Sparse Grid Methods for Uncertainty Quantification

Michael Griebel
University of Bonn and Fraunhofer SCAI
Joint work with Alexander Rüttgers

- 1. Sparse grids
 - Construction principles and properties
 - Optimal sparse grids
 - Adaptive combination method
- 2. Application
 - Multi-scale viscoelastic flows

Motivation

- Numerical methods in uncertainty quantification:
 - Galerkin approach
 - Collocation technique
 - Discrete projection
- Needed on stochastic/parameter domain:
 - Approximation of integrals
 - Interpolation, especially for collocation
- Simple domains with product structure: $[-a,a]^d$, IR^d
- Issue: high- or even infinite-dimensional problems

Curse of dimension

- $f: \Omega^{(d)} \to \mathbb{R}$, $f \in V^{(r)}$, r isotropic smoothness
- Bellmann '61: curse of dimension M = # dof

$$\| f - f_M \|_{H^s} = C(d) \cdot M^{-r/d} \| f \|_{H^{s+r}} = O(M^{-r/d})$$

- Find situations where curse can be broken?
- Trivial: restrict to r = O(d)

$$|| f - f_M || = O(M^{-cd/d}) = O(M^{-c})$$

but practically not very relevant

In any case: some smoothness changes with d
 or importance of coordinates decays successively
 (e.g. after suitable nonlinear transformation)

Sparse grid approach

Basic principles:

- 1-dim multilevel series expansion with proper decay
- d-dim product construction
- Trunctation of resulting multivariate expansion

Effect:

- reduction of cost complexity
- nearly same accuracy as "full" product
- necessary: certain smoothness requirements
- adaptivity for detection of lower-dimensional manifolds

Simple example: Hierarchical basis

$$l = 1$$

$$l = 2$$

$$W_1$$

$$W_2$$

$$W_2$$

parabola f(x) = -(x-1)(x+1) in [-1,1]

conventional coefficients
no decay from level to level

hierarchical coefficients decay by ¼ from level to level

Tensor product hierarchical basis

Generalization to higher dimension by tensor product

Table of subspaces $W_{l_1 l_2}$

$\frac{1}{256}$	$\frac{1}{64}$	$\frac{1}{256}$	$\left(\frac{1}{16}\right)$	$\frac{1}{256}$	$\frac{1}{64}$	<u>1</u> 256
$\frac{1}{64}$	$\left(\frac{1}{16}\right)$	$\frac{1}{64}$	$\left(\frac{1}{4}\right)$	<u>1</u> 64	$\left(\frac{1}{16}\right)$	<u>1</u> 64
$\frac{1}{256}$	$\frac{1}{64}$	$\frac{1}{256}$	$\left(\frac{1}{16}\right)$	$\frac{1}{256}$	$\frac{1}{64}$	$\frac{1}{256}$
$\left(\frac{1}{16}\right)$	$\left(\frac{1}{4}\right)$	$\left(\frac{1}{16}\right)$		$\left(\frac{1}{16}\right)$	$\left(\frac{1}{4}\right)$	$\left(\frac{1}{16}\right)$
$\frac{1}{256}$	$\frac{1}{64}$	$\frac{1}{256}$	$\left(\frac{1}{16}\right)$	$\frac{1}{256}$	$\frac{1}{64}$	$\frac{1}{256}$
$\frac{1}{64}$	$\left(\frac{1}{16}\right)$	$\frac{1}{64}$	$\left(\frac{1}{4}\right)$	<u>1</u> 64	$\left(\frac{1}{16}\right)$	<u>1</u> 64
$\frac{1}{256}$	$\frac{1}{64}$	$\frac{1}{256}$	$\left(\frac{1}{16}\right)$	$\frac{1}{256}$	$\frac{1}{64}$	$\frac{1}{256}$

decay in x- and y-direction by 1/4 decay in diagonal direction by 1/16

Idea:

Omit points with small associated hierarchial coefficient values

Regular sparse grids

Properties of regular sparse grids

 $N \cong 2^n$

Sparse grids

Full grids

Cost:

 $O(N \log(N)^{d-1})$ instead of $O(N^d)$

Accuracy: $O(N^{-2} \log(N)^{d-1})$

 $O(N^{-2})$

 L_2 -norm

Smoothness:
$$\left| \frac{\partial^{2d} f}{\partial x_1^2 ... \partial x_d^2} \right| \le c$$

$$|\sum_{i=1}^{d} \frac{\partial^2 f}{\partial x_i^2}| \le c$$

Space, seminorm: H_{mix}^2 , $|f|_{2mix}$

 H^{2} , $|f|_{2}$

Mitigates the curse of dimension of conventional full grids Note: Higher regularity in mixed derivative, ~d

