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Compressed Sensing (CS)

Pioneering papers: [Donoho, 2006; Candès, Romberg, & Tao, 2006]

Main ingredients:

I Sparsity / Compressibility;

I Random measurements (sensing);

I Sparse recovery.

Sparsity: Let s ∈ CN be an s-sparse w.r.t. a basis Ψ:

s = Ψx and x ∈ ΣNs = {z ∈ CN : ‖z‖0 ≤ s},

where ‖x‖0 := #{i : xi 6= 0} and s� N .

Compressibility: fast decay of the best s-term approximation error

σs(x)p = inf
z∈ΣN

s

‖x− z‖p ≤ Cs−α,

for some C,α > 0, where .
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Sensing
In order to acquire s, we perform m ∼ s · polylog(N) linear
nonadaptive random measurements

〈s,ϕi〉 =: yi, for i = 1, . . . ,m.

If we consider the matrix Φ = [ϕi] ∈ CN×m, we have

Ax = y,

where A = Φ∗Ψ ∈ Cm×N and y ∈ Cm. This system is highly
underdetermined.

y Φ∗ Ψ x

A picture to have in mind

f �t  u

=

measurements
vector

sensing matrix

sparsity basis unknown 
sparse signal

*H
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Sparse recovery
Thanks to the sparsity / compressibility of s, we can resort to sparse
recovery techniques. We aim at approximating the solution to

(P0) min
z∈CN

‖z‖0, s.t. Az = y.

/ In general, (P0) is a NP-hard problem...

, There are computationally tractable strategies to
approximate it!

In particular, it is possible to employ

I greedy strategies, e.g. Orthogonal Matching Pursuit
(OMP);

I convex relaxation, e.g., the quadratically-constrained
basis pursuit (QCBP) program:

min
z∈CN

‖z‖1, s.t. ‖Az − y‖2 ≤ η,

referred to as Basis pursuit (BP) when η = 0.
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Restricted isometry property
Many important recovery results in CS are based on the Restricted
Isometry Property (RIP).

Definition (RIP)
A matrix A ∈ Cm×N satisfies the RIP(s, δ) with δ ∈ [0, 1) if

(1− δ)‖z‖22 ≤ ‖Az‖22 ≤ (1 + δ)‖z‖22, ∀z ∈ ΣNs .

The RIP implies recovery results for:

I OMP [Zhang, 2011; Cohen, Dahmen, DeVore, 2015];

I QCBP [Candés, Romberg, Tao, 2006], [Foucart, Rauhut; 2013];

Optimal recovery error estimates (without noise) for a decoder ∆ look
like [Cohen, Dahmen, DeVore, 2009]

‖x−∆(Ax)‖2 .
σs(x)1√

s
, ∀x ∈ CN ,

and hold with high probability.
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CS as a tool to solve PDEs
Parametric PDEs’ setting:

I z ∈ D ⊆ Rd: parametric domain, d� 1;

I Lzuz = g: PDE;

I z 7→ uz: solution map (the “black box”);

I uz 7→ Q(uz): quantity of interest.

Can we take advantage of the CS paradigm in this setting?

YES! At least in two ways, addressed in this talk:

1. Inside the black box, to approximate z 7→ uz

2. Outside the black box, to approximate z 7→ f(z) = Q(uz)
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CS inside the black box
Consider the weak formulation of a PDE

find u ∈ U : a(u, v) = F(v), ∀v ∈ V,

and its Petrov-Galerkin (PG) discretization [Aziz, Babuška, 1972].

Motivation to apply CS:

I reduce the computational cost associated with a classical
PG discretization;

I situations with a limited budget of evaluations of F(·);
I deeper theoretical understanding of the PG method.

Case study:

. Advection-diffusion-reaction (ADR) equation, with
U = V = H1

0 (Ω), Ω = [0, 1]d, and

a(u, v) = (η∇u,∇v) + (b · ∇u, v) + (ρu, v), F(v) = (f, v).



