Recent advances in compressed sensing techniques for the numerical approximation of PDEs

Simone Brugiapaglia

Simon Fraser University, Canada simone_brugiapaglia@sfu.ca

Joint work with Ben Adcock (SFU), Stefano Micheletti (MOX), Fabio Nobile (EPFL), Simona Perotto (MOX), Clayton G. Webster (ONL).

QUIET 2017

SISSA. Trieste, Italy – July 20, 2017

Compressed sensing

CS for (parametric) PDEs

Inside the black box

Outside the black box

Conclusions

Compressed Sensing (CS)

Pioneering papers: [Donoho, 2006; Candès, Romberg, & Tao, 2006] Main ingredients:

- Sparsity / Compressibility;
- ► Random measurements (sensing);
- Sparse recovery.

Sparsity: Let $s \in \mathbb{C}^N$ be an s-sparse w.r.t. a basis Ψ :

$$s = \Psi x$$
 and $x \in \Sigma_s^N = \{z \in \mathbb{C}^N : ||z||_0 \le s\},$

where $\|x\|_0 := \#\{i : x_i \neq 0\}$ and $s \ll N$.

Compressibility: fast decay of the best s-term approximation error

$$\sigma_s(\boldsymbol{x})_p = \inf_{\boldsymbol{z} \in \Sigma_s^n} \|\boldsymbol{x} - \boldsymbol{z}\|_p \le C s^{-\alpha},$$

for some $C, \alpha > 0$, where .

1

Sensing

In order to acquire s, we perform $m \sim s \cdot \text{polylog}(N)$ linear nonadaptive random measurements

$$\langle \boldsymbol{s}, \boldsymbol{\varphi}_i \rangle =: y_i, \quad \text{for } i = 1, \dots, m.$$

If we consider the matrix $\mathbf{\Phi} = [\boldsymbol{\varphi}_i] \in \mathbb{C}^{N \times m}$, we have

$$Ax = y$$

where $A = \Phi^* \Psi \in \mathbb{C}^{m \times N}$ and $y \in \mathbb{C}^m$. This system is **highly underdetermined**.

Sparse recovery

Thanks to the sparsity / compressibility of s, we can resort to sparse recovery techniques. We aim at approximating the solution to

$$(P_0) \quad \min_{\boldsymbol{z} \in \mathbb{C}^N} \|\boldsymbol{z}\|_0, \quad \text{s.t. } \boldsymbol{A}\boldsymbol{z} = \boldsymbol{y}.$$

- \odot In general, (P_0) is a **NP-hard** problem...
- © There are computationally tractable strategies to approximate it!

In particular, it is possible to employ

- greedy strategies, e.g. Orthogonal Matching Pursuit (OMP);
- ► convex relaxation, e.g., the quadratically-constrained basis pursuit (QCBP) program:

$$\min_{\boldsymbol{z} \in \mathbb{C}^N} \|\boldsymbol{z}\|_1, \quad \text{s.t. } \|\boldsymbol{A}\boldsymbol{z} - \boldsymbol{y}\|_2 \le \eta,$$

referred to as Basis pursuit (BP) when $\eta = 0$.

3

Restricted isometry property

Many important recovery results in CS are based on the **Restricted Isometry Property** (**RIP**).

Definition (RIP)

A matrix $\mathbf{A} \in \mathbb{C}^{m \times N}$ satisfies the RIP (s, δ) with $\delta \in [0, 1)$ if

$$(1-\delta)\|\boldsymbol{z}\|_2^2 \leq \|\boldsymbol{A}\boldsymbol{z}\|_2^2 \leq (1+\delta)\|\boldsymbol{z}\|_2^2, \quad \forall \boldsymbol{z} \in \Sigma_s^N.$$

The RIP implies recovery results for:

- ▶ OMP [Zhang, 2011; Cohen, Dahmen, DeVore, 2015];
- ▶ QCBP [Candés, Romberg, Tao, 2006], [Foucart, Rauhut; 2013];

Optimal recovery error estimates (without noise) for a decoder Δ look like [Cohen, Dahmen, DeVore, 2009]

$$\|oldsymbol{x} - \Delta(oldsymbol{A}oldsymbol{x})\|_2 \lesssim rac{\sigma_s(oldsymbol{x})_1}{\sqrt{s}}, \quad orall oldsymbol{x} \in \mathbb{C}^N,$$

and hold with high probability.