For wavelets, general stable multiscale systems: $O(N^{-2}(\log N)^{(d-1)/2})$

History of regular sparse grids

Re-invented several times:

1957 Korobov, Babenko

1963 Smolyak

1970 Gordon

1980 Delvos, Posdorf

1990 Zenger, G.

2000 Stromberg, deVore

2010 ????

hyperbolic cross points

blending method

Boolean interpolation

sparse grids

hyperbolic wavelets

Application areas include:

- quadrature
- interpolation
- data compression

- solution of PDEs
- integral equations
- eigenvalue problems

Basic principles of sparse grids

1-dim multilevel sequence of operators and spaces

$$P_l: V^{(1)} \to V_l$$
 $l \in \mathbb{N}$

Sequence of differences, telescopic approach

$$\Delta_l := (P_l - P_{l-1}) : V^{(1)} \longrightarrow V_l \ominus V_{l-1} =: W_l$$

• d-dim. product construction $\mathbf{l} = (l_1, l_2, ..., l_d) \in \mathbb{N}^d$

$$\Delta_{\mathbf{l}} := \bigotimes_{j=1}^{d} \Delta_{l_j} = \bigotimes_{j=1}^{d} (P_{l_j} - P_{l_j-1}) : V^{(d)} \longrightarrow W_{\mathbf{l}} \qquad f_{\mathbf{l}} = \Delta_{\mathbf{l}}(f) \in W_{\mathbf{l}}$$

• Appropriate truncation of resulting multivariate expansion $N^d \to \mathfrak{I} \subset N^d$

$$P = \sum_{\mathbf{l} \in N^d} \Delta_{\mathbf{l}} \rightarrow P_{\mathfrak{I}} = \sum_{\mathbf{l} \in \mathfrak{I}} \Delta_{\mathbf{l}}$$

Examples of multiscale expansions, 1d

- Integration: $P_l = Q_l : V^{(1)} \rightarrow V_l = IR$
 - Sequence of nested or non-nested point sets and weights, size: $n_l = l$ or $n_l = 2^l + 1$
 - => various sparse grid quadrature rules
- Interpolation $P_l = I_l : V^{(1)} \rightarrow V_l$, approximation $P_l = A_l : V^{(1)} \rightarrow V_l$
 - Local piecewise polynomials, multiscale expansion: hierarchical basis, interpolets, wavelets, multilevel basis, size: $n_l = 2^l + 1$ $|W_l| = 2^{l-1}$
 - => sparse grid finite element spaces
 - Global polynomials: Fourier series, Chebyshev, Legendre, Hermite, Bernoulli polynomials

size
$$n_l = l$$
 or $n_l = 2^l + 1$ $|W_l| = 1$ or $|W_l| = 2^{l-1}$

=> total degree / hyperbolic cross approximation

Regular sparse grid approach

Index sets

$$\mathfrak{I}_{n}^{\text{full}} = \left\{ \mathbf{l} \in \mathbb{N}^{d} : |\mathbf{l}|_{\infty} = \max_{j=1,\dots,d} l_{j} \leq n \right\}$$

$$\mathfrak{I}_{n}^{\text{sparse}} = \left\{ \mathbf{l} \in \mathbb{N}^{d} : |\mathbf{l}|_{1} = \sum_{j=1}^{d} l_{j} \leq n + d - 1 \right\}$$

The hierarchical representation is then

$$P_n^{\text{sparse}} = \sum_{|\mathbf{l}|_1 \le n+d-1} \Delta_{\mathbf{l}} \qquad P_n^{\text{sparse}}(f) = \sum_{|\mathbf{l}|_1 \le n+d-1} \Delta_{\mathbf{l}}(f)$$

- Other representations:
 - generating system
 - Lagrange system over SG points
 - semi-hierarchical
 - combination method

The combination technique

• A simple alternative representation is [G., Schneider, Zenger 91],

$$P_{n}^{\text{combi}} = \sum_{n \le |\mathbf{l}|_{1} \le n+d-1} (-1)^{n+d-|\mathbf{l}|_{1}-1} \begin{pmatrix} d-1 \\ |\mathbf{l}|_{1}-1 \end{pmatrix} P_{1} \qquad P_{1} := \bigotimes_{j=1}^{d} P_{lj}$$