7

Related literature

Ancestors: PDE solvers based on `1-minimization

1988 [J. Lavery, 1988; J. Lavery, 1989]
Inviscid Burgers’ equation, conservation laws

2004 [J.-L. Guermond, 2004; J.-L. Guermond and B. Popov, 2009]
Hamilton-Jacobi, transport equation

CS techniques for PDEs

2010 [S. Jokar, V. Mehrmann, M. Pfetsch, and H. Yserentant, 2010]
Recursive mesh refinement based on CS (Poisson equation)

2015 [S. B., S. Micheletti, S. Perotto, 2015;
S. B., F. Nobile, S. Micheletti, S. Perotto, 2017]
CORSING for ADR problems
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The Petrov-Galerkin method
Choose UN ⊆ H1

0 (Ω) and VM ⊆ H1
0 (Ω) with

UN = span{ψ1, . . . , ψN︸ ︷︷ ︸
trials

}, VM = span{ϕ1, . . . , ϕM︸ ︷︷ ︸
tests

}

Then we can discretize the weak problem as

Ax = y, Aij = a(ψj, ϕi), yi = F(ϕi)

with A ∈ CM×N , y ∈ CM .

We can establish the following analogy:

Petrov-Galerkin method: Sampling:
solution of a PDE ⇐⇒ signal

tests (bilinear form) measurements (inner product)
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Classical case: square matrices

When dealing with Petrov-Galerkin discretizations, one usually
ends up with a big square matrix.

ψ1 ψ2 ψ3 ψ4 ψ5 ψ6 ψ7

↓ ↓ ↓ ↓ ↓ ↓ ↓
ϕ1 →
ϕ2 →
ϕ3 →
ϕ4 →
ϕ5 →
ϕ6 →
ϕ7 →



× × × × × × ×
× × × × × × ×
× × × × × × ×
× × × × × × ×
× × × × × × ×
× × × × × × ×
× × × × × × ×


︸ ︷︷ ︸

a(ψj ,ϕi)



u1
u2
u3
u4
u5
u6
u7


=



F(ϕ1)
F(ϕ2)
F(ϕ3)
F(ϕ4)
F(ϕ5)
F(ϕ6)
F(ϕ7)
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“Compressing” the discretization

We would like to use only m random tests instead of N , with
m� N ...

ψ1 ψ2 ψ3 ψ4 ψ5 ψ6 ψ7

↓ ↓ ↓ ↓ ↓ ↓ ↓
ϕ1 →
ϕ2 →
ϕ3 →
ϕ4 →
ϕ5 →
ϕ6 →
ϕ7 →



× × × × × × ×
× × × × × × ×
× × × × × × ×
× × × × × × ×
× × × × × × ×
× × × × × × ×
× × × × × × ×


︸ ︷︷ ︸

a(ψj ,ϕi)



u1
u2
u3
u4
u5
u6
u7


=



F(ϕ1)
F(ϕ2)
F(ϕ3)
F(ϕ4)
F(ϕ5)
F(ϕ6)
F(ϕ7)
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Sparse recovery

...in order to obtain a reduced discretization.

ψ1 ψ2 ψ3 ψ4 ψ5 ψ6 ψ7

↓ ↓ ↓ ↓ ↓ ↓ ↓
ϕ2 →
ϕ5 →

[
× × × × × × ×
× × × × × × ×

]
︸ ︷︷ ︸

a(ψj ,ϕi)



u1
u2
u3
u4
u5
u6
u7



=

[
F(ϕ2)
F(ϕ5)

]

The solution is then computed using sparse recovery
techniques.
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CORSING (COmpRessed SolvING)
First, we define the local a-coherence
[Krahmer, Ward, 2014; B., Nobile, Micheletti, Perotto, 2017]:

µNq := sup
j∈[N ]

|a(ψj , ϕq)|2, ∀q ∈ N.

COSRING algorithm:

1. Define a truncation level M and a number of measurements m;

2. Draw τ1, . . . , τm independently at random from [M ] according to
the probability p ∼ (µN1 , . . . , µ

N
M ) (up to rescaling).