4

Compressed sensing

CS for (parametric) PDEs

Inside the black box

Outside the black box

Conclusions

CS as a tool to solve PDEs

Parametric PDEs' setting:

- ▶ $z \in D \subseteq \mathbb{R}^d$: parametric domain, $d \gg 1$;
- $L_z u_z = g$: PDE;
- ▶ $z \mapsto u_z$: solution map (the "black box");
- ▶ $u_z \mapsto Q(u_z)$: quantity of interest.

Can we take advantage of the CS paradigm in this setting?

CS as a tool to solve PDEs

Parametric PDEs' setting:

- ▶ $z \in D \subseteq \mathbb{R}^d$: parametric domain, $d \gg 1$;
- $L_z u_z = g$: PDE;
- ▶ $z \mapsto u_z$: solution map (the "black box");
- ▶ $u_z \mapsto Q(u_z)$: quantity of interest.

Can we take advantage of the CS paradigm in this setting?

YES! At least in two ways, addressed in this talk:

1. Inside the black box, to approximate $z \mapsto u_z$

2. Outside the black box, to approximate $z \mapsto f(z) = Q(u_z)$

Compressed sensing

CS for (parametric) PDEs

Inside the black box

Outside the black box

Conclusions

CS inside the black box

Consider the **weak formulation** of a PDE

find
$$u \in U$$
: $a(u, v) = \mathcal{F}(v), \forall v \in V$,

and its Petrov-Galerkin (PG) discretization [Aziz, Babuška, 1972].

Motivation to apply CS:

- reduce the computational cost associated with a classical PG discretization;
- \triangleright situations with a **limited budget** of evaluations of $\mathcal{F}(\cdot)$;
- deeper theoretical understanding of the PG method.

Case study:

Advection-diffusion-reaction (ADR) equation, with $U = V = H_0^1(\Omega)$, $\Omega = [0, 1]^d$, and

$$a(u, v) = (\eta \nabla u, \nabla v) + (\mathbf{b} \cdot \nabla u, v) + (\rho u, v), \quad \mathcal{F}(v) = (f, v).$$

Related literature

Ancestors: PDE solvers based on ℓ^1 -minimization

- 1988 [J. Lavery, 1988; J. Lavery, 1989] Inviscid Burgers' equation, conservation laws
- 2004 [J.-L. Guermond, 2004; J.-L. Guermond and B. Popov, 2009] Hamilton-Jacobi, transport equation

CS techniques for PDEs

- 2010 [S. Jokar, V. Mehrmann, M. Pfetsch, and H. Yserentant, 2010] Recursive mesh refinement based on CS (Poisson equation)
- 2015 [S. B., S. Micheletti, S. Perotto, 2015;
 S. B., F. Nobile, S. Micheletti, S. Perotto, 2017]
 CORSING for ADR problems

The Petrov-Galerkin method

Choose $U^N \subseteq H_0^1(\Omega)$ and $V^M \subseteq H_0^1(\Omega)$ with

$$\frac{U^N}{\text{trials}} = \operatorname{span}\{\underbrace{\psi_1, \dots, \psi_N}_{\text{trials}}\}, \quad V^M = \operatorname{span}\{\underbrace{\varphi_1, \dots, \varphi_M}_{\text{tests}}\}$$

Then we can discretize the weak problem as

$$\mathbf{A}\mathbf{x} = \mathbf{y}, \quad A_{ij} = a(\mathbf{\psi_j}, \mathbf{\varphi_i}), \quad y_i = \mathcal{F}(\mathbf{\varphi_i})$$

with $\mathbf{A} \in \mathbb{C}^{M \times N}$, $\mathbf{y} \in \mathbb{C}^{M}$.

8

The Petrov-Galerkin method

Choose $U^N \subseteq H_0^1(\Omega)$ and $V^M \subseteq H_0^1(\Omega)$ with

$$U^N = \operatorname{span}\{\underbrace{\psi_1, \dots, \psi_N}_{\text{trials}}\}, \quad V^M = \operatorname{span}\{\underbrace{\varphi_1, \dots, \varphi_M}_{\text{tests}}\}$$

Then we can discretize the weak problem as

$$Ax = y$$
, $A_{ij} = a(\psi_j, \varphi_i)$, $y_i = \mathcal{F}(\varphi_i)$

with $\mathbf{A} \in \mathbb{C}^{M \times N}$, $\mathbf{y} \in \mathbb{C}^{M}$.

We can establish the following analogy:

Classical case: square matrices

When dealing with Petrov-Galerkin discretizations, one usually ends up with a big square matrix.

