Recent advances in compressed sensing techniques for the numerical approximation of PDEs

Simone Brugiapaglia
Simon Fraser University, Canada
simone_brugiapaglia@sfu.ca

Pacific Institute for the
Mathematical Sciences

Joint work with
Ben Adcock (SFU), Stefano Micheletti (MOX), Fabio Nobile (EPFL), Simona Perotto (MOX), Clayton G. Webster (ONL).

QUIET 2017
SISSA. Trieste, Italy - July 20, 2017

Compressed sensing

CS for (parametric) PDEs

Inside the black box

Outside the black box

Conclusions

Compressed Sensing (CS)

Pioneering papers: [Donoho, 2006; Candès, Romberg, \& Tao, 2006]
Main ingredients:

- Sparsity / Compressibility;
- Random measurements (sensing);
- Sparse recovery.

Sparsity: Let $s \in \mathbb{C}^{N}$ be an s-sparse w.r.t. a basis $\boldsymbol{\Psi}$:

$$
\boldsymbol{s}=\boldsymbol{\Psi} \boldsymbol{x} \quad \text { and } \quad \boldsymbol{x} \in \Sigma_{s}^{N}=\left\{\boldsymbol{z} \in \mathbb{C}^{N}:\|\boldsymbol{z}\|_{0} \leq s\right\}
$$

where $\|\boldsymbol{x}\|_{0}:=\#\left\{i: \boldsymbol{x}_{i} \neq 0\right\}$ and $s \ll N$.

Compressibility: fast decay of the best s-term approximation error

$$
\sigma_{s}(\boldsymbol{x})_{p}=\inf _{\boldsymbol{z} \in \Sigma_{s}^{N}}\|\boldsymbol{x}-\boldsymbol{z}\|_{p} \leq C s^{-\alpha}
$$

for some $C, \alpha>0$, where .

Sensing

In order to acquire \boldsymbol{s}, we perform $m \sim s \cdot \operatorname{polylog}(N)$ linear nonadaptive random measurements

$$
\left\langle\boldsymbol{s}, \boldsymbol{\varphi}_{i}\right\rangle=: y_{i}, \quad \text { for } i=1, \ldots, m
$$

If we consider the matrix $\boldsymbol{\Phi}=\left[\boldsymbol{\varphi}_{i}\right] \in \mathbb{C}^{N \times m}$, we have

$$
\boldsymbol{A x}=\boldsymbol{y}
$$

where $\boldsymbol{A}=\boldsymbol{\Phi}^{*} \boldsymbol{\Psi} \in \mathbb{C}^{m \times N}$ and $\boldsymbol{y} \in \mathbb{C}^{m}$. This system is highly underdetermined.

Sparse recovery

Thanks to the sparsity / compressibility of \boldsymbol{s}, we can resort to sparse recovery techniques. We aim at approximating the solution to

$$
\left(\mathrm{P}_{0}\right) \quad \min _{\boldsymbol{z} \in \mathbb{C}^{N}}\|\boldsymbol{z}\|_{0}, \quad \text { s.t. } \boldsymbol{A} \boldsymbol{z}=\boldsymbol{y}
$$

() In general, $\left(\mathrm{P}_{0}\right)$ is a NP-hard problem...
() There are computationally tractable strategies to approximate it!

In particular, it is possible to employ

- greedy strategies, e.g. Orthogonal Matching Pursuit (OMP);
- convex relaxation, e.g., the quadratically-constrained basis pursuit (QCBP) program:

$$
\min _{\boldsymbol{z} \in \mathbb{C}^{N}}\|\boldsymbol{z}\|_{1}, \quad \text { s.t. }\|\boldsymbol{A} \boldsymbol{z}-\boldsymbol{y}\|_{2} \leq \eta
$$

referred to as Basis pursuit (BP) when $\eta=0$.

Restricted isometry property

Many important recovery results in CS are based on the Restricted Isometry Property (RIP).
Definition (RIP)
A matrix $\mathbf{A} \in \mathbb{C}^{m \times N}$ satisfies the $\operatorname{RIP}(s, \delta)$ with $\delta \in[0,1)$ if

$$
(1-\delta)\|\boldsymbol{z}\|_{2}^{2} \leq\|\boldsymbol{A} \boldsymbol{z}\|_{2}^{2} \leq(1+\delta)\|\boldsymbol{z}\|_{2}^{2}, \quad \forall \boldsymbol{z} \in \Sigma_{s}^{N} .
$$

The RIP implies recovery results for:

- OMP [Zhang, 2011; Cohen, Dahmen, DeVore, 2015];
- QCBP [Candés, Romberg, Tao, 2006], [Foucart, Rauhut; 2013];

Optimal recovery error estimates (without noise) for a decoder Δ look like [Cohen, Dahmen, DeVore, 2009]

$$
\|\boldsymbol{x}-\Delta(\boldsymbol{A} \boldsymbol{x})\|_{2} \lesssim \frac{\sigma_{s}(\boldsymbol{x})_{1}}{\sqrt{s}}, \quad \forall \boldsymbol{x} \in \mathbb{C}^{N}
$$

and hold with high probability.

