega} \psi(\omega) \mathbb{P}(d\omega)$ .

 $\mathbb{E}(\cdot)$  as a functional  $L_2(\Omega, \mathfrak{A}) = S \to \mathbb{R}$ , but also orthogonal projection

 $\mathbb{E}: \mathcal{S} = \operatorname{span}\{\mathbf{1}_{\Omega}\} \oplus \{\phi \in \mathcal{S} \mid \mathbb{E}(\phi) = 0\} \to \operatorname{span}\{\mathbf{1}_{\Omega}\}, \quad (\mathbf{1}_{\Omega} \equiv 1).$ 

Conditional expectation is an orthogonal projection onto subspaces  $L_2(\Omega, \mathfrak{B}, \mathbb{P}) =: \mathcal{S}_{\infty}$  defined by sub- $\sigma$ -algebras  $\mathfrak{B} \subseteq \mathfrak{A}$ : Here  $\mathfrak{B} = \sigma(y)$  — generated by measurement y, and the subspace  $\mathcal{S}_{\infty}$  is the space of all (measurable) functions of y.

 $\mathbb{E}(\cdot|\sigma(y)) := \mathbb{E}(\cdot|\mathfrak{B}) : L_2(\Omega,\mathfrak{A}) = \mathcal{S} = \mathcal{S}_{\infty} \oplus \mathcal{S}_{\infty}^{\perp} \to \mathcal{S}_{\infty}$ 

Call  $\mathbb{E}(\cdot|y) := \mathbb{E}(\cdot|\sigma(y)) =: P_{\infty}$  the pre-conditional expectation.  $\mathbb{E}(\psi|y) \in \mathcal{S}_{\infty}$  is a RV, because y is. After observing  $\hat{y}$  one has post-conditional expectation  $\mathbb{E}(\psi|\hat{y}) \in \mathbb{R}$ —new expectation after new  $\hat{y}$ .

The state of knowledge has changed, hence so has the expectation.





#### **Conditional expectation**

With orthogonal direct sum  $\mathcal{S} = \mathcal{S}_{\infty} \oplus \mathcal{S}_{\infty}^{\perp}$  one has decomposition

$$\psi = P_{\infty}\psi + (\mathbf{I} - P_{\infty})\psi = \mathbb{E}(\psi|y) + (\psi - \mathbb{E}(\psi|y)).$$

According to Pythagoras:

 $\|\psi\|_{\mathcal{S}}^{2} = \|P_{\infty}\psi\|_{\mathcal{S}}^{2} + \|(I - P_{\infty})\psi\|_{\mathcal{S}}^{2} = \|\mathbb{E}(\psi|y)\|_{\mathcal{S}}^{2} + \|(\psi - \mathbb{E}(\psi|y))\|_{\mathcal{S}}^{2}$ Simple cases:

- 1.  $\mathfrak{B} = \{\Omega, \emptyset\} \Rightarrow \mathbb{E}(\cdot | \mathfrak{B}) = \mathbb{E}(\cdot)$ , the normal expectation.
- 2.  $\mathfrak{B} = \mathfrak{A} \Rightarrow \mathbb{E}(\cdot|\mathfrak{B}) = I_{L_2}$ , the identity on  $L_2(\Omega, \mathfrak{A}, \mathbb{P})$ .
- 3. In our case  $\mathfrak{B} = \sigma(y)$ , the  $\sigma$ -algebra generated by measurement RV y (not so simple!).

Question: How to compute  $P_{\infty} = \mathbb{E}(\cdot|y)$ , and how to build filter  $\Xi$  to obtain  $x_a := x_f + \Xi(x_f, y_f, \hat{y})$ ?



### Representing and using the conditional expectation

As 
$$P_{\infty} = \mathbb{E}(\cdot|y)$$
 is an orthogonal projection, for any  $\psi$   
 $\mathbb{E}(\psi(x)|y) := P_{\infty}(\psi(x)) = \arg\min_{p \in S_{\infty}} \|\psi(x) - p\|_{S}^{2}$ 

The subspace  $S_{\infty}$  represents the available information, conditional expectation  $P_{\infty}\psi$  minimises  $\Phi(\cdot) := \|\psi(x) - (\cdot)\|_{\mathcal{S}}^2$  over  $\mathcal{S}_{\infty}$ .

More general loss functions than minimising mean square error (MMSE) are possible, used in decision processes.

Taking 
$$\psi_1(x) = x$$
, one obtains  $P_{\infty}x = \mathbb{E}(x|y)$  and  $\bar{x}^{|\hat{y}|} := \mathbb{E}(x|\hat{y})$ .