9

"Compressing" the discretization

We would like to use only m random tests instead of N, with $m \ll N...$

$$\psi_{1} \quad \psi_{2} \quad \psi_{3} \quad \psi_{4} \quad \psi_{5} \quad \psi_{6} \quad \psi_{7} \\
\downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \\
\varphi_{2} \rightarrow \qquad \begin{bmatrix}
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\varphi_{3} \rightarrow \qquad & \times & \times & \times & \times & \times \\
& \times & \times & \times & \times & \times & \times \\
& \times & \times & \times & \times & \times & \times \\
\varphi_{5} \rightarrow \qquad & \times & \times & \times & \times & \times \\
\varphi_{6} \rightarrow \qquad & \times & \times & \times & \times & \times \\
& \times & \times & \times & \times & \times & \times \\
& \times & \times & \times & \times & \times & \times \\
& \times & \times & \times & \times & \times & \times \\
& \times & \times & \times & \times & \times & \times \\
& \times & \times & \times & \times & \times & \times \\
& \times & \times & \times & \times & \times & \times \\
& \times & \times & \times & \times & \times & \times \\
& \times & \times & \times & \times & \times & \times \\
& \times & \times & \times & \times & \times & \times \\
& \times & \times & \times & \times & \times & \times \\
& \times & \times & \times & \times & \times & \times \\
& \times & \times & \times & \times & \times & \times \\
& \times & \times & \times & \times & \times & \times \\
& \times & \times & \times & \times & \times & \times \\
& \times & \times & \times & \times & \times & \times \\
& \times & \times & \times & \times & \times & \times \\
& \times & \times & \times & \times & \times & \times \\
& \times & \times & \times & \times & \times & \times \\
& \times & \times & \times & \times & \times & \times \\
& \times & \times & \times & \times & \times & \times \\
& \times & \times & \times & \times & \times & \times \\
& \times & \times & \times & \times & \times & \times \\
& \times & \times & \times & \times & \times & \times \\
& \times & \times & \times & \times & \times & \times \\
& \times & \times & \times & \times & \times & \times \\
& \times & \times & \times & \times & \times & \times \\
& \times & \times & \times & \times & \times & \times \\
& \times & \times & \times & \times & \times & \times \\
& \times & \times & \times & \times & \times & \times \\
& \times & \times & \times & \times & \times & \times \\
& \times & \times & \times & \times & \times & \times \\
& \times & \times & \times & \times & \times & \times \\
& \times & \times & \times & \times & \times & \times \\
& \times & \times & \times & \times & \times & \times \\
& \times & \times & \times & \times & \times & \times \\
& \times & \times & \times & \times & \times & \times \\
& \times & \times & \times & \times & \times & \times \\
& \times & \times & \times & \times & \times & \times \\
& \times & \times & \times & \times & \times & \times \\
& \times & \times & \times & \times & \times & \times \\
& \times & \times & \times & \times & \times & \times \\
& \times & \times & \times & \times & \times & \times \\
& \times & \times & \times & \times & \times & \times \\
& \times & \times & \times & \times & \times & \times \\
& \times & \times & \times & \times & \times & \times \\
& \times & \times & \times & \times & \times & \times \\
& \times & \times & \times & \times & \times & \times \\
& \times & \times & \times & \times & \times & \times \\
& \times & \times & \times & \times & \times & \times \\
& \times & \times & \times & \times & \times & \times \\
& \times & \times & \times & \times & \times & \times \\
& \times & \times & \times & \times & \times & \times \\
& \times & \times & \times & \times & \times & \times \\
& \times & \times & \times & \times & \times & \times \\
& \times & \times & \times & \times & \times & \times \\
& \times & \times & \times & \times & \times & \times \\
& \times & \times & \times & \times & \times & \times \\
& \times & \times & \times & \times & \times & \times \\
& \times & \times & \times & \times & \times & \times \\
& \times & \times & \times & \times & \times & \times \\
& \times & \times & \times & \times & \times & \times \\
& \times & \times & \times & \times & \times & \times \\
& \times & \times & \times & \times & \times & \times \\
& \times & \times & \times & \times & \times & \times \\
& \times & \times & \times & \times & \times & \times \\
& \times & \times & \times &$$

Sparse recovery

...in order to obtain a **reduced discretization**.

The solution is then computed using **sparse recovery** techniques.