- Involves just the (anisotropic) full grid discretizations P_1 on different levels and linearly combines them
- 2D example

level indices, n = 5

The combination technique

- Redundant representation but allows the simple reuse of existing code
- Completely parallel computation of the subproblems P₁
- Corresponds to a certain multivariate extrapolation method [Rüde 91]
- Necessary: Existence of a pointwise error expansion.
 - Euler-Maruyama of stochastic ODE: additive expansion (leading error term) of mean square error
- Multilevel-Monte Carlo is just 2-d combination method
 - Variance and bias for the two dimensions and a proper refinement rule which reflects the MC and the Euler-Maruyama rates [Gerstner12, Harbrecht, Peters, Siebenmorgen13]

A priori construction of sparse grids

- In general: Given
 - a class of functions and an error norm
 - an associated bound $b(\mathbf{l})$ for the benefit of $\Delta_{\mathbf{l}}$
 - a bound $c(\mathbf{l})$ for the cost of $\Delta_{\mathbf{l}}$
- We can a-priori derive a (quasi-) optimal sparse grid by solving a binary knapsack problem [Bungartz+G.03]

$$\max \sum_{\mathbf{l} \in N^d} \alpha_{\mathbf{l}} \cdot b(\mathbf{l}) \quad \text{such that } \sum_{\mathbf{l} \in N^d} \alpha_{\mathbf{l}} \cdot c(\mathbf{l}) \leq C_{fix} \qquad \alpha_{\mathbf{l}} \in \{0,1\}$$
 and setting $\mathfrak{T}_C = \{ \mathbf{l} \in I\!\!N^d : \alpha_{\mathbf{l}} = 1 \}$

• Boils down to just sorting the quotients $b(\mathbf{l})/c(\mathbf{l})$ of the benefit versus cost according to its size and taking the largest indices into account

L^2 -norm-based sparse grids in $H^2_{\it mix}$

- Representation $f(\mathbf{x}) = \sum_{\mathbf{l}} f_{\mathbf{l}}(\mathbf{x})$ $f_{\mathbf{l}}(\mathbf{x}) \in W_{\mathbf{l}}$ $\mathbf{x} = (x_1,...,x_d)$ $\mathbf{l} = (l_1,...,l_d)$
- Cost per subspace $c(\mathbf{l}) = \dim(W_{\mathbf{l}}) = 2^{|\mathbf{l}-\mathbf{l}|_1}$
- Benefit for accuracy

$$||f_{\mathbf{l}}||_{2} \le b(\mathbf{l}) = 3^{-d} \cdot 2^{-2|\mathbf{l}|_{1}} \cdot |f|_{2,mix} = O(2^{-2|\mathbf{l}|_{1}})$$

Choice of best subspaces ? Knapsack problem !
 => local benefit²/cost ratio

$$b^{2}(\mathbf{l})/c(\mathbf{l}) \approx \frac{2^{-4\cdot|\mathbf{l}|_{1}}}{2^{|\mathbf{l}|_{1}}} = 2^{-5\cdot|\mathbf{l}|_{1}} \quad l_{2}$$

$$V_{n}^{(d,opt)} = \bigoplus_{|\mathbf{l}|_{1}=n+d-1} W_{\mathbf{l}}$$

Anisotropic sparse grids

- Non-equal directions
 - Weighted Sobolev spaces [Sloan+Wozniakowski93]

$$H_{\gamma,mix}^r$$

Anisotropic smoothness spaces [Gerstner+G. 98, G.+Zung15]

$$H_{mix}^{s_1,s_2,\ldots,s_d} = H^{s_1}(I_1) \otimes H^{s_2}(I_2) \otimes \cdots \otimes H^{s_d}(I_d)$$

Different dimensions for different directions [G.+Harbrecht 11]

$$H^{s_1}(\Omega_1) \otimes H^{s_2}(\Omega_2) \otimes ... \otimes H^{s_d}(\Omega_d)$$

- Via knapsack problem:
 - A priori construction of optimal anisotropic sparse index sets
 - log-terms disappear

Generalized sparse grids

• General index sets $\Im \subset \mathbb{N}^d$

Downward closed set, no holes

$$\mathbf{l} \in \mathfrak{I} \implies \mathbf{l} - e_j \in \mathfrak{I} \quad j = 1, ..., d$$

