Sparse Grid Methods for Uncertainty Quantification

Michael Griebel
University of Bonn and Fraunhofer SCAI
Joint work with Alexander Rüttgers

1. Sparse grids

- Construction principles and properties
- Optimal sparse grids
- Adaptive combination method

2. Application

- Multi-scale viscoelastic flows

Motivation

- Numerical methods in uncertainty quantification:
- Galerkin approach
- Collocation technique
- Discrete projection
- Needed on stochastic/parameter domain:
- Approximation of integrals
- Interpolation, especially for collocation
- Simple domains with product structure: $[-a, a]^{d}, \mathbb{R}^{d}$
- Issue: high- or even infinite-dimensional problems

Curse of dimension

- $f: \Omega^{(d)} \rightarrow \mathbb{R}, \quad f \in V^{(r)}, \quad r$ isotropic smoothness
- Bellmann '61: curse of dimension $\quad M=$ \#dof

$$
\left\|f-f_{M}\right\|_{H^{s}}=C(d) \cdot M^{-r / d}|f|_{H^{s+r}}=O\left(M^{-r / d}\right)
$$

- Find situations where curse can be broken ?
- Trivial: restrict to $r=O(d)$

$$
\left\|f-f_{M}\right\|=O\left(M^{-c d / d}\right)=O\left(M^{-c}\right)
$$

but practically not very relevant

- In any case: some smoothness changes with d or importance of coordinates decays successively (e.g. after suitable nonlinear transformation)

Sparse grid approach

- Basic principles:
- 1-dim multilevel series expansion with proper decay
- d-dim product construction
- Trunctation of resulting multivariate expansion
- Effect:
- reduction of cost complexity
- nearly same accuracy as „full" product
- necessary: certain smoothness requirements
- adaptivity for detection of lower-dimensional manifolds

Simple example: Hierarchical basis

V_{3}
 W_{2}
$l=3$
 Vin $_{3}$
parabola $f(x)=-(x-1)(x+1)$ in $[-1,1]$

conventional coefficients no decay from level to level

hierarchical coefficients decay by $1 / 4$ from level to level

Tensor product hierarchical basis

Generalization to higher dimension by tensor product

Table of subspaces $W_{l_{1} l_{2}}$ Idea:
Omit points with small associated hierarchial coefficient values

Regular sparse grids

Properties of regular sparse grids

$N \cong 2^{n} \quad$ Sparse grids Full grids
Cost: $\quad O\left(N \log (N)^{d-1}\right)$ instead of $O\left(N^{d}\right)$
Accuracy: $\quad O\left(N^{-2} \log (N)^{d-1}\right)$
$O\left(N^{-2}\right)$
L_{2}-norm
Smoothness: $\left|\frac{\partial^{2 d} f}{\partial x_{1}^{2} \ldots \partial x_{d}^{2}}\right| \leq c$

$$
\left|\sum_{i=1}^{d} \frac{\partial^{2} f}{\partial x_{i}^{2}}\right| \leq c
$$

Space, seminorm: $H_{\text {mix }}^{2},|f|_{2, \text { mix }} \quad H^{2},|f|_{2}$
Mitigates the curse of dimension of conventional full grids Note: Higher regularity in mixed derivative, $\sim \mathrm{d}$

For wavelets, general stable multiscale systems: $O\left(N^{-2}(\log N)^{(d-1) / 2}\right)$

History of regular sparse grids

Re-invented several times:

1957 Korobov, Babenko
1963 Smolyak
1970 Gordon
1980 Delvos, Posdorf
1990 Zenger, G.
2000 Stromberg, deVore
2010 ????
Application areas include:

- quadrature
- interpolation
- data compression
hyperbolic cross points
blending method
Boolean interpolation
sparse grids
hyperbolic wavelets

Basic principles of sparse grids

- 1-dim multilevel sequence of operators and spaces

$$
P_{l}: V^{(1)} \rightarrow V_{l} \quad V_{l} \quad l \in \mathbb{N}
$$

- Sequence of differences, telescopic approach

$$
\Delta_{l}:=\left(P_{l}-P_{l-1}\right): V^{(1)} \rightarrow V_{l} \oplus V_{l-1}=: W_{l}
$$

- d-dim. product construction $\quad \mathbf{l}=\left(l_{1}, l_{2}, \ldots, l_{d}\right) \in \mathbb{N}^{d}$

$$
\Delta_{\mathbf{l}}:=\stackrel{d}{\otimes} \otimes_{j=1} \Delta_{l_{j}}=\stackrel{d}{\otimes}\left(P_{j=1}-P_{l_{j}-1}\right): V^{(d)} \rightarrow W_{\mathbf{l}} \quad f_{\mathbf{1}}=\Delta_{\mathbf{l}}(f) \in W_{\mathbf{l}}
$$