11

CORSING (COmpRessed SolvING)

First, we define the local a-coherence [Krahmer, Ward, 2014; B., Nobile, Micheletti, Perotto, 2017]:

$$\mu_q^N := \sup_{j \in [N]} |a(\psi_j, \varphi_q)|^2, \quad \forall q \in \mathbb{N}.$$

COSRING algorithm:

- 1. Define a truncation level M and a number of measurements m;
- 2. Draw τ_1, \ldots, τ_m independently at random from [M] according to the probability $\mathbf{p} \sim (\mu_1^N, \ldots, \mu_M^N)$ (up to rescaling).
- 3. Build $\mathbf{A} \in \mathbb{R}^{m \times N}$, $\mathbf{y} \in \mathbb{R}^m$ and $\mathbf{D} \in \mathbb{R}^{m \times m}$, defined as:

$$A_{ij} := a(\psi_j, \varphi_{\tau_i}), \quad f_i := \mathcal{F}(\varphi_{\tau_i}), \quad D_{ik} := \frac{\delta_{ik}}{\sqrt{m_{p_{\tau_i}}}}.$$

4. Use OMP to solve $\min_{\boldsymbol{z} \in \mathbb{R}^N} \|\boldsymbol{D}(\boldsymbol{A}\boldsymbol{z} - \boldsymbol{y})\|_2^2$, s.t. $\|\boldsymbol{z}\|_0 \le s$;

Sparsity + Sensing: How to choose $\{\psi_j\}$ and $\{\varphi_i\}$?

Heuristic criterion commonly used in CS: space vs. frequency.

Hierarchical hat functions

[Smoliak, Dahmen, Griebel, Yserentant, Zienkiewicz, ...]

Sine functions

We name the corresponding strategies CORSING \mathcal{HS} and \mathcal{SH} .

Homogeneous 1D Poisson problem CORSING \mathcal{HS}

$$N=8191,\, s=50,\, m=1200. \, \sim$$
 Test Savings: $TS:=\frac{N-m}{N}\cdot 100\%\approx 85\%$

 \times = hat functions selected by OMP

Level-based ordering $(\log_{10} |\widehat{u}_{\ell,k}|)$

Sparsity + Sensing: 2D case

Hierarchical Pyramids (P)

Tensor product of hat functions (Q)

Tensor product of sine functions (S)

An advection-dominated example

We consider a 2D advection-dominated problem

$$\begin{cases} -\mu \Delta u + \mathbf{b} \cdot \nabla u = f & \text{in } \Omega = (0, 1)^2, \\ u = 0 & \text{on } \partial \Omega, \end{cases}$$

where $\mathbf{b} = [1, 1]^{\mathsf{T}}, \, \mu = 0.01.$

CORSING SP. Worst solution in the successful cluster over 50 runs:

ESP = Empirical Success Probability

Cost reduction with respect to the "full" PG (m=N)

We compare the assembly/recovery times of "full" PG and CORSING.

	"full" PG		CORSING \mathcal{SP}					
A	f	$t_{ m rec} \; (ackslash)$	TS	A	f	$t_{\rm rec}$ (OMP)		
$2.5\mathrm{e}{+03}$	9.1e-01	7.1e + 01	85%	3.8e + 02	2.7e-01	$8.1\mathrm{e}{+01}$		
			90%	$2.5\mathrm{e}{+02}$	2.0e-01	$3.4\mathrm{e}{+01}$		

- ▶ The assembly time reduction is proportional to TS.
- ▶ Also the RAM is reduced proportionally to TS.
- ▶ The recovery phase is cheaper for high TS rates.

The CORSING method can considerably reduce the computational cost associated with a "full" PG discretization.

Theoretical analysis

Theorem

Let $s, N \in \mathbb{N}$, with s < N. Suppose the truncation condition $\sum_{q>M} \mu_q^N \lesssim \frac{\alpha^2}{s}$ holds. Then, provided $\delta \in \left(1 - \frac{\alpha^2}{\beta^2}, 1\right)$, and

$$m \gtrsim \delta^{-2} \| \boldsymbol{\nu}^{N,M} \|_1 \boldsymbol{s} \log^3(s) \log(N),$$

it holds

$$\mathbb{P}\{\beta^{-1}\mathbf{DA} \in \mathrm{RIP}(s,\delta)\} \ge 1 - N^{-\log^3(s)},.$$

where α and β are the inf-sup and the continuity constant of $a(\cdot, \cdot)$.

Alternative analysis based on a **restricted inf-sup property** leads to suboptimal rate $m \sim s^2 \cdot (\log \text{ factors})$.