• Associated sparse grid operator $P_{\Im} = \sum_{\mathbf{l} \in \Im} \Delta_{\mathbf{l}}$

Associated space and associated function

$$V_{\mathfrak{I}} = \bigoplus_{\mathbf{l} \in \mathfrak{I}} W_{\mathbf{l}}$$
 $P_{\mathfrak{I}} f = \sum_{\mathbf{l} \in \mathfrak{I}} \Delta_{\mathbf{l}}(f) = \sum_{\mathbf{l} \in \mathfrak{I}} f_{\mathbf{l}}$

The combination technique

Can also be generalized to a given downward closed index set 3

$$P_{\mathfrak{I}} = \sum_{\mathbf{l} \in \mathfrak{I}} c_{\mathbf{l}} P_{\mathbf{l}}$$

Combination coefficient

$$c_{\mathbf{l}} = \sum_{\mathbf{z}=0}^{1} (-1)^{|\mathbf{z}|_{1}} \chi^{\Im}(\mathbf{l} + \mathbf{z})$$

with characteristic function $\chi^{\mathfrak{I}}$ on the index set \mathfrak{I}

- Again: just (anisotropic) full grid discretizations P₁
 on different levels get linearly combined
- Note: many coefficients on the lower levels are zero

Tensor product sparse grids

- Examples:
 - space \times time, $d_1 = 3, d_2 = 1$, parabolic problems
 - space \times parameters $d_1 = 3, d_2 = 10 20$

but smooth in parameter variables

- space × stochastics $d_1 = 3, d_2 = \infty$

but analytic in stochastic variables

- Main result: Curse of dimension only w.r.t. the larger dimension and/or the lower smoothness [G.+Harbrecht11], [G.+Zung15]
- Time, parametrization and stochastic coordinates disappear in the overall complexity rate
 - => just space discretization matters

Sparse space-time grids

Approximation error and necessary regularity [G.+Oeltz07]

$$\inf_{u_n \in V_n^0} \|u - u_n\|_{H^1(\Omega) \otimes L^2(0,T)} \le c 2^{-n} \|u\|_{H^2(\Omega) \otimes H^2((0,T))}$$

- -Classical regularity theory (Ladyzenskaja, Wloka) $u \in H^2(\Omega) \otimes H^2((0,T))$
- Sparse space-time grids posses same approximation rate as full space-time grids but just cost complexity of space problem

- In each time slice there is a conventional full grid

space dimension 1, space-time sparse grid, Euler case

space dimension 2, space-time sparse grid, Cranck-Nicolson case, n=4,5:

Stochastic and parametric PDEs

Solutions of stochastic/parametric PDEs

$$\partial_t u(t, \mathbf{x}, \mathbf{y}) - \nabla \cdot A(\mathbf{x}, \mathbf{y}) \nabla f(t, \mathbf{x}, \mathbf{y}) = r(t, \mathbf{x}, \mathbf{y})$$

live on product $(t, \mathbf{x}, \mathbf{y}) \in T \times \mathbf{X} \times \mathbf{Y}$

- of temporal domain T
- of spatial domain \mathbf{X} with $d_1 = 1,2,3$
- and stochastic/parametric domain \mathbf{Y} with d_2 large or even infinity.
- Often: Very high smoothness in y-part
 - Here: especially weighted analyticity for the different coordinates, decay in covariance [Cohen, Devore, Schwab10,11]
 - Then, even infinite-dimensional Y become treatable
- Sparse grid not only within stochastics but also between spatial, temporal and stochastic domain

Sparse grids and analytic functions

- Analytic regularity in polydisc with radii $\mathbf{r} := (r_1, ..., r_d)$
- Sequence of smoothness indices $\mathbf{a} = (a_1, \dots a_d) = \log(\mathbf{r})$
- With global polynomials: $|\Delta_{\mathbf{k}}(f)| \le c \cdot e^{-(a_1k_1 + \ldots + a_dk_d)}$
- Accuracy with respect to the involved #dof M [Beck,Nobile,Tamellini,Tempone12,14], [Tran,Webster,Zhang15], [G.+Oettershagen15]

$$gm(\mathbf{a}) = \left(\prod_{j=1}^{d} a_j\right)^{1/d} \qquad \kappa(d) = (d!)^{1/d} > d/e \qquad O(e^{-gm(\mathbf{a})\kappa(d)M^{1/d}}M^{(d-1)/d})$$