- Appropriate truncation of resulting multivariate expansion

$$
\begin{aligned}
I N^{d} & \rightarrow \mathfrak{J} \subset \mathbb{N} N^{d} \\
P=\sum_{\mathbf{l} \in N^{d}} \Delta_{\mathbf{l}} & \rightarrow P_{\mathfrak{J}}=\sum_{\mathbf{l} \in \mathfrak{J}} \Delta_{\mathbf{l}}
\end{aligned}
$$

Examples of multiscale expansions, 1d

- Integration: $P_{l}=Q_{l}: V^{(1)} \rightarrow V_{l}=\mathbb{R}$
- Sequence of nested or non-nested point sets and weights, size: $n_{l}=l$ or $n_{l}=2^{l}+1$
=> various sparse grid quadrature rules
- Interpolation $P_{l}=I_{l}: V^{(1)} \rightarrow V_{l}$, approximation $P_{l}=A_{l}: V^{(1)} \rightarrow V_{l}$
- Local piecewise polynomials, multiscale expansion: hierarchical basis, interpolets, wavelets, multilevel basis, size: $n_{l}=2^{l}+1 \quad\left|W_{l}\right|=2^{l-1}$
=> sparse grid finite element spaces
- Global polynomials: Fourier series, Chebyshev, Legendre, Hermite, Bernoulli polynomials
size $n_{l}=l$ or $n_{l}=2^{l}+1 \quad\left|W_{l}\right|=1$ or $\left|W_{l}\right|=2^{l-1}$
=> total degree / hyperbolic cross approximation

Regular sparse grid approach

- Index sets

$$
\begin{aligned}
\mathfrak{J}_{n}^{\text {full }} & =\left\{\mathbf{l} \in \mathbb{N}^{d}:|\mathbf{l}|_{\infty}=\max _{j=1, \ldots, d} l_{j} \leq n\right\} \\
\mathfrak{I}_{n}^{\text {sparse }} & =\left\{\mathbf{l} \in \mathbb{N}^{d}:|\mathbf{l}|_{1}=\sum_{j=1}^{d} l_{j} \leq n+d-1\right\}
\end{aligned}
$$

- The hierarchical representation is then

$$
P_{n}^{\text {sparse }}=\sum_{\|_{1} \leq n+d-1} \Delta_{\mathbf{1}} \quad P_{n}^{\text {sparse }}(f)=\sum_{\|_{1} \leq n+d-1} \Delta_{\mathbf{1}}(f)
$$

Other representations:

- generating system
- Lagrange system over SG points
- semi-hierarchical
- combination method

The combination technique

- A simple alternative representation is [a., schneider, Zenger 91$]$,

$$
P_{n}^{\mathrm{combi}}=\sum_{n \leq\| \|_{1} \leq n+d-1}(-1)^{n+d-\| \|_{1}-1}\binom{d-1}{|\mathbf{l}|_{1}-1} P_{1} \quad P_{1}:=\stackrel{d}{\otimes=1}{ }_{j}^{d} P_{l j}
$$

- Involves just the (anisotropic) full grid discretizations P_{1} on different levels and linearly combines them
- 2D example

$$
n=4
$$

$$
P_{n}^{\text {combi }}=\sum_{\|_{1}=n+d-1} P_{1}-\sum_{\|_{1}=n+d-2} P_{1}
$$

level indices, $n=5$

The combination technique

- Redundant representation but allows the simple reuse of existing code
- Completely parallel computation of the subproblems P_{1}
- Corresponds to a certain multivariate extrapolation method [Rüde 91]
- Necessary: Existence of a pointwise error expansion.
- Euler-Maruyama of stochastic ODE: additive expansion (leading error term) of mean square error
- Multilevel-Monte Carlo is just 2-d combination method
- Variance and bias for the two dimensions and a proper refinement rule which reflects the MC and the EulerMaruyama rates [Gerstner12, Harbrecht,Peeters,Sieenmorgen 13]