Theoretical analysis

Theorem

Let $s, N \in \mathbb{N}$, with s < N. Suppose the truncation condition $\sum_{q>M} \mu_q^N \lesssim \frac{\alpha^2}{s}$ holds. Then, provided $\delta \in \left(1 - \frac{\alpha^2}{\beta^2}, 1\right)$, and

$$m \gtrsim \delta^{-2} \| \boldsymbol{\nu}^{N,M} \|_1 s \log^3(s) \log(N),$$

it holds

$$\mathbb{P}\{\beta^{-1}\mathbf{DA} \in \mathrm{RIP}(s,\delta)\} \ge 1 - N^{-\log^3(s)},.$$

where α and β are the inf-sup and the continuity constant of $a(\cdot, \cdot)$.

▶ Alternative analysis based on a **restricted inf-sup property** leads to suboptimal rate $m \sim s^2 \cdot (\log \text{ factors})$.

Algorithmic recovery guarantee:

CORSING recovers the best s-term approximation to u (up to a constant) using $\mathcal{O}(smN)$ flops with high probability.

Comparison with adaptive wavelet methods:

- \odot Computational cost O(smN) instead of O(s);
- © Easy parallelizability of OMP;
- © No need for a priori error estimators.

Compressed sensing

CS for (parametric) PDEs

Inside the black box

Outside the black box

Conclusions

CS outside the black box

We aim at approximating a function

$$f: D = [-1, 1]^d \to \mathbb{C}$$
, with $d \gg 1$.

of the form "(quantity of interest) o (solution map)":

$$f(z) = Q(u_z)$$
, where u_z solves $L_z u_z = g$.

As sparsity basis, we consider the tensorized Chebyshev or Legendre orthogonal polynomials $\{\phi_j\}_{j\in\mathbb{N}_0^d}$. Then, we expand

$$f = \sum_{j \in \mathbb{N}_0^d} x_j \phi_j.$$

Fixed a finite-dimensional set $\Lambda \subseteq \mathbb{N}_0^d$, with $|\Lambda| = N$, we have

$$f = \sum_{\substack{j \in \Lambda \\ \text{Approximation}}} x_j \phi_j + \sum_{\substack{j \notin \Lambda \\ \text{Truncation error}}} x_j \phi_j =: f_{\Lambda} + e_{\Lambda}.$$

Random sampling + weighted ℓ^1 minimization

We consider random evaluations of f at z_1, \ldots, z_m drawn according to the orthogonality measure of $\{\phi_j\}_{j\in\mathbb{N}_0^d}$:

$$\mathbf{A} = (\frac{1}{\sqrt{m}}\phi_j(\mathbf{z}_i))_{ij} \in \mathbb{C}^{m \times N}, \quad \mathbf{y} = (\frac{1}{\sqrt{m}}f(\mathbf{z}_i))_i \in \mathbb{C}^m$$

Moreover, denoting

$$oldsymbol{x}_{\Lambda} = (x_{oldsymbol{i}})_{oldsymbol{i} \in \Lambda} \in \mathbb{C}^{N}, \quad oldsymbol{e}_{\Lambda} = rac{1}{\sqrt{m}} (f(oldsymbol{z}_{i}) - f_{\Lambda}(oldsymbol{z}_{i})) \in \mathbb{C}^{m},$$

we have the linear system

$$Ax_{\Lambda} = y + e_{\Lambda}.$$

The solution is recovered by weighted QCBP

$$\min_{\boldsymbol{z} \in \mathbb{C}^N} \|\boldsymbol{z}\|_{1,\boldsymbol{u}} \quad \text{s.t. } \|\boldsymbol{A}\boldsymbol{z} - \boldsymbol{y}\|_2 \le \eta,$$

where $\|\boldsymbol{z}\|_{1,\boldsymbol{u}} = \sum_{j \in [N]} u_j |z_j|$ the weights are chosen **intrinsically** as

$$u_j = \|\phi_j\|_{L^{\infty}}.$$

Related literature

History of this idea:

- ► CS + orthogonal polynomials
 - ► [Rauhut, Ward, 2012], [Yau, Guo, Xiu, 2012];
- ▶ Weighted ℓ^1 minimization and function approximation
 - ► [Rauhut, Ward, 2016], [Adcock, 2017], [Chkifa, Dexter, Tran, Webster, 2017], [Adcock, B., Webster, 2017]
- ► CS + UQ with Polynomial Chaos expansion
 - ► [Doostan, Owhadi, 2011], [Mathelin, Gallivan, 2012], [Yang, Karniadakis, 2013], [Peng, Hampton, Doostan, 2014], [Rauhut, Schwab, 2017], [Bouchot, Rauhut, Schwab, 2017]

Lower sets and the choice of Λ

Definition (Lower or downward closed set)

A set $S \subseteq \mathbb{N}_0^d$ is lower if $\forall i, j : i \leq j$ and $j \in S \Longrightarrow i \in S$.

