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Compressed sensing



Compressed Sensing (CS)

Pioneering papers: [Donoho, 2006; Candés, Romberg, & Tao, 2006]
Main ingredients:

> Sparsity / Compressibility;

» Random measurements (sensing);

> Sparse recovery.

Sparsity: Let s € CV be an s-sparse w.r.t. a basis ¥:
s=Wx and e ={zcC" |z, < s},
where ||@||o := #{i: x; # 0} and s < N.
Compressibility: fast decay of the best s-term approximation error

os(x)p = zig%:fN |z — 2|, < Cs™7,
s

for some C, a > 0, where .



Sensing

In order to acquire s, we perform m ~ s - polylog(N) linear
nonadaptive random measurements

(s, ;) =1y;, fori=1,...,m.

If we consider the matrix ® = [p,;] € CV*™  we have

Ax =y,
where A = ®*W € C™*N and y € C™. This system is highly
underdetermined.
Y
\ sensing matrix
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Sparse recovery

Thanks to the sparsity / compressibility of s, we can resort to sparse
recovery techniques. We aim at approximating the solution to

P min ||z s.t. Az = y.
(Po)  min [z, y

® In general, (Py) is a NP-hard problem...

© There are computationally tractable strategies to
approximate it!

In particular, it is possible to employ

» greedy strategies, e.g. Orthogonal Matching Pursuit
(OMP);

» convex relaxation, e.g., the quadratically-constrained
basis pursuit (QCBP) program:

min 21, st |4z~ yla <o

referred to as Basis pursuit (BP) when n = 0.



Restricted isometry property

Many important recovery results in CS are based on the Restricted
Isometry Property (RIP).

Definition (RIP)
A matrix A € C™* satisfies the RIP(s, §) with § € [0, 1) if

(1= 0)l=l3 < [lAz]3 < QA +d)ll=]3, VzeZ.

The RIP implies recovery results for:
» OMP [Zhang, 2011; Cohen, Dahmen, DeVore, 2015];
» QCBP [Candés, Romberg, Tao, 2006|, [Foucart, Rauhut; 2013];

Optimal recovery error estimates (without noise) for a decoder A look
like [Cohen, Dahmen, DeVore, 2009]

7s()1 v e CN

[ — A(Az)[]2 S NG

and hold with high probability.



CS for (parametric) PDEs



CS as a tool to solve PDEs
Parametric PDEs’ setting:
» z € D C R parametric domain, d > 1;
> L,u, = g: PDE;
> 2+ u,: solution map (the “black box”);

> u, — Q(u;): quantity of interest.

Can we take advantage of the CS paradigm in this setting?



CS as a tool to solve PDEs
Parametric PDEs’ setting:

» z € D C R parametric domain, d > 1;
> L,u, = g: PDE;
> 2+ u,: solution map (the “black box”);

> u, — Q(u;): quantity of interest.
Can we take advantage of the CS paradigm in this setting?

YES! At least in two ways, addressed in this talk:

1. Inside the black box, to approximate z — u, ﬁ

2. Outside the black box, to approximate z — f(z) = Q(u;) .



Inside the black box




CS inside the black box

Consider the weak formulation of a PDE
findueU: a(u,v)=F(@), YvevV,
and its Petrov-Galerkin (PG) discretization [Aziz, Babugka, 1972].

Motivation to apply CS:

» reduce the computational cost associated with a classical
PG discretization;

> situations with a limited budget of evaluations of F(-);
» deeper theoretical understanding of the PG method.
Case study:
% Advection-diffusion-reaction (ADR) equation, with
U=V =HD),Q=][0,1]¢ and

a(u,v) = (nVu, Vv) + (b - Vu,v) + (pu,v), F(v)=(f,0).



Related literature

Ancestors: PDE solvers based on /!-minimization

1988 [J. Lavery, 1988; J. Lavery, 1989]
Inviscid Burgers’ equation, conservation laws

2004 [J.-L. Guermond, 2004; J.-L. Guermond and B. Popov, 2009]
Hamilton-Jacobi, transport equation

CS techniques for PDEs
2010 [S. Jokar, V. Mehrmann, M. Pfetsch, and H. Yserentant, 2010]

Recursive mesh refinement based on CS (Poisson equation)

2015 [S. B., S. Micheletti, S. Perotto, 2015;
S. B., F. Nobile, S. Micheletti, S. Perotto, 2017]
CORSING for ADR problems



The Petrov-Galerkin method
Choose U C H}(Q) and VM C H}(Q) with

UN =span{i, ..., N}, M= span{p1,..., oM}
——— ———

trials tests
Then we can discretize the weak problem as
Az =y, Ay=a(V; i), yi=F(pi)

with A € CM*V 4y e CM.