- For the infinite-dimensional case:
 - Logarithmic growth => algebraic rate
 [Todor,Schwab07], [Cohen,Devore,Schwab10,11]

$$\beta > 1$$
 $\sum_{j=1}^{\infty} \frac{1}{e^{a_j/\beta} - 1} < \infty$ $O(M^{-(\beta - 1)})$ Stechkin's Lemma

- Linear growth => subexponential rate [G.+Oettershagen15], [Tran,Webster,Zhang15] $\alpha > 0 \qquad a_i \ge \alpha \cdot j \qquad O(M^{-\frac{3}{8}\alpha \cdot \sqrt{\log(M)}} M^{1+\frac{\alpha}{4}} \log(M)^{-1/2})$

Stechkin's Lemma can not show this rate but gives only an algebraic bound

Dimension-adapted sparse grids

- So far: function class known,
 - a-priori choice of best subspaces by optimization
 - size of benefit/cost ratio indicated if subspace is relevant
 sparse grid patterns for \$\mathcal{I}\$
- Now: for given single function f
 - adaptively build up a set \$\mathcal{I}\$ of active indices
 - benefit $b(\mathbf{l}) := \|\Delta_{\mathbf{l}}(f)\|^2$, i.e. local error-indicator of f
 - cost $c(\mathbf{l}) = |W_{\mathbf{l}}|$ for subspace $W_{\mathbf{l}}$,
 - benefit/cost indicator $\varepsilon(\mathbf{l}) = b(\mathbf{l})/c(\mathbf{l})$
 - refinement strategy to build new index set,
 - global stopping criterion => sparse grid pattern \$\forall\$
- Directions T×X×Y with product of different smoothness

The adaptive combination algorithm

```
Result: Solution u^{C} with error < TOL.
I := (1, \ldots, 1);
A := \{I\};
                                                                  /* active index set */
O := \emptyset;
                                                                      /* old index set */
                                                   /* local benefit/cost indicator */
\epsilon_{l};
E ;
                                                          /* global error indicator */
while E > TOL do
    select I \in A with largest \epsilon_I;
    O = O \cup \{I\}, A = A \setminus \{I\};
                                                                      refinement rule
    for t \leftarrow 1 to d do
         m{j} = m{l} + m{e}_t;
        if j - e_k \in O \ \forall \ k = 1, ..., d then
             A = A \cup \{j\};
             Solve problem with level-parameters j;
                                                                      downward closedness
             Compute local benefit/cost indicator for j;
         end
    end
    Compute new global error indicator E;
                                                                     simple extension to
                                                                     dimension-adaptive
end
```

Compute \mathbf{u}^c on index set $\mathcal{I} = O \cup A$;

version exists => UQ14

Example

Evolution of the algorithm:

index sets:

corresponding grids:

- As any adaptive heuristics: may terminate too early
- If mixed regularity not present, refinement to the usual full grid

Application: Non-Newtonian fluids

- Classical Newtonian fluids: Obey Newton's law of viscosity, stress tensor is proportional to load/force
- But various complex fluids show strange behavior which is not correctly described

Barus effect

Weissenberg effect

tubeless siphon effect

Application: Non-Newtonian fluids

- Non-Newtonian fluids contain microstructures which are the reason for their unusual properties
 - Examples: paint, toothpaste, shampoo, blood, oils
- Polymeric fluids are a subset of non-Newtonian fluids
 - Long-chained molecules in a Newtonian solvent
 - Viscoelasticity due to interaction of elastic molecules and drag forces in basic flow
- A macroscopic model like the Navier Stokes equations
 - + macrosopic extensions is no longer sufficient
- Needs to be augmented by model on the micro scale
 - => Two scale modelling

Mathematical modelling

- The conservation equations for polymeric fluids are the same as for the Newtonian case, but the presence of polymer molecules contributes a polymeric extra-stress tensor τ_p and an additional polymeric viscosity η_p such that the viscosity ratio $\beta < 1$
- The Navier-Stokes equations are now

$$\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = \frac{1}{Re} \mathbf{\beta} \Delta \mathbf{u} - \nabla p + \frac{1}{Re} \nabla \cdot \mathbf{\tau}_{p}$$
 conservation of momentum
$$\nabla \cdot \mathbf{u} = 0$$