Taking  $\psi_2(x) = x \otimes x = x^{\otimes 2}$ , one obtains  $P_{\infty}(x \otimes x) = \mathbb{E}(x \otimes x|y)$ , from which one may compute the post-conditional covariance of x:

$$\operatorname{cov}_{x}^{|\hat{y}|} = \mathbb{E}\left(x \otimes x | \hat{y}\right) - \bar{x}^{|\hat{y}|} \otimes \bar{x}^{|\hat{y}|}.$$





Reminder: want to find mapping / filter  $\Xi$  for assimilated  $x_a$ :

$$x_a := x_f + \Xi(x_f, y_f, \hat{y});$$

 $x_a$  with Bayesian posterior distribution resp.  $\mathbb{E}(\psi(x_a)|\hat{y})$  for all  $\psi$ . As Bayesian update is costly, several approximations possible:

- The conditional expectation (CE-filter) update, with correct  $\mathbb{E}(x_a|\hat{y})$ .
- Approximated by linearised version of the CE-update the Gauss-Markov-Kalman filter (GMKF), where  $\Xi$  is linear in  $\hat{y} y$ .
- The conditional expectation variance (CEV) update, both conditional expectation and covariance of  $x_a$  are correct.
- Approximated by linearised version of the CEV-update; (best linear  $\Xi$ ).
- Computing an expansion (with truncation) of  $\Xi$ , resp.  $x_a$ .
- Better approximations using conditional expectation . . .





### **Possibility: CE-update / filter**

The space  $\mathcal{S}_{\infty} = L_2(\Omega, \sigma(y), \mathbb{P})$  is the space of all functions of measurement / observation y. Taking first  $\psi(x) = x$  $\mathbb{E}(x|y) := \phi_x(y) = \arg\min\{\|x - p\|_{\mathcal{S}}^2 : p \in \mathcal{S}_{\infty} = \{p \in \mathcal{S} : p = \varphi(y)\}\}.$ With this operator (conditional expectation) one may construct a new RV  $x_a$  with correct posterior. First step: the "MMSE Bayesian update"  $x_a$  with correct conditional expectation  $\bar{x}^{|\hat{y}|}$  (CE-filter). As  $\mathbb{E}(x|y) =: P_{\infty}x$  is orthogonal projection onto  $\mathcal{S}_{\infty}$ , one has  $\mathcal{S} = \mathcal{S}_{\infty} \oplus \mathcal{S}_{\infty}^{\perp} \Rightarrow x = P_{\infty}x + (I - P_{\infty})x = \phi_x(y) + (x - \phi_x(y)).$ From this  $x_a \approx \phi_x(\hat{y}) + (x_f - \phi_x(y_f)) = x_f + (\phi_x(\hat{y}) - \phi_x(y_f)).$ Obviously  $\mathbb{E}(x_a|\hat{y}) = \mathbb{E}(x_f|\hat{y}) = \phi_x(\hat{y}) = \bar{x}^{|\hat{y}|}$ . Further improvements by transforming  $x_a - \bar{x}^{|\hat{y}|} = x_f - \phi_x(y_f)$ .





# BIG DATA — Gauss-Markov-Kálmán filter

If one only wants  $\mathbb{E} (x_f | \hat{y}) = \phi_x(\hat{y}) = \bar{x}^{|\hat{y}|}$ , then the function  $\phi_x$  can be found through regression or machine learning / deep networks. Estimation of  $(x_f - \phi_x(y_f))$  is possible. Further simplification / approximation: if only linear (affine) functions  $\varphi(y) = Ay + b$  are allowed:  $K_x y + c = \arg \min\{||x - p||_S^2 : p \in S_1 := \{p \in S : p = Ay + b\}\},$   $\phi_x(y) \approx K_x y + c =: P_1 x$  with Kálmán gain  $K_x$ . As  $S_1 \subseteq S_\infty$ ,  $||x - \phi_x(y)||_S^2 = ||x - P_\infty x||_S^2 \le ||x - P_1 x||_S^2 = ||x - (K_x y + c)||_S^2.$ 

From Kálmán gain  $K_x$  $\Rightarrow$  Gauss-Markov-Kálmán filter (GMKF)

 $x_a \approx x_f + (K_x \,\hat{y} - K_x \, y_f) = x_f + K_x (\hat{y} - y_f).$ 



Rudolf Kálmán (1930 – 2016)



#### **Numerical Remarks**

- Parametric or stochastic problems like stochastic PDEs lead to solutions (states) in tensor product space.
- Stochastic forward solution allows identification
- "Curse of dimensionality" has to be controlled.
- Reduced order models can yield sparse (or low-rank) representations, with all work carried out on the low-rank approximation.
- After solution has been computed, is has to be processed further.
- If further processing is a tensor function, this might often be computed with little effort.





# **Computation of conditional expectation**

Minimisation to compute conditional expectation for any RV  $\psi(x)$ :

$$\mathbb{E}(\psi|y) := P_{\infty}\psi = \phi_{\psi}(y) := \arg\min_{p \in \mathcal{S}_{\infty}} \|\psi(x) - p\|_{\mathcal{S}}^{2}.$$

Variational equation / Galerkin condition from minimisation:

 $\forall p \in \mathcal{S}_{\infty} : \quad \langle \psi(x) - \phi_{\psi}(y) \mid p \rangle_{\mathcal{S}} = \mathbb{E}\left( (\psi(x) - \phi_{\psi}(y)) \cdot p \right) = 0.$ 

**GMKF** was obtained by Galerkin approximation  $S_1 \subseteq S_{\infty}$ .

Minimisation may also be performed by Gauss-Newton methods. Each iteration looks similar to Gauss-Markov-Kalman-filter (GMKF). Various variations of iteration are possible, e.g. BFGS-methods instead of Gauss-Newton.