Compressed sensing

CS for (parametric) PDEs

Inside the black box

Outside the black box

Conclusions

CS as a tool to solve PDEs

Parametric PDEs' setting:

- $z \in D \subseteq \mathbb{R}^{d}$: parametric domain, $d \gg 1$;
- $L_{z} u_{z}=g: \mathrm{PDE} ;$
- $z \mapsto u_{z}$: solution map (the "black box");
- $u_{z} \mapsto Q\left(u_{z}\right)$: quantity of interest.

Can we take advantage of the CS paradigm in this setting?

CS as a tool to solve PDEs

Parametric PDEs' setting:

- $z \in D \subseteq \mathbb{R}^{d}$: parametric domain, $d \gg 1$;
- $L_{z} u_{z}=g: \mathrm{PDE} ;$
- $z \mapsto u_{z}$: solution map (the "black box");
- $u_{z} \mapsto Q\left(u_{z}\right)$: quantity of interest.

Can we take advantage of the CS paradigm in this setting?

YES! At least in two ways, addressed in this talk:

1. Inside the black box, to approximate $z \mapsto u_{z}$
2. Outside the black box, to approximate $z \mapsto f(z)=Q\left(u_{z}\right)$

Compressed sensing

CS for (parametric) PDEs

Inside the black box

Outside the black box

Conclusions

CS inside the black box

Consider the weak formulation of a PDE

$$
\text { find } u \in U: \quad a(u, v)=\mathcal{F}(v), \quad \forall v \in V,
$$

and its Petrov-Galerkin (PG) discretization [Aziz, Babuška, 1972].
Motivation to apply CS:

- reduce the computational cost associated with a classical PG discretization;
- situations with a limited budget of evaluations of $\mathcal{F}(\cdot)$;
- deeper theoretical understanding of the PG method.

Case study:

Q Advection-diffusion-reaction (ADR) equation, with $U=V=H_{0}^{1}(\Omega), \Omega=[0,1]^{d}$, and

$$
a(u, v)=(\eta \nabla u, \nabla v)+(\mathbf{b} \cdot \nabla u, v)+(\rho u, v), \quad \mathcal{F}(v)=(f, v) .
$$

Related literature

Ancestors: PDE solvers based on ℓ^{1}-minimization
1988 [J. Lavery, 1988; J. Lavery, 1989]
Inviscid Burgers' equation, conservation laws
2004 [J.-L. Guermond, 2004; J.-L. Guermond and B. Popov, 2009] Hamilton-Jacobi, transport equation

CS techniques for PDEs
2010 [S. Jokar, V. Mehrmann, M. Pfetsch, and H. Yserentant, 2010] Recursive mesh refinement based on CS (Poisson equation)

2015 [S. B., S. Micheletti, S. Perotto, 2015;
S. B., F. Nobile, S. Micheletti, S. Perotto, 2017]

CORSING for ADR problems

The Petrov-Galerkin method

Choose $U^{N} \subseteq H_{0}^{1}(\Omega)$ and $V^{M} \subseteq H_{0}^{1}(\Omega)$ with

$$
U^{N}=\operatorname{span}\{\underbrace{\psi_{1}, \ldots, \psi_{N}}_{\text {trials }}\}, \quad V^{M}=\operatorname{span}\{\underbrace{\varphi_{1}, \ldots, \varphi_{M}}_{\text {tests }}\}
$$

Then we can discretize the weak problem as

$$
\boldsymbol{A} \boldsymbol{x}=\boldsymbol{y}, \quad A_{i j}=a\left(\psi_{j}, \varphi_{i}\right), \quad y_{i}=\mathcal{F}\left(\varphi_{i}\right)
$$

with $\boldsymbol{A} \in \mathbb{C}^{M \times N}, \boldsymbol{y} \in \mathbb{C}^{M}$.

The Petrov-Galerkin method

Choose $U^{N} \subseteq H_{0}^{1}(\Omega)$ and $V^{M} \subseteq H_{0}^{1}(\Omega)$ with

$$
U^{N}=\operatorname{span}\{\underbrace{\psi_{1}, \ldots, \psi_{N}}_{\text {trials }}\}, \quad V^{M}=\operatorname{span}\{\underbrace{\varphi_{1}, \ldots, \varphi_{M}}_{\text {tests }}\}
$$

Then we can discretize the weak problem as

$$
\boldsymbol{A} \boldsymbol{x}=\boldsymbol{y}, \quad A_{i j}=a\left(\psi_{j}, \varphi_{i}\right), \quad y_{i}=\mathcal{F}\left(\varphi_{i}\right)
$$

with $\boldsymbol{A} \in \mathbb{C}^{M \times N}, \boldsymbol{y} \in \mathbb{C}^{M}$.