A priori construction of sparse grids

- In general: Given
- a class of functions and an error norm
- an associated bound $b(\mathbf{l})$ for the benefit of $\Delta_{\mathbf{l}}$
- a bound $c(\mathbf{l})$ for the cost of $\Delta_{\mathbf{l}}$
- We can a-priori derive a (quasi-) optimal sparse grid by solving a binary knapsack problem [Bungartz+G.03]
$\max \sum_{\mathbf{l} \in N^{d}} \alpha_{1} \cdot b(\mathbf{l}) \quad$ such that $\sum_{\mathbf{l} \in N^{d}} \alpha_{1} \cdot c(\mathbf{l}) \leq C_{f x} \quad \alpha_{1} \in\{0,1\}$
and setting $\mathfrak{I}_{C}=\left\{\mathbf{l} \in \mathbb{N}^{d}: \alpha_{1}=1\right\}$
- Boils down to just sorting the quotients $b(\mathbf{l}) / c(\mathbf{l})$ of the benefit versus cost according to its size and taking the largest indices into account

L^{2}-norm-based sparse grids in $H_{\text {mix }}^{2}$

- Representation $f(\mathbf{x})=\sum_{1} f_{1}(\mathbf{x}) \quad f_{1}(\mathbf{x})$
- Cost per subspace $c(\mathbf{l})=\operatorname{dim}\left(W_{1}\right)=2^{\mid 1-1 \|_{\mathrm{I}}}$
- Benefit for accuracy

$$
\left\|f_{1}\right\|_{2} \leq b(\mathbf{I})=3^{-d} \cdot 2^{-2\| \|_{1}} \cdot|f|_{2, \text { mix }}=O\left(2^{-2 \|_{1}}\right)
$$

- Choice of best subspaces ? Knapsack problem ! => local benefit²/cost ratio

$$
\begin{aligned}
& b^{2}(\mathbf{I}) / c(\mathbf{I}) \approx \frac{2^{-4\| \|_{1}}}{2}=2^{-5 \|_{1}} \quad \Rightarrow \text { regular sparse grid space } \\
& |\mathbf{1}|_{1}=n+d-1 \text { isoline }
\end{aligned}
$$

Anisotropic sparse grids

- Non-equal directions
- Weighted Sobolev spaces [Sloan+Wozniakowski93]

$$
H_{\gamma, \text { mix }}^{r}
$$

- Anisotropic smoothness spaces $[$ Gersterer. $98, \mathrm{G}+\mathrm{Zzung} 15]$

$$
H_{m i x}^{s_{1}, s_{2}, \ldots, s_{d}}=H^{s_{1}}\left(I_{1}\right) \otimes H^{s_{2}}\left(I_{2}\right) \otimes \cdots \otimes H^{s_{d}}\left(I_{d}\right)
$$

- Different dimensions for different directions $[$ [a.Habriecent 11]

$$
H^{s_{1}}\left(\Omega_{1}\right) \otimes H^{s_{2}}\left(\Omega_{2}\right) \otimes \ldots \otimes H^{s_{d}}\left(\Omega_{d}\right)
$$

- Via knapsack problem:
- A priori construction of optimal anisotropic sparse index sets
- log-terms disappear

Generalized sparse grids

- General index sets $\mathfrak{J} \subset \mathbb{N}^{d}$
- Downward closed set, no holes

$$
\mathbf{l} \in \mathfrak{I} \Rightarrow \mathbf{l}-e_{j} \in \mathfrak{I} \quad j=1, \ldots, d
$$

- Associated sparse grid operator $P_{\mathfrak{J}}=\sum_{\mathrm{l} \in \mathfrak{I}} \Delta_{\mathrm{I}}$
- Associated space and associated function

$$
V_{\mathfrak{J}}=\bigoplus_{\mathbf{l} \in \mathfrak{I}} W_{\mathbf{I}} \quad P_{\mathfrak{J}} f=\sum_{\mathbf{l} \in \mathfrak{I}} \Delta_{\mathbf{1}}(f)=\sum_{\mathbf{l} \in \mathfrak{I}} f_{\mathbf{l}}
$$

The combination technique

- Can also be generalized to a given downward closed index set \mathfrak{I}

$$
P_{\mathfrak{J}}=\sum_{1 \in \mathfrak{J}} c_{1} P_{1}
$$

- Combination coefficient

$$
c_{1}=\sum_{z=0}^{1}(-1)^{|z|} \chi^{\tilde{z}}(\mathbf{l}+\mathbf{z})
$$

with characteristic function χ^{3} on the index set \mathfrak{I}

- Again: just (anisotropic) full grid discretizations P_{1} on different levels get linearly combined
- Note: many coefficients on the lower levels are zero

Tensor product sparse grids

- Examples:
- space \times time, $d_{1}=3, d_{2}=1$, parabolic problems
- space \times parameters $d_{1}=3, d_{2}=10-20$
but smooth in parameter variables
- space \times stochastics $d_{1}=3, d_{2}=\infty$
but analytic in stochastic variables
- Main result: Curse of dimension only w.r.t. the larger dimension and/or the lower smoothness [G.+Harbrecht11], [G.+Zung15]
- Time, parametrization and stochastic coordinates disappear in the overall complexity rate => just space discretization matters