The Petrov-Galerkin method
Choose U C H}(Q) and VM C H}(Q) with

N = span{ty, ..., N}, M= span{p1,..., oM}
——— ———

trials tests
Then we can discretize the weak problem as
Az =y, Ajj=a(t), ), yi=F(p)
with A € CM*V 4y e CM.
We can establish the following analogy:
Petrov-Galerkin method: Sampling:

solution of a PDE = signal
tests (bilinear form) measurements (inner product)



Classical case: square matrices

When dealing with Petrov-Galerkin discretizations, one usually
ends up with a big square matrix.

Y1 2 P3 s Y5 Y Y7

N
1= [x x x x x x x] [u] [F(1)]
02 — X X X X X x X us F(p2)
03 — X X X X X x X us F(e3)
04— X X X X X x X ug| = [ F(pa)
05 — X X X X X x X us F(es)
06— | X X X X X X X ug F(pe)
er— X x x x x x x| |ur] | F (7).

a(;,pi)



"Compressing” the discretization

We would like to use only m random tests instead of N, with
m << N...

Y1 2 P3 s Y5 Y Y7

N
01— [x x oxoxooxooox x] Tu] [F(¢1)]
o — X X X X X X X Uo F(p2)
03 —> X X X X X X X us F(p3)
01— X X X X X X X ug | = | Flpq)
05 — X X X X X X X us F(es)
v — X X X X X X X Ug F(v6)
or— X x  x x  ox  x x| |lurl | F (7).

a(j,pi)



Sparse recovery

...In order to obtain a reduced discretization.

U1 2 3 s Y5 Y Y7
N
Y= [x X x x X X X u1
Ys— [ X X X x X X x] u2
~~ us
a(thj,pi) Uy
us
Ue
[ U7 ]

The solution is then computed using sparse recovery

techniques.
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CORSING (COmpRessed SolvING)

First, we define the local a-coherence
[Krahmer, Ward, 2014; B., Nobile, Micheletti, Perotto, 2017]:
/t(‘]\r = sup |a(v;, 0)?, VYgeN.
J€[N]

COSRING algorithm:

1. Define a truncation level M and a number of measurements m;

2. Draw 7, ..., T independently at random from [M] according to
the probability p ~ (11", ..., ph,) (up to rescaling).

3. Build A € R™*N 4y € R™ and D € R™*™, defined as:
ik

mpr,

Ayj = a0y, 0n), fii=F(on), D=

4. Use OMP to solve min |ID(Az — y)||3, s.t. ||z|lo < s
z€eR

12



Sparsity + Sensing: How to choose {¢;} and {;}?

Heuristic criterion commonly used in CS: space vs. frequency.

$

Hierarchical hat functions Sine functions
[Smoliak, Dahmen, Griebel,
Yserentant, Zienkiewicz, ...|

0.5
0.4 H H
0.3

0.2

We name the corresponding strategies CORSING HS and SH.

13



Homogeneous 1D Poisson problem CORSING HS

N = 8191, s = 50, m = 1200. ~ Test Savings: TS := Y™ .100% ~ 85%

35 35
— — —exact
3 345 corsing
25 34
3.35
2
33
15
3.25
o 32
— — —exact
05 corsing sisp N
0 3.1
0 0.2 0.4 0.6 0.8 1 0.38 0.39 0.4 0.41 0.42
X = hat functions selected by OMP
Level-based ordering (logq |, 1)
Exact solution CORSING solution
2 2
0 0
_ -2 _ -2
H - H 4
-6 -6
-8 -8
~10 -10

kindex k index



Sparsity + Sensing: 2D case
Hierarchical Pyramids (P)

(Lk1,k2)=(1,0.1) Hki k2)=(1,05,1) (1K1 k2)- )
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An advection-dominated example

We consider a 2D advection-dominated problem

—pAu+b-Vu=f inQ=(0,1)3
u=20 on 0,

where b =[1,1]7, p = 0.01.

CORSING SP. Worst solution in the successful cluster over 50 runs:

N = 16129

L-rel. err. = 7.2e-02
1 1

0.8 0.8

0.6 06 Exact
TS = 85% 04 0.4 1
ESP — 100 02 02 0.8
L2-rel. err. — 716-02 % 05 0 0.6
L2-rel. err. = 9.6e-02 0.4
! 02

08 0.8

N = 16129 o o6
TS = 90% 04 04
ESP — 094 02 0.2

L2%rel. err. = 8.7e-02

0 0
0 05

ESP = Empirical Success Probability
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Cost reduction with respect to the “full” PG (m=N)

We compare the assembly /recovery times of “full” PG and CORSING.

“full” PG CORSING SP

A f free (V) | TS A 3 trec (OMP)

85% 380102 2701 8.1 01
2.5e403 - 9.1e-01 T1et0l | ghor 950102 20001  3.4et01

» The assembly time reduction is proportional to TS.
» Also the RAM is reduced proportionally to TS.