We can establish the following analogy:

Petrov-Galerkin method: solution of a PDE tests (bilinear form)

Sampling:
signal
measurements (inner product)

Classical case: square matrices

When dealing with Petrov-Galerkin discretizations, one usually ends up with a big square matrix.

$$
\begin{aligned}
& \begin{array}{ccccccc}
\psi_{1} & \psi_{2} & \psi_{3} & \psi_{4} & \psi_{5} & \psi_{6} & \psi_{7} \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow
\end{array} \\
& \begin{array}{l}
\varphi_{1} \rightarrow \\
\varphi_{2} \rightarrow \\
\varphi_{3} \rightarrow \\
\varphi_{4} \rightarrow \\
\varphi_{5} \rightarrow \\
\varphi_{6} \rightarrow \\
\varphi_{7} \rightarrow
\end{array} \underbrace{\left[\begin{array}{ccccccc}
\times & \times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times & \times
\end{array}\right]}_{a\left(\psi_{j}, \varphi_{i}\right)}\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3} \\
u_{4} \\
u_{5} \\
u_{6} \\
u_{7}
\end{array}\right]=\left[\begin{array}{c}
\mathcal{F}\left(\varphi_{1}\right) \\
\mathcal{F}\left(\varphi_{2}\right) \\
\mathcal{F}\left(\varphi_{3}\right) \\
\mathcal{F}\left(\varphi_{4}\right) \\
\mathcal{F}\left(\varphi_{5}\right) \\
\mathcal{F}\left(\varphi_{6}\right) \\
\mathcal{F}\left(\varphi_{7}\right)
\end{array}\right]
\end{aligned}
$$

"Compressing" the discretization

We would like to use only m random tests instead of N, with $m \ll N \ldots$

$$
\begin{aligned}
& \left.\begin{array}{ccccccc}
\psi_{1} & \psi_{2} & \psi_{3} & \psi_{4} & \psi_{5} & \psi_{6} & \psi_{7} \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
\varphi_{1} & \rightarrow \\
\varphi_{2} & \rightarrow \\
\varphi_{3} & \rightarrow \\
\varphi_{4} & \rightarrow \\
\varphi_{5} & \rightarrow \\
\varphi_{6} & \rightarrow \\
\varphi_{7} & \rightarrow \underbrace{\left[\begin{array}{cccccc}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times
\end{array}\right]}_{a\left(\psi_{j}, \varphi_{i}\right)} \quad\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3} \\
u_{4} \\
u_{5} \\
u_{6} \\
u_{7}
\end{array}\right]=\left[\begin{array}{l}
\mathcal{F}\left(\varphi_{1}\right) \\
\mathcal{F}\left(\varphi_{2}\right) \\
\mathcal{F}\left(\varphi_{3}\right) \\
\mathcal{F}\left(\varphi_{4}\right) \\
\mathcal{F}\left(\varphi_{5}\right) \\
\mathcal{F}\left(\varphi_{6}\right) \\
\mathcal{F}\left(\varphi_{7}\right)
\end{array}\right], ~
\end{array}\right]=\left[\begin{array}{ll}
\times \\
\times
\end{array}\right]
\end{aligned}
$$

Sparse recovery

...in order to obtain a reduced discretization.

$$
\begin{aligned}
& \psi_{1} \quad \psi_{2} \quad \psi_{3} \quad \psi_{4} \quad \psi_{5} \quad \psi_{6} \quad \psi_{7} \\
& \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \downarrow \downarrow \downarrow \downarrow \\
& \begin{array}{l}
\varphi_{2} \rightarrow \\
\varphi_{5} \rightarrow \\
\underbrace{\left[\begin{array}{ccccccc}
\times & \times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times & \times
\end{array}\right]} \quad\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right]=\left[\begin{array}{l}
\mathcal{F}\left(\varphi_{2}\right) \\
\mathcal{F}\left(\varphi_{5}\right)
\end{array}\right], ~
\end{array}
\end{aligned}
$$

The solution is then computed using sparse recovery techniques.