Sparse space-time grids

- Approximation error and necessary regularity [G.+Oeltz07]

$$
\inf _{u_{n} \in V_{n}^{0}}\left\|u-u_{n}\right\|_{H^{1}(\Omega) \otimes L^{2}(0, T)} \leq c 2^{-n}\|u\|_{H^{2}(\Omega) \otimes H^{2}((0, T))}
$$

- Classical regularity theory (Ladyzenskaja, wloka) $u \in H^{2}(\Omega) \otimes H^{2}((0, T))$
- Sparse space-time grids posses same approximation rate as full space-time grids but just cost complexity of space problem
- In each time slice there is a conventional full grid

space dimension 1 , space-time sparse grid, Euler case
space dimension 2, space-time sparse grid, Cranck-Nicolson case, $\mathrm{n}=4,5$:

Stochastic and parametric PDEs

- Solutions of stochastic/parametric PDEs

$$
\partial_{t} u(t, \mathbf{x}, \mathbf{y})-\nabla \cdot A(\mathbf{x}, \mathbf{y}) \nabla f(t, \mathbf{x}, \mathbf{y})=r(t, \mathbf{x}, \mathbf{y})
$$

live on product $(t, \mathbf{x}, \mathbf{y}) \in T \times \mathbf{X} \times \mathbf{Y}$

- of temporal domain T
- of spatial domain \mathbf{X} with $d_{1}=1,2,3$
- and stochastic/parametric domain \mathbf{Y} with d_{2} large or even infinity.
- Often: Very high smoothness in y-part
- Here: especially weighted analyticity for the different coordinates, decay in covariance [Cohen,Devore,Schwab10,11]
- Then, even infinite-dimensional \mathbf{Y} become treatable
- Sparse grid not only within stochastics but also between spatial, temporal and stochastic domain

Sparse grids and analytic functions

- Analytic regularity in polydisc with radii $\mathbf{r}:=\left(r_{1}, \ldots r_{d}\right)$
- Sequence of smoothness indices $\mathbf{a}=\left(a_{1}, \ldots a_{d}\right)=\log (\mathbf{r})$
- With global polynomials: $\quad\left|\Delta_{\mathbf{k}}(f)\right| \leq c \cdot e^{-\left(a a_{1}+\ldots+a_{d} k_{d}\right)}$
- Accuracy with respect to the involved \#dof M [Beck,Nobile,Tamellini,Tempone12,14], [Tran,Webster,Zhang15], [G.+Oettershagen15]

$$
g m(\mathbf{a})=\left(\prod_{j=1}^{d} a_{j}\right)^{1 / d} \quad \kappa(d)=(d!)^{1 / d}>d / e \quad O\left(e^{-g m(\mathbf{a}) \kappa(d) M^{1 / d}} M^{(d-1) / d}\right)
$$

- For the infinite-dimensional case:
- Logarithmic growth => algebraic rate [Todor,Schwab07], [Cohen,Devore,Schwab10,11]

$$
\beta>1 \quad \sum_{j=1}^{\infty} \frac{1}{e^{a_{j} / \beta}-1}<\infty \quad O\left(M^{-(\beta-1)}\right) \quad \text { Stechkin's Lemma }
$$

- Linear growth => subexponential rate [G.+Oettershagen15],

$$
\begin{array}{cc}
{\left[\begin{array}{c}
\text { [Tran,Webster,Zhang15] } \\
\alpha>0
\end{array} a_{j} \geq \alpha \cdot j\right.}
\end{array} \quad O\left(M^{-\frac{3}{8} \alpha \cdot \sqrt{\log (M)}} M^{1+\frac{\alpha}{4}} \log (M)^{-1 / 2}\right)
$$

Stechkin's Lemma can not show this rate but gives only an algebraic bound

Dimension-adapted sparse grids

- So far: function class known,
- a-priori choice of best subspaces by optimization
- size of benefit/cost ratio indicated if subspace is relevant => sparse grid patterns for \mathfrak{I}
- Now: for given single function f
- adaptively build up a set \mathfrak{I} of active indices
- benefit $b(\mathbf{l}):=\left\|\Delta_{\mathbf{l}}(f)\right\|^{2}$, i.e. local error-indicator of f
- cost $c(\mathbf{l})=\left|W_{1}\right|$ for subspace W_{1},
- benefit/cost indicator $\varepsilon(\mathbf{l}):=b(\mathbf{l}) / c(\mathbf{l})$
- refinement strategy to build new index set,
- global stopping criterion => sparse grid pattern \mathfrak{I}
- Directions $T \times \mathbf{X} \times \mathbf{Y}$ with product of different smoothness