» The recovery phase is cheaper for high TS rates.

¢

The CORSING method can considerably reduce the computational
cost associated with a “full” PG discretization.

17



Theoretical analysis

Theorem

Let s, N € N, with s < N. Suppose the truncation condition
2 - 2

D ogs M pd < 2~ holds. Then, provided 6 € (1 — %5, 1), and

m 2 672" |15 1og (s) log(N),

it holds 5
P{8"'DA € RIP(s,6)} > 1 — N~ "5 ()
where o and 8 are the inf-sup and the continuity constant of a(-,-).

> Alternative analysis based on a restricted inf-sup property leads
to suboptimal rate m ~ s - (log factors).

18



Theoretical analysis

Theorem

Let s, N € N, with s < N. Suppose the truncation condition
2 - 2

DIRGY: ptg S % holds. Then, provided § € (1 — %, .1), and

m 2 62 ||[v™ 15 log?(s) log(NV),
it holds 5
P{8 'DA € RIP(s,0)} >1— N~ "¢ )

where o and 8 are the inf-sup and the continuity constant of a(-,-).

> Alternative analysis based on a restricted inf-sup property leads
to suboptimal rate m ~ s - (log factors).

Algorithmic recovery guarantee:
CORSING recovers the best s-term approximation to u (up to a constant)
using O(smN) flops with high probability.
Comparison with adaptive wavelet methods:
® Computational cost O(smN) instead of O(s);
© Easy parallelizability of OMP;

© No need for a priori error estimators.
18



Outside the black box
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CS outside the black box

We aim at approximating a function
f:D=[-1,1]Y - C, withd>1.
of the form “(quantity of interest) o (solution map)”:
f(z) = Q(u,), where u, solves L u, = g.

As sparsity basis, we consider the tensorized Chebyshev or Legendre
orthogonal polynomials {¢; }jeNg' Then, we expand

f = Z $j¢j.

jeNd
Fixed a finite-dimensional set A C N¢, with |A| = N, we have

f= D wo + Y mo; = faten

JEA JEA
~—— —
Approximation Truncation error

19



Random sampling + weighted ¢! minimization

We consider random evaluations of f at z1,..., z,, drawn according
to the orthogonality measure of {¢; }jeN;{:

A= (Gm0i(z:))y € C™Y, y=(J5f(2))i€C™

Moreover, denoting

za = (z:)icr €CV,  er = ——=(f(z:) — falz:)) €C™,

Jm

we have the linear system
Axpy =y +ex.
The solution is recovered by weighted QCBP
min [|z]1u st |4z —yll2 <7,
where |z||1 ., = Z uj|z;| the weights are chosen intrinsically as
JE[N]

u; = ||¢j e
20



Related literature

History of this idea:

» CS + orthogonal polynomials
» [Rauhut, Ward, 2012], [Yau, Guo, Xiu, 2012];
» Weighted ¢! minimization and function approximation
» [Rauhut, Ward, 2016], [Adcock, 2017], [Chkifa, Dexter,
Tran, Webster, 2017], [Adcock, B., Webster, 2017]
» CS + UQ with Polynomial Chaos expansion
» [Doostan, Owhadi, 2011], [Mathelin, Gallivan, 2012|, [Yang,

Karniadakis, 2013], [Peng, Hampton, Doostan, 2014],
[Rauhut, Schwab, 2017], [Bouchot, Rauhut, Schwab, 2017]
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Lower sets and the choice of A
Definition (Lower or downward closed set)
Aset S CNdislowerifVi,j: i<jandjeS=1i€S.
Lower sets have been proved to be extremely effective for parametric PDEs:

[Beck, Chkifa, Cohen, Dexter, DeVore, Griebel, Migliorati, Nobile, Schwab,
Tamellini, Tempone, Tran, Webster, ...|

Why do they matter?

» Best s-term approximation in lower sets realizes the best s-term
approximation for a large class of smooth operators, with decay rate
57 a>01in L? or L*°. [Chkifa, Cohen, Schwab, 2015]

» The union of all s-sparse lower sets, is the hyperbolic cross:

d
AHC = {z = (i1,...,1a) € NG : [J (G +1) < s},
=il
resulting in a controlled growth of N with respect to d and s

N = |A§IC| < min {2334d7 e252+1°g2(d)} .

[Kiihn, Sickel, Ullrich, 2015; Chernov, Dung, 2016|
22



Lower RIP and recovery guarantees
» Weighted cardinality of S C N is [S|, 1= Z w?

i€supp(S)

» K(s):=max{|S|, : S C N& S lower}.

Definition (lower RIP [Chkifa, Dexter, Tran, Webster, 2017])
A matrix A fulfills the lower RIP of order s if 36 € [0,1) s.t.