+ b.c., with Reynolds number Re

and viscosity ratio
$$\beta = \frac{\eta_s}{\eta_s + \eta_p}$$

 $oldsymbol{\eta}_s$ solvent viscosity $oldsymbol{\eta}_p$ polymeric viscosity

Microscopic modelling

 On the microsocopic scale, a polymer chain is modelled by a spring chain of K+1 beads

- Position **x** in physical space/flow domain $\Omega \subset \mathbb{R}^3$
- Orientations $\mathbf{q}_1,...,\mathbf{q}_K$ in configuration space $\Gamma \subset \mathbb{R}^{3K}$
- Probability to find chains at time t with position in $[\mathbf{q}_1, \mathbf{q}_1 + d\mathbf{q}_1]...[\mathbf{q}_K, \mathbf{q}_K + d\mathbf{q}_K]$

$$\psi: \Omega \times \Gamma \times [0,T] \to \mathbb{R}^+, (\mathbf{x},\mathbf{q}_1,...,\mathbf{q}_K,t) \to \psi (\mathbf{x},\mathbf{q}_1,...,\mathbf{q}_K,t)$$

Fokker-Planck equation

- The function ψ is a pdf, i.e. $\psi \ge 0$, $\int_{\Gamma} \psi = 1$
- The application of Newton's 2nd law to the forces acting on chain leads to the Fokker-Planck equation

$$\frac{\partial \psi}{\partial t} + \nabla_{\mathbf{x}} \cdot (\mathbf{u} \, \psi) + \sum_{i=1}^{K} \nabla_{\mathbf{q}_{i}} \cdot \left((\nabla_{\mathbf{x}} \mathbf{u})^{T} \mathbf{q}_{i} \, \psi - \frac{1}{4De} \sum_{j=1}^{K} A_{ij} \mathbf{F}(\mathbf{q}_{i}) \, \psi \right) = \frac{1}{4De} \sum_{i=1}^{K} \sum_{j=1}^{K} A_{ij} \nabla_{\mathbf{q}_{i}} \cdot \nabla_{\mathbf{q}_{j}} \psi$$
Deborah number \rightarrow

with Rouse matrix $A = [-1 \ 2 - 1]_K$

- Describes evolution of ψ under chain's spring forces
 F(q₁),..,F(q_K)
- Various models for spring force: Hooke: F(q) = q

FENE:
$$\mathbf{F}(\mathbf{q}) = \frac{\mathbf{q}}{1 - ||\mathbf{q}||^2/b}, ||\mathbf{q}||^2 \le b, \quad \mathsf{FENE-P:} \quad \mathbf{F}(\mathbf{q}) = \frac{\mathbf{q}}{1 - \langle \mathbf{q}^2 \rangle/b}, \langle \mathbf{q}^2 \rangle \le b$$

Coupling to the macro scale

- ψ represents polymeric configurations of micro-system
- Expectation in configuration space

$$\langle \cdot \rangle = \int_{\Gamma} \cdot \psi \ d \ \mathbf{q}_1 ... d \ \mathbf{q}_K$$

 Coupling of internal configurations of micro system to macroscopic stress tensor via Kramer's expression

$$\boldsymbol{\tau}_{p} = C \sum_{i=1}^{K} \left(\left\langle \mathbf{q}_{i} \otimes \mathbf{F}(\mathbf{q}_{i}) \right\rangle - \mathbf{Id} \right)$$

Constant C depends on model, Deborah number, viscosity ratio

- Issues with the Fokker-Planck equation
 - becomes more singular for higher values of De [Suli, Knezevic08] => extremely fine numerical resolution needed [Lozinski, Owen 03]
 - -3+3K=3(K+1) -dimensional + time-dependent => curse of dim.

Stochastic microscopic modelling

 There is a formal equivalence between the Fokker-Planck equation and stochastic partial differential eq.

$$d\vec{\mathbf{Q}}(\mathbf{x},t) = \left(-(\mathbf{u}\cdot\nabla)\vec{\mathbf{Q}}(\mathbf{x},t) + (\nabla\mathbf{u})\cdot\vec{\mathbf{Q}}(\mathbf{x},t) - \frac{1}{4De} A\mathbf{F}(\vec{Q}(\mathbf{x},t))\right)dt + \sqrt{\frac{1}{2De}}d\vec{\mathbf{U}}(t)$$
Deborah number \rightarrow