The adaptive combination algorithm

Result: Solution $\boldsymbol{u}^{\mathrm{C}}$ with error $<\mathrm{TOL}$.
$I:=(1, \ldots, 1)$;
$A:=\{I\} ; \quad / *$ active index set $* /$ /* old index set */ /* local benefit/cost indicator */ /* global error indicator */
while $E>$ TOL do
select I $\in A$ with largest ϵ_{l};
$O=O \cup\{I\}, \quad A=A \backslash\{I\} ;$
refinement rule for $t \leftarrow 1$ to d do
$\boldsymbol{j}=\boldsymbol{I}+\boldsymbol{e}_{+} ;$
if $\boldsymbol{j}-\boldsymbol{e}_{k} \in O \quad \forall k=1, \ldots, d$ then
$A=A \cup\{j\} ;$

Solve problem with level-parameters \boldsymbol{j};
downward closedness Compute local benefit/cost indicator for \boldsymbol{j}; end
end
Compute new global error indicator E;
end
Compute \boldsymbol{u}^{c} on index set $\mathcal{I}=O \cup A$;
simple extension to dimension-adaptive version exists => UQ14

Example

- Evolution of the algorithm:
index sets:

- As any adaptive heuristics: may terminate too early
- If mixed regularity not present, refinement to the usual full grid

Application: Non-Newtonian fluids

- Classical Newtonian fluids: Obey Newton's law of viscosity, stress tensor is proportional to load/force
- But various complex fluids show strange behavior which is not correctly described

Barus effect

Weissenberg effect

tubeless siphon effect

Application: Non-Newtonian fluids

- Non-Newtonian fluids contain microstructures which are the reason for their unusual properties
- Examples: paint, toothpaste, shampoo, blood, oils
- Polymeric fluids are a subset of non-Newtonian fluids
- Long-chained molecules in a Newtonian solvent
- Viscoelasticity due to interaction of elastic molecules and drag forces in basic flow
- A macroscopic model like the Navier Stokes equations + macrosopic extensions is no longer sufficient
- Needs to be augmented by model on the micro scale => Two scale modelling

Mathematical modelling

- The conservation equations for polymeric fluids are the same as for the Newtonian case, but the presence of polymer molecules contributes a polymeric extra-stress tensor $\boldsymbol{\tau}_{p}$ and an additional polymeric viscosity η_{p} such that the viscosity ratio $\beta<1$
- The Navier-Stokes equations are now

$$
\frac{\partial \mathbf{u}}{\partial t}+\mathbf{u} \cdot \nabla \mathbf{u}=\frac{1}{\operatorname{Re}} \beta \Delta \mathbf{u}-\nabla p+\frac{1}{\operatorname{Re}} \nabla \cdot \boldsymbol{\tau}_{p} \quad \begin{gathered}
\text { conservation } \\
\text { of momentum }
\end{gathered}
$$

$$
\nabla \cdot \mathbf{u}=0
$$

+ b.c., with Reynolds number Re
and viscosity ratio $\beta=\frac{\eta_{s}}{\eta_{s}+\eta_{p}}$
η_{s} solvent viscosity
η_{p} polymeric viscosity

Microscopic modelling

- On the microsocopic scale, a polymer chain is modelled by a spring chain of $\mathrm{K}+1$ beads

- Position \mathbf{x} in physical space/flow domain $\Omega \subset \mathbb{R}{ }^{3}$
- Orientations $\mathbf{q}_{1}, \ldots, \mathbf{q}_{K}$ in configuration space $\Gamma \subset \mathbb{R}^{3 K}$
- Probability to find chains at time t with position in .$[\mathbf{x}, \mathbf{x}+d \mathbf{x}]$ and orientations in $\left[\mathbf{q}_{1}, \mathbf{q}_{1}+d \mathbf{q}_{1}\right] \ldots\left[\mathbf{q}_{K}, \mathbf{q}_{K}+d \mathbf{q}_{K}\right]$

$$
\psi: \Omega \times \Gamma \times[0, T] \rightarrow \mathbb{R}^{+},\left(\mathbf{x}, \mathbf{q}_{1}, \ldots, \mathbf{q}_{K}, t\right) \rightarrow \psi\left(\mathbf{x}, \mathbf{q}_{1}, \ldots, \mathbf{q}_{K}, t\right)
$$