(1=0)l=l3 < 1Az[3 < (1 +3)l|z]I3, V=€ CY, |supp(2)|u < K(s).

Assuming an a priori error bound |lex ||z < 7, the following uniform
recovery error estimates hold [Chkifa, Dexter, Tran, Webster, 2017]:

If— f”L‘X’(D) <[z —2Zalltu S 0s,0(®)1,u + 57/277’

A~ " g 7L(w)17
If = fllzzpy = [z — Zall2 S % +mn,
where
0o (T) 1,0 = inf |z — z[|1,u-

z€XN supp(z) lower
23



Nonuniform recovery: optimality of the weights
Theorem [Adcock, 2017]

Let 0 <e<e ', n>0, w=(wi)iea be a set of weights, = € /*(N{) and

S C A, S#0, be any fixed set. Suppose that ||ea]l2 < 7. Then, with
probability at least 1 — €, any minimizer &, of

min 2w st |4z —ylz <7,
zeCN
satisfies ||x — Zall2 S AV/|S|w (1 + || — @Al|1,w) + || — s||1,w, provided

> w 2 fan2 w | L
m 2 (181 + ma fud/ud)islo ) L

=:M(S;u,v)
_ 4/ log(e— ( )
where A =1+ 1og(2N\/m and L = log(e™*)log (2N /]S]w

> Seeking to minimize M (S;u,v), it is natural to choose w = w.

» This conclusion is supported by numerical evidence.
[Adcock, B., Webster, 2017]
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Robustness of ¢! -minimization to unknown error

Theorem |[Adcock, B., Webster, 2017]

Let A = AHC and assume
m~ s’ L,

where,
L = In?(s) min{d + In(s), In(2d) In(s)} + In(s) In(In(s) /¢).

Then, for every n > 0 and f € L*(D) N L°(D), the £;,-minimization
computes an approximation f s.t.

If = flleoo Dy S 0o, (®)1,u + 872+ |leallz + Tu(A, A en,n)),

. s,
If = flle2py S % +n+ |leallz + Tu(A, A en,n),

1 g(3)

oL for Legendre and Chebyshev

with probability 1 — e, where v = 2 or
polynomials, respectively. Moreover,

|A|1u

/e *
Uvmn A

Tu(A, A en,n) S fmax{\|€A||2 n,0}.

25



The constant Q,(A)

Consider the constant

_ AL 1
Qu(A) = ]\} (AT

» Close link with the ¢£'-quotient property of CS
[Wojtaszezyk, 2010; Foucart, 2014; B., Adcock, 2017].

» Explicit bound of the form Q,(A) < 1 in probability can be
proved in the 1D case. In general, we can estimate Q,,(A)

numerically:
(d,s,N) m_[ 125 250 375 500 625 750 875 1000
(8,22, 1843) Che | 265 3.07 353 395 446 5.03 578 6.82

Leg | 645 797 899 105 121 13.7 158 18.6
(d,s,N) m 250 500 750 1000 1250 1500 1750 2000
Che | 264 293 330 3.63 399 441 495 5.62

(16,13, 4129) Leg | 564 6.20 685 7.60 832 899 101 11.1

Table: The constant Q,,(A) (averaged over 50 trials).
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The optimal choice of n

The term max{||eal|2 — 7,0} suggests that an optimal choice is
1 = ||e||2. This is confirmed by numerical experiments, where random

noise of a prescribed norm is added to the samples.

WQOCBP - Legendre

10°

WQCBP - Chebyshev

10°

107!

—|le|l> = 10"

—lle =10 10°%
3 — el =1072|3 ——|leflz =102
—— el =10"* ——lle]lz =10°*
—llell. =0 } —lel2=0
1077 1075 107 107* 107 1072 107' 10° 10% 1077 1079 107 107* 107* 1072 107t 10° 10!

n

n

Approximation of f(z) = exp(—3 Z?zl cos(z;)), with d = 15.

In practice, cross validation is employed to estimate the optimal 7.



Summary

> CS is a useful tool for parametric PDEs inside / outside the black box.

Benefits:

Exploit sparsity;

Ability to capture local features
(e.g., boundary layers);

Easy parallelizability;

No need for error estimators.

Challenges:

>

Accelerate the recovery phase
(improve O(smN));

High-dimensional physical domains;
Complex geometries;

Application to nonlocal problems.

Benefits:

>

>

| 2

Low impact of the dimensionality d
on the sample complexity (log(d));

No need to fix the lower set in
advance;

Robustness to unknown error.

Challenges:

Is it possible to achieve m ~ s - L?

Quantify the decay of o5 (%)1,
depending on the smoothness of f;

Complex geometries of Dj

Different decoders (e.g., LASSO)
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