- Describes evolution of K random fields $\vec{\mathbf{Q}} = (\mathbf{Q}_1, ..., \mathbf{Q}_K)^T$ that represent the configuration vector $\vec{\mathbf{q}} = (\mathbf{q}_1, ..., \mathbf{q}_K)^T$
- Brownian forces on the beads are modelled by the 3-dim. Wiener processes $W_i(t)$, i = 1,...,K+1
- The vector $\vec{\mathbf{U}}(t)$ consists of the component-wise differences

$$(\vec{\mathbf{U}}(t))_{i} = \mathbf{W}_{i+1}(t) - \mathbf{W}_{i}(t), i = 1,...,K$$

Stochastic microscopic simulation

- Brownian configuration fields (BCF) [Hulsen97] Random field $\vec{\mathbf{Q}}(\mathbf{x},t)$ for configuration
- Discretization of x-space: the M_G grid cells make from the parabolic SPDE a system of SODEs (MoL)
- Discretization of SODE-system: Put M_B configuration fields in each of the M_G space grid cells and evolve their configuration discretely over time, i.e. all $M_G \cdot M_B$ configuration fields have fixed spatial positions (Eulerian view).

Stochastic microscopic simulation

- In each grid cell $k = 1,...,M_G$ with center \mathbf{x}_k we solve/integrate the stochastic DE for a number M_B of stochastic realizations $\mathbf{Q}^{(j)}(\mathbf{x}_k,t)$, $j=1,...,M_B$
- They are distributed according to the known equilibrium density ψ for t = 0
- But we do not know ψ for t > 0. Thus, we approximate the first moments $\langle \mathbf{Q}_i(\mathbf{x}_k, t) \otimes \mathbf{F}(\mathbf{Q}_i(\mathbf{x}_k, t)) \rangle$ in Kramer's relation as

$$\mathbf{\tau}_{p}(\mathbf{x}_{k},t) = C \sum_{i=1}^{K} \left(\left\langle \mathbf{Q}_{i}(\mathbf{x}_{k},t) \otimes \mathbf{F}(\mathbf{Q}_{i}(\mathbf{x}_{k},t)) \right\rangle - \mathbf{Id} \right)$$

$$\approx C \sum_{i=1}^{K} \left(\frac{1}{M_{B}} \sum_{j=1}^{M_{B}} \mathbf{Q}_{i}^{(j)}(\mathbf{x}_{k},t) \otimes \mathbf{F}(\mathbf{Q}_{i}^{(j)}(\mathbf{x}_{k},t)) - \mathbf{Id} \right)$$

i.e. we replace the integral by Monte Carlo quadrature

Numerics

Navier Stokes equations:

- Uniform grid cells, staggered grid, cell centers p, τ_p , cell faces \mathbf{u}
- WENO for convective terms, 2nd order scheme for other terms
- Euler or Crank-Nicolson in time, CFL-condition
- Chorin-like projection method

Microscale stochastic equations:

- M_B stochastic samples for each grid cell => $M_G \cdot M_B$ samples
- QUICK for convective terms
- Explicit Euler-Maruyama, semi-implicit Euler for FENE
- Same time step size as for NS equations
- Variance reduction scheme with equilibrium control variates

Issues

- Code works as expected
- But: Huge memory requirements and huge computing times due to large number M_R of realizations in each cell
- Example for 3D multi-scale problem
 - Flow domain Ω with
 - $M_G = 100 \times 100 \times 100$ grid cells
 - M_B = 10.000 stochastic realizations in each grid cell
 - Total memory requirements:
 - 8 MB for the pressure field p
 - 24 MB for the velocity field u
 - 48 MB for the six independent components of au_p
 - 75 GB*N for all the $M_G \cdot M_B$ stochastic variables
 - Some months of computing time

Sparse grid approach

- Consider our multiscale flow problem in more detail.
- We have the problem parameters:
 mesh width, time step size, stochastic realizations, springs
- How can we improve on computational complexity?
 - Instead of MC use QMC
 - Multilevel-MC, MLQMC for stochastic ODEs (time + stoch.)
 This is just a certain 2d combination technique/ sparse grid approach [Gerstner 12] [Harbrecht, Peters, Siebenmorgen 13]
 - Combination technique in all 3 discretization parameters

 i.e. for space x time x stochastics,
 and for model parameter K, i.e. x number of springs
 - If the optimal combination formula is not a priori known:
 run the (dimension)-adaptive algorithm