Fokker-Planck equation

- The function ψ is a pdf, i.e. $\psi \geq 0, \int_{\Gamma} \psi=1$
- The application of Newton's $2^{\text {nd }}$ law to the forces acting on chain leads to the Fokker-Planck equation $\frac{\partial \psi}{\partial t}+\nabla_{\mathbf{x}} \cdot(\mathbf{u} \psi)+\sum_{i=1}^{K} \nabla_{\mathbf{q}_{i}} \cdot\left(\left(\nabla_{\mathbf{x}} \mathbf{u}\right)^{T} \mathbf{q}_{i} \psi-\right.$

$$
\text { Deborah number } \left.\rightarrow-\frac{1}{4 D e} \sum_{j=1}^{K} A_{i j} \mathbf{F}\left(\mathbf{q}_{i}\right) \psi\right)=\frac{1}{4 D e} \sum_{i=1}^{K} \sum_{j=1}^{K} A_{i j} \nabla_{\mathbf{q}_{i}} \cdot \nabla_{\mathbf{q}_{j}} \psi
$$

with Rouse matrix $A=\left[\begin{array}{ll}-1 & 2\end{array}\right]_{K}$

- Describes evolution of ψ under chain's spring forces

$$
\mathbf{F}\left(\mathbf{q}_{1}\right), \ldots, \mathbf{F}\left(\mathbf{q}_{K}\right)
$$

- Various models for spring force: Hooke: $\mathbf{F}(\mathbf{q})=\mathbf{q}$

$$
\text { FENE: } \mathbf{F}(\mathbf{q})=\frac{\mathbf{q}}{1-\|\mathbf{q}\|^{2} / b},\|q\|^{2} \leq b, \quad \text { FENE-P: } \quad \mathbf{F}(\mathbf{q})=\frac{\mathbf{q}}{1-\left\langle\mathbf{q}^{2}\right\rangle / b},\left\langle\mathbf{q}^{2}\right\rangle \leq b
$$

Coupling to the macro scale

- ψ represents polymeric configurations of micro-system
- Expectation in configuration space

$$
\langle\cdot\rangle=\int_{\Gamma} \cdot \psi d \mathbf{q}_{1} \ldots d \mathbf{q}_{K}
$$

- Coupling of internal configurations of micro system to macroscopic stress tensor via Kramer's expression

$$
\boldsymbol{\tau}_{p}=C \sum_{i=1}^{K}\left(\left\langle\mathbf{q}_{i} \otimes \mathbf{F}\left(\mathbf{q}_{i}\right)\right\rangle-\mathbf{I d}\right)
$$

Constant C depends on model, Deborah number, viscosity ratio

- Issues with the Fokker-Planck equation
- becomes more singular for higher values of De [Suli, Knezevico8]
=> extremely fine numerical resolution needed [Lozinski, owen 03]
$-3+3 K=3(K+1)$-dimensional + time-dependent => curse of dim.

Stochastic microscopic modelling

- There is a formal equivalence between the FokkerPlanck equation and stochastic partial differential eq.
$d \overrightarrow{\mathbf{Q}}(\mathbf{x}, t)=(-(\mathbf{u} \cdot \nabla) \overrightarrow{\mathbf{Q}}(\mathbf{x}, t)+(\nabla \mathbf{u}) \cdot \overrightarrow{\mathbf{Q}}(\mathbf{x}, t)-$

$$
\text { Deborah number } \left.\rightarrow-\frac{1}{4 D e} A \mathbf{F}(\vec{Q}(\mathbf{x}, t))\right) d t+\sqrt{\frac{1}{2 D e}} d \overrightarrow{\mathbf{U}}(t)
$$

- Describes evolution of K random fields $\overrightarrow{\mathbf{Q}}=\left(\mathbf{Q}_{1}, \ldots, \mathbf{Q}_{K}\right)^{T}$ that represent the configuration vector $\overrightarrow{\mathbf{q}}=\left(\mathbf{q}_{1}, \ldots, \mathbf{q}_{K}\right)^{T}$
- Brownian forces on the beads are modelled by the 3-dim. Wiener processes $\mathbf{W}_{i}(t), i=1, \ldots, K+1$
- The vector $\overrightarrow{\mathbf{U}}(t)$ consists of the component-wise differences

$$
(\overrightarrow{\mathbf{U}}(t))_{i}=\mathbf{W}_{i+1}(t)-\mathbf{W}_{i}(t), i=1, \ldots, K
$$

Stochastic microscopic simulation

- Brownian configuration fields (BCF) ${ }_{\text {[Hulsen97] }}$ Random field $\overline{\mathbf{Q}}(\mathbf{x}, t)$ for configuration
- Discretization of x-space: the M_{G} grid cells make from the parabolic SPDE a system of SODEs (MoL)
- Discretization of SODE-system: Put M_{B} configuration fields in each of the M_{G} space grid cells and evolve their configuration discretely over time, i.e. all $M_{G} \cdot M_{B}$ configuration fields have fixed spatial positions (Eulerian view).