CORSING (COmpRessed SolvING)

First, we define the local a-coherence [Krahmer, Ward, 2014; B., Nobile, Micheletti, Perotto, 2017]:

$$
\mu_{q}^{N}:=\sup _{j \in[N]}\left|a\left(\psi_{j}, \varphi_{q}\right)\right|^{2}, \quad \forall q \in \mathbb{N}
$$

COSRING algorithm:

1. Define a truncation level M and a number of measurements m;
2. Draw $\tau_{1}, \ldots, \tau_{m}$ independently at random from $[M]$ according to the probability $\mathrm{p} \sim\left(\mu_{1}^{N}, \ldots, \mu_{M}^{N}\right)$ (up to rescaling).
3. Build $\boldsymbol{A} \in \mathbb{R}^{m \times N}, \boldsymbol{y} \in \mathbb{R}^{m}$ and $\boldsymbol{D} \in \mathbb{R}^{m \times m}$, defined as:

$$
A_{i j}:=a\left(\psi_{j}, \varphi_{\tau_{i}}\right), \quad f_{i}:=\mathcal{F}\left(\varphi_{\tau_{i}}\right), \quad D_{i k}:=\frac{\delta_{i k}}{\sqrt{m p_{\tau_{i}}}}
$$

4. Use OMP to solve $\min _{\boldsymbol{z} \in \mathbb{R}^{N}}\|\boldsymbol{D}(\boldsymbol{A} \boldsymbol{z}-\boldsymbol{y})\|_{2}^{2}$, s.t. $\|\boldsymbol{z}\|_{0} \leq s$;

Sparsity + Sensing: How to choose $\left\{\psi_{j}\right\}$ and $\left\{\varphi_{i}\right\} ?$

Heuristic criterion commonly used in CS: space vs. frequency.

Hierarchical hat functions
[Smoliak, Dahmen, Griebel, Yserentant, Zienkiewicz, ...]

\mathcal{H}

Sine functions

\mathcal{S}

We name the corresponding strategies CORSING $\mathcal{H S}$ and $\mathcal{S H}$.

Homogeneous 1D Poisson problem CORSING $\mathcal{H S}$

$N=8191, s=50, m=1200 . \sim$ Test Savings: TS $:=\frac{N-m}{N} \cdot 100 \% \approx 85 \%$

$x=$ hat functions selected by OMP

Level-based ordering $\left(\log _{10}\left|\widehat{u}_{\ell, k}\right|\right)$

Sparsity + Sensing: 2D case

Hierarchical Pyramids (\mathcal{P})

Tensor product of hat functions (\mathcal{Q})

Tensor product of sine functions (\mathcal{S})

An advection-dominated example

We consider a 2D advection-dominated problem

$$
\begin{cases}-\mu \Delta u+\mathbf{b} \cdot \nabla u=f & \text { in } \Omega=(0,1)^{2} \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where $\mathbf{b}=[1,1]^{\top}, \mu=0.01$.
CORSING $\mathcal{S P}$. Worst solution in the successful cluster over 50 runs:

$$
N=16129
$$

$$
\mathrm{TS}=85 \%
$$

$$
\mathrm{ESP}=1.00
$$

$$
L^{2} \text {-rel. err. }=7.1 \mathrm{e}-02
$$

$$
N=16129
$$

$$
\mathrm{TS}=90 \%
$$

$$
\mathrm{ESP}=0.94
$$

$$
L^{2} \text {-rel. err. }=8.7 \mathrm{e}-02
$$

ESP $=$ Empirical Success Probability

Cost reduction with respect to the "full" PG (m=N)

We compare the assembly/recovery times of "full" PG and CORSING.

"full" PG			CORSING $\mathcal{S P}$			
\mathbf{A}	f	$t_{\text {rec }}(\backslash)$	TS	A	f	$t_{\text {rec }}($ OMP $)$
$2.5 \mathrm{e}+03$	$9.1 \mathrm{e}-01$	$7.1 \mathrm{e}+01$	85%	$3.8 \mathrm{e}+02$	$2.7 \mathrm{e}-01$	$8.1 \mathrm{e}+01$
			90%	$2.5 \mathrm{e}+02$	$2.0 \mathrm{e}-01$	$3.4 \mathrm{e}+01$

- The assembly time reduction is proportional to TS.
- Also the RAM is reduced proportionally to TS.
- The recovery phase is cheaper for high TS rates.

The CORSING method can considerably reduce the computational cost associated with a "full" PG discretization.

Theoretical analysis

Theorem

Let $s, N \in \mathbb{N}$, with $s<N$. Suppose the truncation condition $\sum_{q>M} \mu_{q}^{N} \lesssim \frac{\alpha^{2}}{s}$ holds. Then, provided $\delta \in\left(1-\frac{\alpha^{2}}{\beta^{2}}, 1\right)$, and

$$
m \gtrsim \delta^{-2}\left\|\boldsymbol{\nu}^{N, M}\right\|_{1} s \log ^{3}(s) \log (N)
$$

it holds

$$
\mathbb{P}\left\{\beta^{-1} \mathbf{D A} \in \operatorname{RIP}(s, \delta)\right\} \geq 1-N^{-\log ^{3}(s)},
$$

where α and β are the inf-sup and the continuity constant of $a(\cdot, \cdot)$.

- Alternative analysis based on a restricted inf-sup property leads to suboptimal rate $m \sim s^{2}$. (log factors).