3. Build A ∈ Rm×N , y ∈ Rm and D ∈ Rm×m, defined as:

Aij := a(ψj , ϕτi), fi := F(ϕτi), Dik :=
δik√
mpτi

.

4. Use OMP to solve min
z∈RN

‖D(Az − y)‖22, s.t. ‖z‖0 ≤ s;
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Sparsity + Sensing: How to choose {ψj} and {ϕi}?
Heuristic criterion commonly used in CS: space vs. frequency.

Hierarchical hat functions
[Smoliak, Dahmen, Griebel,
Yserentant, Zienkiewicz, ...]
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Homogeneous 1D Poisson problem CORSING HS
N = 8191, s = 50, m = 1200. ; Test Savings: TS := N−m

N
· 100% ≈ 85%
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Sparsity + Sensing: 2D case
Hierarchical Pyramids (P)
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An advection-dominated example
We consider a 2D advection-dominated problem{

−µ∆u+ b · ∇u = f in Ω = (0, 1)2,

u = 0 on ∂Ω,

where b = [1, 1]ᵀ, µ = 0.01.
CORSING SP. Worst solution in the successful cluster over 50 runs:

N = 16129
TS = 85%
ESP = 1.00
L2-rel. err. = 7.1e-02

L2−rel. err. = 7.2e−02
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Cost reduction with respect to the “full” PG (m=N)

We compare the assembly/recovery times of “full” PG and CORSING.

“full” PG CORSING SP
A f trec (\) TS A f trec (OMP)

2.5e+03 9.1e-01 7.1e+01 85% 3.8e+02 2.7e-01 8.1e+01
90% 2.5e+02 2.0e-01 3.4e+01

I The assembly time reduction is proportional to TS.

I Also the RAM is reduced proportionally to TS.

I The recovery phase is cheaper for high TS rates.

The CORSING method can considerably reduce the computational
cost associated with a “full” PG discretization.
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Theoretical analysis
Theorem
Let s,N ∈ N, with s < N . Suppose the truncation condition∑
q>M µNq . α2

s
holds. Then, provided δ ∈

(
1− α2

β2 , 1
)
, and

m & δ−2‖νN,M‖1s log3(s) log(N),

it holds
P{β−1DA ∈ RIP(s, δ)} ≥ 1−N− log3(s), .

where α and β are the inf-sup and the continuity constant of a(·, ·).

I Alternative analysis based on a restricted inf-sup property leads
to suboptimal rate m ∼ s2 · (log factors).

Algorithmic recovery guarantee:
CORSING recovers the best s-term approximation to u (up to a constant)
using O(smN) flops with high probability.

Comparison with adaptive wavelet methods:
/ Computational cost O(smN) instead of O(s);
, Easy parallelizability of OMP;
, No need for a priori error estimators.
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CS outside the black box
We aim at approximating a function

f : D = [−1, 1]d → C, with d� 1.

of the form “(quantity of interest) ◦ (solution map)”:

f(z) = Q(uz), where uz solves Lzuz = g.

As sparsity basis, we consider the tensorized Chebyshev or Legendre
orthogonal polynomials {φj}j∈Nd

0
. Then, we expand

f =
∑
j∈Nd

0

xjφj .

Fixed a finite-dimensional set Λ ⊆ Nd0, with |Λ| = N , we have

f =
∑
j∈Λ

xjφj︸ ︷︷ ︸
Approximation

+
∑
j /∈Λ

xjφj︸ ︷︷ ︸
Truncation error

=: fΛ + eΛ.



20

Random sampling + weighted `1 minimization
We consider random evaluations of f at z1, . . . ,zm drawn according
to the orthogonality measure of {φj}j∈Nd

0
:

A = ( 1√
m
φj(zi))ij ∈ Cm×N , y = ( 1√

m
f(zi))i ∈ Cm

Moreover, denoting

xΛ = (xi)i∈Λ ∈ CN , eΛ =
1√
m

(f(zi)− fΛ(zi)) ∈ Cm,

we have the linear system

AxΛ = y + eΛ.