$T>0$

Stochastic microscopic simulation

- In each grid cell $k=1, \ldots, M_{G}$ with center \mathbf{x}_{k} we solve/ integrate the stochastic DE for a number M_{B} of stochastic realizations $\overline{\mathbf{Q}}^{(j)}\left(\mathbf{x}_{k}, t\right), j=1, \ldots, M_{B}$
- They are distributed according to the known equilibrium density ψ for $t=0$
- But we do not know ψ for $t>0$. Thus, we approximate the first moments $\left\langle\mathbf{Q}_{i}\left(\mathbf{x}_{k}, t\right) \otimes \mathbf{F}\left(\mathbf{Q}_{i}\left(\mathbf{x}_{k}, t\right)\right)\right\rangle$ in Kramer's relation as

$$
\begin{aligned}
\boldsymbol{\tau}_{p}\left(\mathbf{x}_{k}, t\right) & =C \sum_{i=1}^{K}\left(\left\langle\mathbf{Q}_{i}\left(\mathbf{x}_{k}, t\right) \otimes \mathbf{F}\left(\mathbf{Q}_{i}\left(\mathbf{x}_{k}, t\right)\right)\right\rangle-\mathbf{I d}\right) \\
& \approx C \sum_{i=1}^{K}\left(\frac{1}{M_{B}} \sum_{j=1}^{M_{k}} \mathbf{Q}_{i}^{(j)}\left(\mathbf{x}_{k}, t\right) \otimes \mathbf{F}\left(\mathbf{Q}_{i}^{(j)}\left(\mathbf{x}_{k}, t\right)\right)-\mathbf{I d}\right)
\end{aligned}
$$

i.e. we replace the integral by Monte Carlo quadrature

Numerics

- Navier Stokes equations:
- Uniform grid cells, staggered grid, cell centers $p, \boldsymbol{\tau}_{p}$, cell faces \mathbf{u}
- WENO for convective terms, $2^{\text {nd }}$ order scheme for other terms
- Euler or Crank-Nicolson in time, CFL-condition
- Chorin-like projection method
- Microscale stochastic equations:
$-M_{B}$ stochastic samples for each grid cell $=>M_{G} \cdot M_{B}$ samples
- QUICK for convective terms
- Explicit Euler-Maruyama, semi-implicit Euler for FENE
- Same time step size as for NS equations
- Variance reduction scheme with equilibrium control variates

Issues

- Code works as expected
- But: Huge memory requirements and huge computing times due to large number M_{B} of realizations in each cell
- Example for 3D multi-scale problem
- Flow domain Ω with
- $M_{G}=100 \times 100 \times 100$ grid cells
- $M_{B}=10.000$ stochastic realizations in each grid cell
- Total memory requirements:
- 8 MB for the pressure field p
- 24 MB for the velocity field \mathbf{u}
- 48 MB for the six independent components of $\boldsymbol{\tau}_{p}$
- $75 \mathrm{~GB}^{*} \mathrm{~N}$ for all the $M_{G} \cdot M_{B}$ stochastic variables
- Some months of computing time

Sparse grid approach

- Consider our multiscale flow problem in more detail.
- We have the problem parameters:
mesh width, time step size, stochastic realizations, springs
- How can we improve on computational complexity ?
- Instead of MC use QMC
- Multilevel-MC, MLQMC for stochastic ODEs (time + stoch.)

This is just a certain 2d combination technique/ sparse grid approach [Gerstner 12] [Harbrecht,Peters,Siebenmorgen13]

- Combination technique in all 3 discretization parameters i.e. for space x time x stochastics, and for model parameter K, i.e. x number of springs
- If the optimal combination formula is not a priori known: run the (dimension)-adaptive algorithm

Coordinates for the combination method

Indicators for the combination method

- Approximation of the vector \mathbf{u} and the tensor $\boldsymbol{\tau}_{p}$
- Compute benefits $b(\mathbf{l})$ and costs $c(\mathbf{l})$ componentwise
- One index set for all components
- Weighted and scaled benefit/cost indicator

$$
\varepsilon(\mathbf{l})=\max \left\{\omega \cdot \frac{\|b(\mathbf{l})(\mathbf{u})\|_{2,2}}{c(\mathbf{l})(\mathbf{u}) \cdot\|b(1)(\mathbf{u})\|_{2,2}},(1-\omega) \cdot \frac{\left\|b(\mathbf{l})\left(\tau_{p}\right)\right\|_{F, 2}}{c(\mathbf{l}) \cdot\left\|b(1)\left(\tau_{p}\right)\right\|_{F, 2}}\right\}
$$