Theoretical analysis

Theorem

Let $s, N \in \mathbb{N}$, with $s<N$. Suppose the truncation condition $\sum_{q>M} \mu_{q}^{N} \lesssim \frac{\alpha^{2}}{s}$ holds. Then, provided $\delta \in\left(1-\frac{\alpha^{2}}{\beta^{2}}, 1\right)$, and

$$
m \gtrsim \delta^{-2}\left\|\boldsymbol{\nu}^{N, M}\right\|_{1} s \log ^{3}(s) \log (N)
$$

it holds

$$
\mathbb{P}\left\{\beta^{-1} \mathbf{D A} \in \operatorname{RIP}(s, \delta)\right\} \geq 1-N^{-\log ^{3}(s)},
$$

where α and β are the inf-sup and the continuity constant of $a(\cdot, \cdot)$.

- Alternative analysis based on a restricted inf-sup property leads to suboptimal rate $m \sim s^{2}$. (log factors).

Algorithmic recovery guarantee:

CORSING recovers the best s-term approximation to u (up to a constant) using $\mathcal{O}(s m N)$ flops with high probability.

Comparison with adaptive wavelet methods:
(2) Computational cost $O(s m N)$ instead of $O(s)$;
() Easy parallelizability of OMP;
(;) No need for a priori error estimators.

Compressed sensing

CS for (parametric) PDEs

Inside the black box

Outside the black box

Conclusions

CS outside the black box

We aim at approximating a function

$$
f: D=[-1,1]^{d} \rightarrow \mathbb{C}, \quad \text { with } d \gg 1 .
$$

of the form "(quantity of interest) $\circ($ solution map)":

$$
f(z)=Q\left(u_{z}\right), \quad \text { where } u_{z} \text { solves } L_{z} u_{z}=g .
$$

As sparsity basis, we consider the tensorized Chebyshev or Legendre orthogonal polynomials $\left\{\phi_{j}\right\}_{j \in \mathbb{N}_{o}^{d}}$. Then, we expand

$$
f=\sum_{j \in \mathbb{N}_{0}^{d}} x_{j} \phi_{j} .
$$

Fixed a finite-dimensional set $\Lambda \subseteq \mathbb{N}_{0}^{d}$, with $|\Lambda|=N$, we have

$$
f=\underbrace{\sum_{j \in \Lambda} x_{j} \phi_{j}}_{\text {Approximation }}+\underbrace{\sum_{j \notin \Lambda} x_{j} \phi_{j}}_{\text {Truncation error }}=: f_{\Lambda}+e_{\Lambda}
$$

Random sampling + weighted ℓ^{1} minimization

We consider random evaluations of f at $\boldsymbol{z}_{1}, \ldots, \boldsymbol{z}_{m}$ drawn according to the orthogonality measure of $\left\{\phi_{j}\right\}_{j \in \mathbb{N}_{0}^{d}}$:

$$
\boldsymbol{A}=\left(\frac{1}{\sqrt{m}} \phi_{j}\left(\boldsymbol{z}_{i}\right)\right)_{i j} \in \mathbb{C}^{m \times N}, \quad \boldsymbol{y}=\left(\frac{1}{\sqrt{m}} f\left(\boldsymbol{z}_{i}\right)\right)_{i} \in \mathbb{C}^{m}
$$

Moreover, denoting

$$
\boldsymbol{x}_{\Lambda}=\left(x_{\boldsymbol{i}}\right)_{\boldsymbol{i} \in \Lambda} \in \mathbb{C}^{N}, \quad \boldsymbol{e}_{\Lambda}=\frac{1}{\sqrt{m}}\left(f\left(\boldsymbol{z}_{i}\right)-f_{\Lambda}\left(\boldsymbol{z}_{i}\right)\right) \in \mathbb{C}^{m}
$$

we have the linear system

$$
\boldsymbol{A} \boldsymbol{x}_{\Lambda}=\boldsymbol{y}+\boldsymbol{e}_{\Lambda}
$$

The solution is recovered by weighted QCBP

$$
\min _{\boldsymbol{z} \in \mathbb{C}^{N}}\|\boldsymbol{z}\|_{1, u} \quad \text { s.t. }\|\boldsymbol{A} \boldsymbol{z}-\boldsymbol{y}\|_{2} \leq \eta
$$

where $\|z\|_{1, u}=\sum_{j \in[N]} u_{j}\left|z_{j}\right|$ the weights are chosen intrinsically as

$$
u_{j}=\left\|\phi_{j}\right\|_{L^{\infty}}
$$

Related literature

History of this idea:

- CS + orthogonal polynomials
- [Rauhut, Ward, 2012], [Yau, Guo, Xiu, 2012];
- Weighted ℓ^{1} minimization and function approximation
- [Rauhut, Ward, 2016], [Adcock, 2017], [Chkifa, Dexter, Tran, Webster, 2017], [Adcock, B., Webster, 2017]
- CS + UQ with Polynomial Chaos expansion
- [Doostan, Owhadi, 2011], [Mathelin, Gallivan, 2012], [Yang, Karniadakis, 2013], [Peng, Hampton, Doostan, 2014], [Rauhut, Schwab, 2017], [Bouchot, Rauhut, Schwab, 2017]

Lower sets and the choice of Λ

Definition (Lower or downward closed set)
A set $S \subseteq \mathbb{N}_{0}^{d}$ is lower if $\forall \boldsymbol{i}, \boldsymbol{j}: \boldsymbol{i} \leq \boldsymbol{j}$ and $\boldsymbol{j} \in S \Longrightarrow \boldsymbol{i} \in S$.
Lower sets have been proved to be extremely effective for parametric PDEs: [Beck, Chkifa, Cohen, Dexter, DeVore, Griebel, Migliorati, Nobile, Schwab, Tamellini, Tempone, Tran, Webster, ...]
Why do they matter?

- Best s-term approximation in lower sets realizes the best s-term approximation for a large class of smooth operators, with decay rate $s^{-\alpha}, \alpha>0$ in L^{2} or L^{∞}. [Chkifa, Cohen, Schwab, 2015]
- The union of all s-sparse lower sets, is the hyperbolic cross:

$$
\Lambda_{s}^{\mathrm{HC}}=\left\{\boldsymbol{i}=\left(i_{1}, \ldots, i_{d}\right) \in \mathbb{N}_{0}^{d}: \prod_{j=1}^{d}\left(i_{j}+1\right) \leq s\right\}
$$

resulting in a controlled growth of N with respect to d and s

$$
N=\left|\Lambda_{s}^{\mathrm{HC}}\right| \leq \min \left\{2 s^{3} 4^{d}, \mathrm{e}^{2} s^{2+\log _{2}(d)}\right\}
$$

[Kühn, Sickel, Ullrich, 2015; Chernov, Dũng, 2016]

Lower RIP and recovery guarantees

- Weighted cardinality of $S \subseteq \mathbb{N}_{0}^{d}$ is $|S|_{\boldsymbol{w}}:=\sum_{i \in \operatorname{supp}(S)} w_{\boldsymbol{i}}^{2}$
- $K(s):=\max \left\{|S|_{\boldsymbol{u}}: S \subseteq \mathbb{N}_{0}^{d}, S\right.$ lower $\}$.

Definition (lower RIP [Chkifa, Dexter, Tran, Webster, 2017])

A matrix \boldsymbol{A} fulfills the lower RIP of order s if $\exists \delta \in[0,1)$ s.t.

$$
(1-\delta)\|\boldsymbol{z}\|_{2}^{2} \leq\|\boldsymbol{A} \boldsymbol{z}\|_{2}^{2} \leq(1+\delta)\|\boldsymbol{z}\|_{2}^{2}, \quad \forall \boldsymbol{z} \in \mathbb{C}^{N},|\operatorname{supp}(\boldsymbol{z})|_{\boldsymbol{u}} \leq K(s)
$$

Assuming an a priori error bound $\left\|e_{\Lambda}\right\|_{2} \leq \eta$, the following uniform recovery error estimates hold [Chkifa, Dexter, Tran, Webster, 2017]:

$$
\begin{aligned}
\|f-\hat{f}\|_{L^{\infty}(D)} & \leq\left\|\boldsymbol{x}-\hat{\boldsymbol{x}}_{\Lambda}\right\|_{1, \boldsymbol{u}} \lesssim \sigma_{s, L}(\boldsymbol{x})_{1, \boldsymbol{u}}+s^{\gamma / 2} \eta \\
\|f-\hat{f}\|_{L^{2}(D)} & =\left\|\boldsymbol{x}-\hat{\boldsymbol{x}}_{\Lambda}\right\|_{2} \lesssim \frac{\sigma_{s, L}(\boldsymbol{x})_{1, \boldsymbol{u}}}{s^{\gamma / 2}}+\eta
\end{aligned}
$$

where

$$
\sigma_{s, L}(\boldsymbol{x})_{1, \boldsymbol{u}}=\inf _{\boldsymbol{z} \in \Sigma_{s}^{N}, \operatorname{supp}(\boldsymbol{z}) \text { lower }}\|\boldsymbol{z}-\boldsymbol{x}\|_{1, \mathbf{u}}
$$