In any case, it is in principle possible to compute  $\mathbb{E}\left(\psi(x)|y\right)$  for any RV  $\psi(x)$  to any desired accuracy, including a posteriori error control.





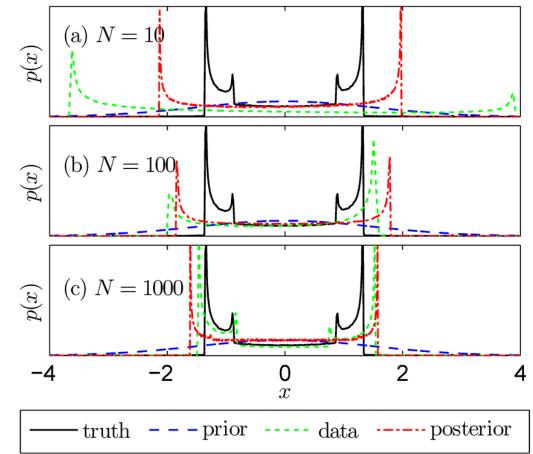
# **Example 1: Identification of multi-modal dist**

Setup: Scalar RV x with non-Gaussian multi-modal "truth" p(x); wide Gaussian prior; "large" Gaussian measurement errors.

Aim: Identification of p(x).

10 updates of N = 10, 100, 1000 measurements.

**Filter:** GMK-filter — optimal linear filter in PCE representation



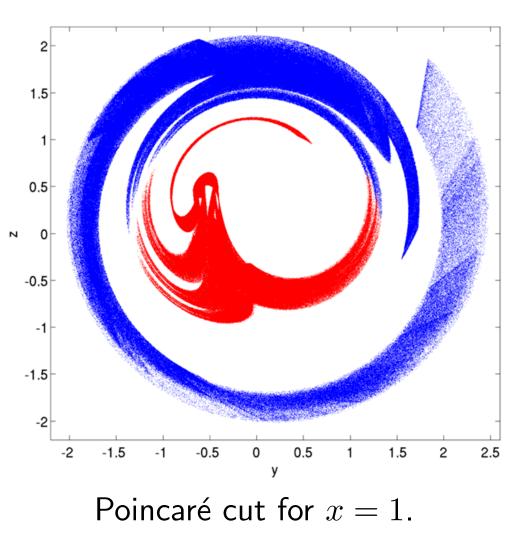


#### **Example 2: Lorenz-84 chaotic model**

Setup: Non-linear, chaotic system  $\dot{u} = f(u), \ u = [x, y, z]$ Small uncertainties in initial conditions  $u_0$  have large impact.

**Aim**: Sequentially identify state  $u_t$ .

Methods: GMK-filter in PCE representation and PCE updating

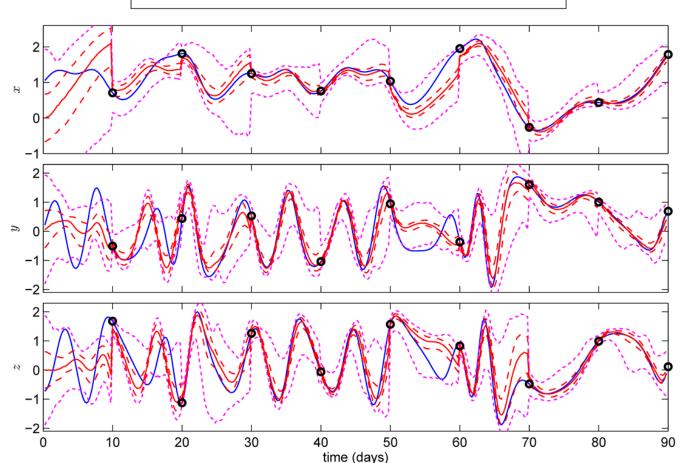




#### **Example 2: Lorenz-84 PCE representation**

**PCE**: Variance reduction and shift of mean at update points.

Skewed structure clearly visible, preserved by updates.



-truth -----  $p_5(\mathbf{X}), p_{95}(\mathbf{X}) - - - p_{25}(\mathbf{X}), p_{75}(\mathbf{X})$  -



 $-p_{50}(\mathbf{X})$ 

# Summary

- UQ allows stochastic inverse identification as a well-posed problem, this Bayesian update is based on conditioning.
- Conditional probability is based on conditional expectation, starting point for numerics, connects to MMSE.
- Bayesian update may be presented as a filter, a simple approximation is GMKF, even simpler by machine learning.
- Works for
  - non-Gaussian distributions.
  - linear and nonlinear models and observation operator Y.
  - possible for ODEs, PDEs, processes, fields, etc.