The solution is recovered by weighted QCBP

min
z∈CN

‖z‖1,u s.t. ‖Az − y‖2 ≤ η,

where ‖z‖1,u =
∑
j∈[N ]

uj |zj | the weights are chosen intrinsically as

uj = ‖φj‖L∞ .
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Related literature

History of this idea:
I CS + orthogonal polynomials

I [Rauhut, Ward, 2012], [Yau, Guo, Xiu, 2012];
I Weighted `1 minimization and function approximation

I [Rauhut, Ward, 2016], [Adcock, 2017], [Chkifa, Dexter,
Tran, Webster, 2017], [Adcock, B., Webster, 2017]

I CS + UQ with Polynomial Chaos expansion
I [Doostan, Owhadi, 2011], [Mathelin, Gallivan, 2012], [Yang,

Karniadakis, 2013], [Peng, Hampton, Doostan, 2014],
[Rauhut, Schwab, 2017], [Bouchot, Rauhut, Schwab, 2017]
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Lower sets and the choice of Λ
Definition (Lower or downward closed set)
A set S ⊆ Nd0 is lower if ∀i, j : i ≤ j and j ∈ S =⇒ i ∈ S.

Lower sets have been proved to be extremely effective for parametric PDEs:
[Beck, Chkifa, Cohen, Dexter, DeVore, Griebel, Migliorati, Nobile, Schwab,
Tamellini, Tempone, Tran, Webster, ...]

Why do they matter?

I Best s-term approximation in lower sets realizes the best s-term
approximation for a large class of smooth operators, with decay rate
s−α, α > 0 in L2 or L∞. [Chkifa, Cohen, Schwab, 2015]

I The union of all s-sparse lower sets, is the hyperbolic cross:

ΛHC
s =

{
i = (i1, . . . , id) ∈ Nd0 :

d∏
j=1

(ij + 1) ≤ s
}
,

resulting in a controlled growth of N with respect to d and s

N = |ΛHC
s | ≤ min

{
2s34d, e2s2+log2(d)

}
.

[Kühn, Sickel, Ullrich, 2015; Chernov, Dũng, 2016]
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Lower RIP and recovery guarantees
I Weighted cardinality of S ⊆ Nd0 is |S|w :=

∑
i∈supp(S)

w2
i

I K(s) := max{|S|u : S ⊆ Nd0, S lower}.

Definition (lower RIP [Chkifa, Dexter, Tran, Webster, 2017])
A matrix A fulfills the lower RIP of order s if ∃δ ∈ [0, 1) s.t.

(1− δ)‖z‖22 ≤ ‖Az‖22 ≤ (1 + δ)‖z‖22, ∀z ∈ CN , | supp(z)|u ≤ K(s).

Assuming an a priori error bound ‖eΛ‖2 ≤ η, the following uniform
recovery error estimates hold [Chkifa, Dexter, Tran, Webster, 2017]:

‖f − f̂‖L∞(D) ≤ ‖x− x̂Λ‖1,u . σs,L(x)1,u + sγ/2η,

‖f − f̂‖L2(D) = ‖x− x̂Λ‖2 .
σs,L(x)1,u

sγ/2
+ η,

where
σs,L(x)1,u = inf

z∈ΣN
s ,supp(z) lower

‖z − x‖1,u.
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Nonuniform recovery: optimality of the weights

Theorem [Adcock, 2017]
Let 0 < ε < e−1, η ≥ 0, w = (wi)i∈Λ be a set of weights, x ∈ `2(Nd0) and
S ⊆ Λ, S 6= ∅, be any fixed set. Suppose that ‖eΛ‖2 ≤ η. Then, with
probability at least 1− ε, any minimizer x̂Λ of

min
z∈CN

‖z‖1,w s.t. ‖Az − y‖2 ≤ η,

satisfies ‖x− x̂Λ‖2 . λ
√
|S|w (η + ‖x− xΛ‖1,u) + ‖x− xS‖1,w, provided

m &

(
|S|u + max

i∈Λ\S
{u2

i/w
2
i}|S|w

)
︸ ︷︷ ︸

=:M(S;u,v)

L,

where λ = 1 +

√
log(ε−1)

log(2N
√
|S|w)

and L = log(ε−1) log
(

2N
√
|S|w

)
.