Nonuniform recovery: optimality of the weights

Theorem [Adcock, 2017]
Let $0<\epsilon<\mathrm{e}^{-1}, \eta \geq 0, \boldsymbol{w}=\left(w_{\boldsymbol{i}}\right)_{\boldsymbol{i} \in \Lambda}$ be a set of weights, $x \in \ell^{2}\left(\mathbb{N}_{0}^{d}\right)$ and $S \subseteq \Lambda, S \neq \emptyset$, be any fixed set. Suppose that $\left\|\boldsymbol{e}_{\Lambda}\right\|_{2} \leq \eta$. Then, with probability at least $1-\epsilon$, any minimizer $\hat{\boldsymbol{x}}_{\Lambda}$ of

$$
\min _{\boldsymbol{z} \in \mathbb{C}^{N}}\|\boldsymbol{z}\|_{1, \boldsymbol{w}} \quad \text { s.t. }\|\boldsymbol{A} \boldsymbol{z}-\boldsymbol{y}\|_{2} \leq \eta
$$

satisfies $\left\|\boldsymbol{x}-\hat{\boldsymbol{x}}_{\Lambda}\right\|_{2} \lesssim \lambda \sqrt{|S|_{\boldsymbol{w}}}\left(\eta+\left\|\boldsymbol{x}-\boldsymbol{x}_{\Lambda}\right\|_{1, \boldsymbol{u}}\right)+\left\|\boldsymbol{x}-\boldsymbol{x}_{S}\right\|_{1, \boldsymbol{w}}$, provided

$$
m \gtrsim \underbrace{\left(|S|_{u}+\max _{i \in \Lambda \backslash S}\left\{u_{i}^{2} / w_{i}^{2}\right\}|S|_{\boldsymbol{w}}\right)}_{=: \mathcal{M}(S ; \boldsymbol{u}, \boldsymbol{v})} L
$$

where $\lambda=1+\frac{\sqrt{\log \left(\epsilon^{-1}\right)}}{\log \left(2 N \sqrt{|S|_{\boldsymbol{w}}}\right)}$ and $L=\log \left(\epsilon^{-1}\right) \log \left(2 N \sqrt{|S|_{\boldsymbol{w}}}\right)$.

- Seeking to minimize $\mathcal{M}(S ; \boldsymbol{u}, \boldsymbol{v})$, it is natural to choose $\boldsymbol{w}=\boldsymbol{u}$.
- This conclusion is supported by numerical evidence. [Adcock, B., Webster, 2017]

Robustness of ℓ_{u}^{1}-minimization to unknown error

 Theorem [Adcock, B., Webster, 2017]Let $\Lambda=\Lambda_{s}^{\mathrm{HC}}$ and assume

$$
m \sim s^{\gamma} \cdot L,
$$

where,

$$
L=\ln ^{2}(s) \min \{d+\ln (s), \ln (2 d) \ln (s)\}+\ln (s) \ln (\ln (s) / \varepsilon)
$$

Then, for every $\eta \geq 0$ and $f \in L^{2}(D) \cap L^{\infty}(D)$, the $\ell_{\boldsymbol{u}}^{1}$-minimization computes an approximation \hat{f} s.t.

$$
\begin{aligned}
\|f-\hat{f}\|_{L^{\infty}(D)} & \lesssim \sigma_{s, L}(\boldsymbol{x})_{1, \boldsymbol{u}}+s^{\gamma / 2}\left(\eta+\left\|\boldsymbol{e}_{\Lambda}\right\|_{2}+T_{u}\left(\boldsymbol{A}, \Lambda, \boldsymbol{e}_{\Lambda}, \eta\right)\right) \\
\|f-\hat{f}\|_{L^{2}(D)} & \lesssim \frac{\sigma_{s, L}(\boldsymbol{x})_{1, \boldsymbol{u}}}{s^{\gamma / 2}}+\eta+\left\|\boldsymbol{e}_{\Lambda}\right\|_{2}+T_{u}\left(A, \Lambda, e_{\Lambda}, \eta\right)
\end{aligned}
$$

with probability $1-\varepsilon$, where $\gamma=2$ or $\frac{\log (3)}{\log (2)}$, for Legendre and Chebyshev polynomials, respectively. Moreover,

$$
T_{u}\left(A, \Lambda, e_{\Lambda}, \eta\right) \lesssim \sqrt{\frac{|\Lambda|_{1, \boldsymbol{u}}}{N}} \frac{1}{\sigma_{\min }\left(\sqrt{\frac{m}{n}} A^{*}\right)} \sqrt{L} \max \left\{\left\|\boldsymbol{e}_{\Lambda}\right\|_{2}-\eta, 0\right\}
$$

The constant $\mathcal{Q}_{u}(\boldsymbol{A})$

Consider the constant

$$
\mathcal{Q}_{\boldsymbol{u}}(\boldsymbol{A}):=\sqrt{\frac{|\Lambda|_{1, \boldsymbol{u}}}{N}} \frac{1}{\sigma_{\min }\left(\sqrt{\frac{m}{n}} \boldsymbol{A}^{*}\right)} .
$$