Lower sets have been proved to be extremely effective for parametric PDEs: [Beck, Chkifa, Cohen, Dexter, DeVore, Griebel, Migliorati, Nobile, Schwab, Tamellini, Tempone, Tran, Webster, ...]

Why do they matter?

- ▶ Best s-term approximation in lower sets realizes the best s-term approximation for a large class of smooth operators, with decay rate $s^{-\alpha}$, $\alpha > 0$ in L^2 or L^{∞} . [Chkifa, Cohen, Schwab, 2015]
- ► The union of all s-sparse lower sets, is the hyperbolic cross:

$$\Lambda_s^{\text{HC}} = \left\{ i = (i_1, \dots, i_d) \in \mathbb{N}_0^d : \prod_{j=1}^d (i_j + 1) \le s \right\},$$

resulting in a controlled growth of N with respect to d and s

$$N = |\Lambda_s^{\mathrm{HC}}| \leq \min\left\{2s^34^d, \mathrm{e}^2s^{2 + \log_2(d)}\right\}.$$

[Kühn, Sickel, Ullrich, 2015; Chernov, Dũng, 2016]

Lower RIP and recovery guarantees

- ▶ Weighted cardinality of $S \subseteq \mathbb{N}_0^d$ is $|S|_{\boldsymbol{w}} := \sum_{\boldsymbol{i} \in \text{supp}(S)} w_{\boldsymbol{i}}^2$
- $K(s) := \max\{|S|_{\boldsymbol{u}} : S \subseteq \mathbb{N}_0^d, S \text{ lower}\}.$

Definition (lower RIP [Chkifa, Dexter, Tran, Webster, 2017])

A matrix **A** fulfills the lower RIP of order s if $\exists \delta \in [0,1)$ s.t.

$$(1-\delta)\|z\|_2^2 \le \|Az\|_2^2 \le (1+\delta)\|z\|_2^2, \quad \forall z \in \mathbb{C}^N, |\operatorname{supp}(z)|_u \le K(s).$$

Assuming an a priori error bound $\|e_{\Lambda}\|_2 \leq \eta$, the following uniform recovery error estimates hold [Chkifa, Dexter, Tran, Webster, 2017]:

$$||f - \hat{f}||_{L^{\infty}(D)} \leq ||\boldsymbol{x} - \hat{\boldsymbol{x}}_{\Lambda}||_{1,\boldsymbol{u}} \lesssim \sigma_{s,L}(\boldsymbol{x})_{1,\boldsymbol{u}} + s^{\gamma/2}\eta,$$
$$||f - \hat{f}||_{L^{2}(D)} = ||\boldsymbol{x} - \hat{\boldsymbol{x}}_{\Lambda}||_{2} \lesssim \frac{\sigma_{s,L}(\boldsymbol{x})_{1,\boldsymbol{u}}}{s^{\gamma/2}} + \eta,$$

where

$$\sigma_{s,L}(oldsymbol{x})_{1,oldsymbol{u}} = \inf_{oldsymbol{z} \in \Sigma^N_s, \operatorname{supp}(oldsymbol{z}) \operatorname{lower}} \|oldsymbol{z} - oldsymbol{x}\|_{1,oldsymbol{u}}.$$

Nonuniform recovery: optimality of the weights

Theorem [Adcock, 2017]