I Seeking to minimizeM(S;u,v), it is natural to choose w = u.
I This conclusion is supported by numerical evidence.

[Adcock, B., Webster, 2017]
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Robustness of `1
u-minimization to unknown error

Theorem [Adcock, B., Webster, 2017]
Let Λ = ΛHC

s and assume
m ∼ sγ · L,

where,

L = ln2(s) min{d+ ln(s), ln(2d) ln(s)}+ ln(s) ln(ln(s)/ε).

Then, for every η ≥ 0 and f ∈ L2(D) ∩ L∞(D), the `1u-minimization
computes an approximation f̂ s.t.

‖f − f̂‖L∞(D) . σs,L(x)1,u + sγ/2(η + ‖eΛ‖2 + Tu(A,Λ, eΛ, η)),

‖f − f̂‖L2(D) .
σs,L(x)1,u

sγ/2
+ η + ‖eΛ‖2 + Tu(A,Λ, eΛ, η),

with probability 1− ε, where γ = 2 or log(3)
log(2)

, for Legendre and Chebyshev
polynomials, respectively. Moreover,

Tu(A,Λ, eΛ, η) .

√
|Λ|1,u
N

1

σmin(
√

m
n
A∗)

√
Lmax{‖eΛ‖2 − η, 0}.
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The constant Qu(A)
Consider the constant

Qu(A) :=

√
|Λ|1,u
N

1

σmin(
√

m
nA
∗)
.

I Close link with the `1-quotient property of CS
[Wojtaszczyk, 2010; Foucart, 2014; B., Adcock, 2017].

I Explicit bound of the form Qu(A) . 1 in probability can be
proved in the 1D case. In general, we can estimate Qu(A)
numerically:

(d, s,N) m 125 250 375 500 625 750 875 1000

(8, 22, 1843)
Che 2.65 3.07 3.53 3.95 4.46 5.03 5.78 6.82
Leg 6.45 7.97 8.99 10.5 12.1 13.7 15.8 18.6

(d, s,N) m 250 500 750 1000 1250 1500 1750 2000

(16, 13, 4129)
Che 2.64 2.93 3.30 3.63 3.99 4.41 4.95 5.62
Leg 5.64 6.20 6.85 7.60 8.32 8.99 10.1 11.1

Table: The constant Qu(A) (averaged over 50 trials).
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The optimal choice of η
The term max{‖eΛ‖2 − η,0} suggests that an optimal choice is
η = ‖e‖2. This is confirmed by numerical experiments, where random
noise of a prescribed norm is added to the samples.

Approximation of f(z) = exp(− 1
d

∑d
i=1 cos(zi)), with d = 15.

In practice, cross validation is employed to estimate the optimal η.
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Summary

I CS is a useful tool for parametric PDEs inside / outside the black box.

Benefits:
I Exploit sparsity;

I Ability to capture local features
(e.g., boundary layers);

I Easy parallelizability;

I No need for error estimators.

Challenges:
I Accelerate the recovery phase

(improve O(smN));

I High-dimensional physical domains;

I Complex geometries;

I Application to nonlocal problems.

Benefits:
I Low impact of the dimensionality d

on the sample complexity (log(d));

I No need to fix the lower set in
advance;

I Robustness to unknown error.

Challenges:
I Is it possible to achieve m ∼ s · L?
I Quantify the decay of σs,L(x)1,u

depending on the smoothness of f ;

I Complex geometries of D;

I Different decoders (e.g., LASSO)
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