Coordinates for the combination method

Indicators for the combination method

- Approximation of the vector ${f u}$ and the tensor ${f au}_p$
- Compute benefits $b(\mathbf{l})$ and costs $c(\mathbf{l})$ componentwise
- One index set for all components
- Weighted and scaled benefit/cost indicator

$$\varepsilon(\mathbf{l}) = \max \left\{ \omega \cdot \frac{\|b(\mathbf{l})(\mathbf{u})\|_{2,2}}{c(\mathbf{l})(\mathbf{u}) \cdot \|b(\mathbf{l})(\mathbf{u})\|_{2,2}}, (1-\omega) \cdot \frac{\|b(\mathbf{l})(\tau_p)\|_{F,2}}{c(\mathbf{l}) \cdot \|b(\mathbf{l})(\tau_p)\|_{F,2}} \right\}$$

Scaling with initial level b(1) not necessary if $\omega = 0$ or $\omega = 1$

Example 1: Couette flow

- Non-Newtonian fluid in a 2D channel.
 - Fluid is at rest at initial time t = 0, De = 0.5
 - Shearing of fluid over time with rate $\dot{\gamma} = du/dy$
 - Linear spring force model (dumbbell, K=1)
 - Probability density function $\psi:(x,\mathbf{q},t)\in \mathbb{R}^4 \to \psi\ (x,\mathbf{q},t)\in \mathbb{R}$

1d in space, 2d in configuration space and time-dependent

- Discretization:
 - Initial level $(1/\Delta x, 1/\Delta t, \text{ samples}) = (4, 16, 256)$
 - Refinement from level to level by factor *2
 - Error indicator $\omega = 1$, we are after error in **u**

Example 1 Couette flow

Behaviour of adaptive combination technique

Example 1 Couette flow

We asymptotically observe an anisotropic sparse grid structure

Relative L₂ error of u₁

Comparison:

- Full grid error $E(u_{6,6,6}) \approx 0.04$ $E(u_{7,7,7}) \approx 0.01$

- Cost (dof) full grid $C(u_{6,6,6}) \approx 5.4 \times 10^8$ $C(u_{7,7,7}) \approx 4.3 \times 10^9$

sparse grid $C(u^{C}) \approx 4.6 \times 10^{7}$

Example 2: Steady extensional flow,

- Non-Newtonian fluid in a 3D domain.
 - Steady uniaxial extensional flow, De=1.0
 - Stress tensor τ_p is aimed for
 - FENE force model, K-spring chain
 - We vary the number K of springs up to 5
 - Probability density function $\psi : (\mathbf{q}, t) \in \mathbb{R}^{3K} \times \mathbb{R} \to \psi (\mathbf{q}, t) \in \mathbb{R}$

3N-dimensional in configuration, time-dependent, number of springs, no space

- Discretization
 - Initial level (samples, $1/\Delta t$, springs) = (1024, 2, 1)
 - Refinement for time and samples from level to level by factor *2, refinement for springs by +1
 - Error indicator $\omega = 0$, we are after error in τ_p

Example 2: Steady extensional flow

Behaviour of adaptive combination technique We observe:

- a sparse grid structure for all indices
- plus a nearly full grid between time and springs for the smallest sample size
- Different refinement:*2 versus +1
- Relative L_2 error for τ_{xx} of adaptive combination technique

Example 2: Steady extensional flow

Convergence of model for rising number K of springs

- All results are computed on fine level with 2 million samples.
- Fixed stochastic time step width $\Delta t = 1/2048$

Concluding remarks

- Basic principles of sparse grids
- Optimization by knapsack problem
- Dimension-adaptive combination method
 - Solution of subproblems P_1 on levels \mathbf{l}
 - Sparse grid approximation by linear combination
 - Refinement with hierarchical contributions $\Delta_{\mathbf{l}}$ and local cost
- Application to non-Newtonian flow
 - Two-scale problem, stochastic microscale
- Adaptive combination method works on discretization directions (space x time x samples) and also for model parameters (... x springs)
- => Allows to couple discretization and modelling errors

The C library HCFFT G.+Hamaekers

- Hierarchical sparse grid interpolation based on:
 - Fast Fourier transform (FFT), fast Sine and Cosine transform
 - Fast Chebyshev transform, Fast Legendre transform
 - Various other polynomial transforms
- Different hierarchical bases for different dimensions
- Dyadic and arbitrary, non-dyadic refined grids
- Several types of general sparse grids
- Dimension-adaptive sparse grids
- For high precision: possible use of long double
- Freely available at

www.hcfft.org

The flow solver

 Code NAST3DGPF which is freely available at http://www.nast3dgpf.de/