- Close link with the ℓ^{1}-quotient property of CS [Wojtaszczyk, 2010; Foucart, 2014; B., Adcock, 2017].
- Explicit bound of the form $\mathcal{Q}_{\boldsymbol{u}}(\boldsymbol{A}) \lesssim 1$ in probability can be proved in the 1D case. In general, we can estimate $\mathcal{Q}_{\boldsymbol{u}}(\boldsymbol{A})$ numerically:

(d, s, N)	m	125	250	375	500	625	750	875	1000
$(8,22,1843)$	Che	2.65	3.07	3.53	3.95	4.46	5.03	5.78	6.82
	Leg	6.45	7.97	8.99	10.5	12.1	13.7	15.8	18.6
(d, s, N)	m	250	500	750	1000	1250	1500	1750	2000
$(16,13,4129)$	Che	2.64	2.93	3.30	3.63	3.99	4.41	4.95	5.62
	Leg	5.64	6.20	6.85	7.60	8.32	8.99	10.1	11.1

Table: The constant $Q_{\boldsymbol{u}}(A)$ (averaged over 50 trials).

The optimal choice of η

The term $\max \left\{\left\|\mathbf{e}_{\boldsymbol{\Lambda}}\right\|_{\mathbf{2}}-\eta, \mathbf{0}\right\}$ suggests that an optimal choice is $\eta=\|\boldsymbol{e}\|_{2}$. This is confirmed by numerical experiments, where random noise of a prescribed norm is added to the samples.

Approximation of $f(\boldsymbol{z})=\exp \left(-\frac{1}{d} \sum_{i=1}^{d} \cos \left(z_{i}\right)\right)$, with $d=15$.
In practice, cross validation is employed to estimate the optimal η.

Summary

- CS is a useful tool for parametric PDEs inside / outside the black box.

Benefits:

- Exploit sparsity;
- Ability to capture local features (e.g., boundary layers);
- Easy parallelizability;
- No need for error estimators.

Challenges:

- Accelerate the recovery phase (improve $O(\operatorname{smN})$);
- High-dimensional physical domains;
- Complex geometries;
- Application to nonlocal problems.

Benefits:

- Low impact of the dimensionality d on the sample complexity $(\log (d))$;
- No need to fix the lower set in advance;
- Robustness to unknown error.

Challenges:

- Is it possible to achieve $m \sim s \cdot L$?
- Quantify the decay of $\sigma_{s, L}(\boldsymbol{x})_{1, u}$ depending on the smoothness of f;
- Complex geometries of D;
- Different decoders (e.g., LASSO)
- S. Brugiapaglia. COmpRessed SolvING: sparse approximation of PDEs based on compressed sensing. PhD thesis, MOX - Politecnico di Milano, 2016
- S. Brugiapaglia, S. Micheletti, and S. Perotto. Compressed solving: A numerical approximation technique for elliptic PDEs based on Compressed Sensing. Comput. Math. Appl., 70(6):1306-1335, 2015.
- S. Brugiapaglia, F. Nobile, S. Micheletti, and S. Perotto. A theoretical study of COmpRessed SolvING for advection-diffusion-reaction problems. Math. Comput., to appear, 2017.

- B. Adcock, C. Bao, and S. Brugiapaglia. Correcting for unknown errors in sparse high-dimensional function approximation. In preparation, 2017.
- B. Adcock, S. Brugiapaglia, and C. G. Webster. Compressed sensing approaches for polynomial approximation of high-dimensional functions. Chapter in "Compressed Sensing and its applications". To appear, 2017. (arXiv:1703.06987)
- S. B., B. Adcock. Robustness to unknown error in sparse regularization. Submitted, 2017. (arXiv:1705.10299)
- S. Brugiapaglia. COmpRessed SolvING: sparse approximation of PDEs based on compressed sensing. PhD thesis, MOX - Politecnico di Milano, 2016
- S. Brugiapaglia, S. Micheletti, and S. Perotto. Compressed solving: A numerical approximation technique for elliptic PDEs based on Compressed Sensing. Comput. Math. Appl., 70(6):1306-1335, 2015.
- S. Brugiapaglia, F. Nobile, S. Micheletti, and S. Perotto. A theoretical study of COmpRessed SolvING for advection-diffusion-reaction problems. Math. Comput., to appear, 2017.

\rightarrow B. Adcock, C. Bao, and S. Brugiapaglia. Correcting for unknown errors in sparse high-dimensional function approximation. In preparation, 2017.
\rightarrow B. Adcock, S. Brugiapaglia, and C. G. Webster. Compressed sensing approaches for polynomial approximation of high-dimensional functions. Chapter in "Compressed Sensing and its applications". To appear, 2017. (arXiv:1703.06987)
- S. B., B. Adcock. Robustness to unknown error in sparse regularization. Submitted, 2017. (arXiv:1705.10299)

> Thank you!