Scaling with initial level $b(1)$ not necessary if $\omega=0$ or $\omega=1$

Example 1: Couette flow

- Non-Newtonian fluid in a 2D channel.
- Fluid is at rest at initial time $\mathrm{t}=0, D e=0.5$
- Shearing of fluid over time with rate $\dot{\gamma}=d u / d y$
- Linear spring force model (dumbbell, $\mathrm{K}=1$)
- Probability density function $\psi:(x, \mathbf{q}, t) \in \mathbb{R}^{4} \rightarrow \psi(x, \mathbf{q}, t) \in \mathbb{R}$

1d in space, 2d in configuration space and time-dependent

- Discretization:

- Initial level $(1 / \Delta x, 1 / \Delta t$, samples $)=(4,16,256)$
- Refinement from level to level by factor *2
- Error indicator $\omega=1$, we are after error in \mathbf{u}

Example 1 Couette flow iteration 89

- Behaviour of adaptive combination technique

Example 1 Couette flow

- We asymptotically observe an anisotropic sparse grid structure

- Relative L_{2} error of \mathbf{u}_{1}
- Comparison:
- Full grid error $\mathrm{E}\left(\mathrm{u}_{6,6,6}\right) \approx 0.04$ $\mathrm{E}\left(\mathrm{u}_{7,7,7}\right) \approx 0.01$
- Cost (dof) full grid

$$
\begin{aligned}
& \mathrm{C}\left(\mathrm{u}_{6,6,6}\right) \approx 5.4 \times 10^{8} \\
& \mathrm{C}\left(\mathrm{u}_{7,7,7}\right) \approx 4.3 \times 10^{9}
\end{aligned}
$$

sparse grid $\quad \mathrm{C}\left(\mathrm{u}^{\mathrm{C}}\right) \approx 4.6 \times 10^{7}$

Example 2: Steady extensional flow

- Non-Newtonian fluid in a 3D domain.
- Steady uniaxial extensional flow, $D e=1.0$
- Stress tensor $\boldsymbol{\tau}_{p}$ is aimed for
- FENE force model, K-spring chain
- We vary the number K of springs up to 5
- Probability density function $\psi:(\mathbf{q}, t) \in \mathbb{R}^{3 K} \times \mathbb{R} \rightarrow \psi(\mathbf{q}, t) \in \mathbb{R}$

3 N -dimensional in configuration, time-dependent, number of springs, no space

- Discretization
- Initial level (samples, 1/ Δt, springs) $=(1024,2,1)$
- Refinement for time and samples from level to level by factor *2, refinement for springs by +1
- Error indicator $\omega=0$, we are after error in $\boldsymbol{\tau}_{p}$

Example 2: Steady extensional flow

Behaviour of adaptive combination technique We observe:

- a sparse grid structure for all indices
- plus a nearly full grid between time and springs for the smallest sample size
- Different refinement: *2 versus +1
- Relative L_{2} error for $\tau_{x x}$ of adaptive combination technique

Example 2: Steady extensional flow

- Convergence of model for rising number K of springs

- All results are computed on fine level with 2 million samples.
- Fixed stochastic time step width $\Delta \mathrm{t}=1 / 2048$

Concluding remarks

- Basic principles of sparse grids
- Optimization by knapsack problem
- Dimension-adaptive combination method
- Solution of subproblems P_{1} on levels 1
- Sparse grid approximation by linear combination
- Refinement with hierarchical contributions Δ_{I} and local cost
- Application to non-Newtonian flow
- Two-scale problem, stochastic microscale
- Adaptive combination method works on discretization directions (space x time x samples) and also for model parameters (... x springs)
=> Allows to couple discretization and modelling errors

The C library HCFFT G.+Hamaekers

- Hierarchical sparse grid interpolation based on:
- Fast Fourier transform (FFT), fast Sine and Cosine transform
- Fast Chebyshev transform, Fast Legendre transform
- Various other polynomial transforms
- Different hierarchical bases for different dimensions
- Dyadic and arbitrary, non-dyadic refined grids
- Several types of general sparse grids
- Dimension-adaptive sparse grids
- For high precision: possible use of long double
- Freely available at
www.hcfft.org

The flow solver

- Code NAST3DGPF which is freely available at http://www.nast3dgpf.de/