Let $0 < \epsilon < \mathrm{e}^{-1}$, $\eta \ge 0$, $\boldsymbol{w} = (w_i)_{i \in \Lambda}$ be a set of weights, $\boldsymbol{x} \in \ell^2(\mathbb{N}_0^d)$ and $S \subseteq \Lambda$, $S \ne \emptyset$, be any fixed set. Suppose that $\|\boldsymbol{e}_{\Lambda}\|_2 \le \eta$. Then, with probability at least $1 - \epsilon$, any minimizer $\hat{\boldsymbol{x}}_{\Lambda}$ of

$$\min_{\boldsymbol{z} \in \mathbb{C}^N} \|\boldsymbol{z}\|_{1,\boldsymbol{w}} \quad \text{s.t. } \|\boldsymbol{A}\boldsymbol{z} - \boldsymbol{y}\|_2 \leq \eta,$$

satisfies $\|\boldsymbol{x} - \hat{\boldsymbol{x}}_{\Lambda}\|_{2} \lesssim \lambda \sqrt{|S|_{\boldsymbol{w}}} \left(\eta + \|\boldsymbol{x} - \boldsymbol{x}_{\Lambda}\|_{1,\boldsymbol{w}}\right) + \|\boldsymbol{x} - \boldsymbol{x}_{S}\|_{1,\boldsymbol{w}}$, provided

$$m \gtrsim \underbrace{\left(|S|_{\boldsymbol{u}} + \max_{\boldsymbol{i} \in \Lambda \setminus S} \{u_{\boldsymbol{i}}^2/w_{\boldsymbol{i}}^2\}|S|_{\boldsymbol{w}}\right)}_{=:\mathcal{M}(S;\boldsymbol{u},\boldsymbol{v})} L,$$

where
$$\lambda = 1 + \frac{\sqrt{\log(\epsilon^{-1})}}{\log(2N\sqrt{|S|_{\boldsymbol{w}}})}$$
 and $L = \log(\epsilon^{-1})\log\left(2N\sqrt{|S|_{\boldsymbol{w}}}\right)$.

- Seeking to minimize $\mathcal{M}(S; \boldsymbol{u}, \boldsymbol{v})$, it is natural to choose $\boldsymbol{w} = \boldsymbol{u}$.
- ► This conclusion is supported by numerical evidence. [Adcock, B., Webster, 2017]

Robustness of ℓ_n^1 -minimization to unknown error

Theorem [Adcock, B., Webster, 2017]

Let $\Lambda = \Lambda_s^{\rm HC}$ and assume

$$m \sim s^{\gamma} \cdot L$$

where,

$$L = \ln^2(s) \min\{\frac{\mathbf{d}}{\mathbf{d}} + \ln(s), \ln(2\mathbf{d}) \ln(s)\} + \ln(s) \ln(\ln(s)/\varepsilon).$$

Then, for every $\eta \geq 0$ and $f \in L^2(D) \cap L^{\infty}(D)$, the $\ell^1_{\boldsymbol{u}}$ -minimization computes an approximation \hat{f} s.t.

$$||f - \hat{f}||_{L^{\infty}(D)} \lesssim \sigma_{s,L}(\boldsymbol{x})_{1,\boldsymbol{u}} + s^{\gamma/2}(\eta + ||\boldsymbol{e}_{\Lambda}||_{2} + T_{\boldsymbol{u}}(\boldsymbol{A}, \Lambda, \boldsymbol{e}_{\Lambda}, \eta)),$$

$$||f - \hat{f}||_{L^{2}(D)} \lesssim \frac{\sigma_{s,L}(\boldsymbol{x})_{1,\boldsymbol{u}}}{s^{\gamma/2}} + \eta + ||\boldsymbol{e}_{\Lambda}||_{2} + T_{\boldsymbol{u}}(\boldsymbol{A}, \Lambda, \boldsymbol{e}_{\Lambda}, \eta),$$

with probability $1 - \varepsilon$, where $\gamma = 2$ or $\frac{\log(3)}{\log(2)}$, for Legendre and Chebyshev polynomials, respectively. Moreover,

$$T_{m{u}}(m{A}, m{\Lambda}, m{e}_{m{\Lambda}}, m{\eta}) \lesssim \sqrt{rac{|\Lambda|_{1,m{u}}}{N}} rac{1}{\sigma_{\min}(\sqrt{rac{m}{n}}m{A}^*)} \sqrt{L} \max\{\|m{e}_{m{\Lambda}}\|_2 - \eta, 0\}.$$

The constant $\mathcal{Q}_u(A)$

Consider the constant

$$\mathcal{Q}_{\boldsymbol{u}}(\boldsymbol{A}) := \sqrt{\frac{|\Lambda|_{1,\boldsymbol{u}}}{N}} \frac{1}{\sigma_{\min}(\sqrt{\frac{m}{n}}\boldsymbol{A}^*)}.$$

- ► Close link with the ℓ^1 -quotient property of CS [Wojtaszczyk, 2010; Foucart, 2014; B., Adcock, 2017].
- Explicit bound of the form $Q_u(A) \lesssim 1$ in probability can be proved in the 1D case. In general, we can estimate $Q_u(A)$ numerically:

(d, s, N)	m	125	250	375	500	625	750	875	1000
(8, 22, 1843)	Che	2.65	3.07	3.53	3.95	4.46	5.03	5.78	6.82
(0, 22, 1043)	Leg	6.45	7.97	8.99	10.5	12.1	13.7	15.8	18.6
(d, s, N)	m	250	500	750	1000	1250	1500	1750	2000
(16, 13, 4129)	Che	2.64	2.93	3.30	3.63	3.99	4.41	4.95	5.62
(10, 15, 4129)	Leg	5.64	6.20	6.85	7.60	8.32	8.99	10.1	11.1

Table: The constant $Q_{\mathbf{u}}(A)$ (averaged over 50 trials).

The optimal choice of η

The term $\max\{\|\mathbf{e}_{\mathbf{\Lambda}}\|_{2} - \eta, \mathbf{0}\}$ suggests that an optimal choice is $\eta = \|\mathbf{e}\|_{2}$. This is confirmed by numerical experiments, where random noise of a prescribed norm is added to the samples.

Approximation of $f(z) = \exp(-\frac{1}{d}\sum_{i=1}^{d}\cos(z_i))$, with d = 15.

In practice, cross validation is employed to estimate the optimal η .

Summary

► CS is a useful tool for parametric PDEs inside / outside the black box.

Benefits:

- Exploit sparsity;
- Ability to capture local features (e.g., boundary layers);
- Easy parallelizability;
- No need for error estimators.

Challenges:

- Accelerate the recovery phase (improve O(smN));
- High-dimensional physical domains;
- Complex geometries;
- Application to nonlocal problems.

Benefits:

- Low impact of the dimensionality d on the sample complexity $(\log(d))$;
- No need to fix the lower set in advance;
- Robustness to unknown error.

Challenges:

- Is it possible to achieve $m \sim s \cdot L$?
- Quantify the decay of $\sigma_{s,L}(\boldsymbol{x})_{1,\boldsymbol{u}}$ depending on the smoothness of f;
- Complex geometries of D;
- Different decoders (e.g., LASSO)

- S. Brugiapaglia. COmpRessed SolvING: sparse approximation of PDEs based on compressed sensing. PhD thesis, MOX - Politecnico di Milano, 2016.
- S. Brugiapaglia, S. Micheletti, and S. Perotto. Compressed solving: A numerical approximation technique for elliptic PDEs based on Compressed Sensing. Comput. Math. Appl., 70(6):1306-1335, 2015.
- S. Brugiapaglia, F. Nobile, S. Micheletti, and S. Perotto. A theoretical study of COmpRessed SolvING for advection-diffusion-reaction problems. Math. Comput., to appear, 2017.

- B. Adcock, C. Bao, and S. Brugiapaglia. Correcting for unknown errors in sparse high-dimensional function approximation. In preparation, 2017.
- B. Adcock, S. Brugiapaglia, and C. G. Webster. Compressed sensing approaches for polynomial approximation of high-dimensional functions. Chapter in "Compressed Sensing and its applications". To appear, 2017. (arXiv:1703.06987)
- S. B., B. Adcock. Robustness to unknown error in sparse regularization. Submitted, 2017. (arXiv:1705.10299)

- S. Brugiapaglia. COmpRessed SolvING: sparse approximation of PDEs based on compressed sensing. PhD thesis, MOX - Politecnico di Milano, 2016.
- S. Brugiapaglia, S. Micheletti, and S. Perotto. Compressed solving: A numerical approximation technique for elliptic PDEs based on Compressed Sensing. Comput. Math. Appl., 70(6):1306-1335, 2015.
- S. Brugiapaglia, F. Nobile, S. Micheletti, and S. Perotto. A theoretical study of COmpRessed SolvING for advection-diffusion-reaction problems. Math. Comput., to appear, 2017.

- B. Adcock, C. Bao, and S. Brugiapaglia. Correcting for unknown errors in sparse high-dimensional function approximation. In preparation, 2017.
- B. Adcock, S. Brugiapaglia, and C. G. Webster. Compressed sensing approaches for polynomial approximation of high-dimensional functions. Chapter in "Compressed Sensing and its applications". To appear, 2017. (arXiv:1703.06987)
- S. B., B. Adcock. Robustness to unknown error in sparse regularization. Submitted, 2017. (arXiv:1705.10299)

Thank you!