Sparse grid approximation of elliptic PDEs with lognormal diffusion coefficient

L. Tamellini ${ }^{\#}$
O. Ernst ${ }^{\ddagger}$, B. Sprungk ${ }^{\ddagger}$; F. Nobile ${ }^{\dagger}$, R. Tempone ${ }^{\text {b }}$, F. Tesei ${ }^{\dagger}$
\# CNR-IMATI, Pavia, Italy
\ddagger Technische Universität Chemnitz
† CSQI - MATHICSE, EPFL, Switzerland
${ }^{b}$ SRI UQ Center, KAUST, Saudi Arabia

QUIET 2017 SISSA, Trieste, 18-21 July, 2017

Outline

(1) The lognormal problem
(2) Sparse approximation of the lognormal problem
(3) Sparse collocation convergence result

4 Numerical results - Part I
(5) Monte Carlo Control Variate
(6) Numerical results - Part II

The lognormal problem

Elliptic PDE with lognormal diffusion coefficient
Approximate solution $u: \mathbb{R}^{\mathbb{N}} \mapsto H_{0}^{1}(D)$ of random elliptic PDE on $D \subset \mathbb{R}^{d}$

$$
-\nabla \cdot(a(x, \xi) \nabla u(x, \xi))=f(x), \quad u(x, \xi)=0 \text { on } \partial D
$$

with lognormal diffusion coefficient

$$
\log a(x, \xi)=\phi_{0}(x)+\sum_{m=1}^{\infty} \phi_{m}(x) \xi_{m}, \quad \xi \sim \mu=\bigotimes_{m \geq 1} N(0,1)
$$

where $\phi_{0}, \phi_{m} \in L^{\infty}(D)$ and series converges μ-a.e. in $L^{\infty}(D)$.
Under mild assumptions there holds

$$
u \in L_{\mu}^{2}\left(\mathbb{R}^{\mathbb{N}} ; H_{0}^{1}(D)=\left\{v: \mathbb{R}^{\mathbb{N}} \rightarrow H_{0}^{1}(D) \text { s. t. } \int_{\mathbb{R}^{\mathbb{N}}}\|v(\xi)\|_{H_{0}^{1}(D)}^{2} \mu(d \xi)<\infty\right\}\right.
$$

Part I

Sparse grids approximation of the lognormal problem

Existing results

Convergence analysis and algebraic convergence rates in infinite dimensions available so far for:

- Best N-term approximations
- Bounded $\boldsymbol{\xi} \in[-1,1]^{\mathbb{N}}$: Cohen et al., 2011; Bachmayr et al., 2016
- Gaussian $\boldsymbol{\xi} \in \mathbb{R}^{\mathbb{N}}$: Hoang \& Schwab, 2014; Bachmayr et al., 2016

Existing results

Convergence analysis and algebraic convergence rates in infinite dimensions available so far for:

- Best N-term approximations
- Bounded $\boldsymbol{\xi} \in[-1,1]^{\mathbb{N}}:$ Cohen et al., 2011; Bachmayr et al., 2016
- Gaussian $\boldsymbol{\xi} \in \mathbb{R}^{\mathbb{N}}$: Hoang \& Schwab, 2014; Bachmayr et al., 2016
- Sparse grid quadrature methods
- Bounded $\boldsymbol{\xi} \in[-1,1]^{\mathbb{N}}$: Schillings \& Schwab, 2011
- Gaussian $\boldsymbol{\xi} \in \mathbb{R}^{\mathbb{N}}$: Chen, 2016

Existing results

Convergence analysis and algebraic convergence rates in infinite dimensions available so far for:

- Best N-term approximations
- Bounded $\boldsymbol{\xi} \in[-1,1]^{\mathbb{N}}$: Cohen et al., 2011; Bachmayr et al., 2016
- Gaussian $\boldsymbol{\xi} \in \mathbb{R}^{\mathbb{N}}$: Hoang \& Schwab, 2014; Bachmayr et al., 2016
- Sparse grid quadrature methods
- Bounded $\boldsymbol{\xi} \in[-1,1]^{\mathbb{N}}$: Schillings \& Schwab, 2011
- Gaussian $\boldsymbol{\xi} \in \mathbb{R}^{\mathbb{N}}:$ Chen, 2016
- Sparse grid polynomial collocation methods
- Bounded $\boldsymbol{\xi} \in[-1,1]^{\mathbb{N}}$: Chkifa et al., 2014; Chkifa et al., 2015
- Gaussian $\boldsymbol{\xi} \in \mathbb{R}^{\mathbb{N}}$: this talk!

Existing results

Convergence analysis and algebraic convergence rates in infinite dimensions available so far for:

- Best N-term approximations
- Bounded $\boldsymbol{\xi} \in[-1,1]^{\mathbb{N}}$: Cohen et al., 2011; Bachmayr et al., 2016
- Gaussian $\boldsymbol{\xi} \in \mathbb{R}^{\mathbb{N}}$: Hoang \& Schwab, 2014; Bachmayr et al., 2016
- Sparse grid quadrature methods
- Bounded $\boldsymbol{\xi} \in[-1,1]^{\mathbb{N}}$: Schillings \& Schwab, 2011
- Gaussian $\boldsymbol{\xi} \in \mathbb{R}^{\mathbb{N}}$: Chen, 2016
- Sparse grid polynomial collocation methods
- Bounded $\boldsymbol{\xi} \in[-1,1]^{\mathbb{N}}$: Chkifa et al., 2014; Chkifa et al., 2015
- Gaussian $\boldsymbol{\xi} \in \mathbb{R}^{\mathbb{N}}$: this talk!

Notation: in this talk:

- m, M refer to random variables;
- n, N to terms in expansion.

PCE and sparse grids expansions of u

- $\mathcal{F}:=\left\{\boldsymbol{\nu} \in \mathbb{N}_{0}^{\mathbb{N}}: \nu_{m}>0\right.$ for only finitely many $\left.m\right\}$

PCE and sparse grids expansions of u

- $\mathcal{F}:=\left\{\boldsymbol{\nu} \in \mathbb{N}_{0}^{\mathbb{N}}: \nu_{m}>0\right.$ for only finitely many $\left.m\right\}$
- $u(\boldsymbol{\xi})=\sum_{\nu \in \mathcal{F}} u_{\nu} H_{\nu}(\boldsymbol{\xi})$ is the PCE of u

PCE and sparse grids expansions of u

- $\mathcal{F}:=\left\{\boldsymbol{\nu} \in \mathbb{N}_{0}^{\mathbb{N}}: \nu_{m}>0\right.$ for only finitely many $\left.m\right\}$
- $u(\boldsymbol{\xi})=\sum_{\nu \in \mathcal{F}} u_{\nu} H_{\nu}(\boldsymbol{\xi})$ is the PCE of u
- $H_{\nu}(\xi)$ multivariate Hermite polynomial of order $\nu_{m} \in \xi_{m}$.

PCE and sparse grids expansions of u

- $\mathcal{F}:=\left\{\boldsymbol{\nu} \in \mathbb{N}_{0}^{\mathbb{N}}: \nu_{m}>0\right.$ for only finitely many $\left.m\right\}$
- $u(\boldsymbol{\xi})=\sum_{\nu \in \mathcal{F}} u_{\nu} H_{\nu}(\boldsymbol{\xi})$ is the PCE of u
- $H_{\nu}(\boldsymbol{\xi})$ multivariate Hermite polynomial of order $\nu_{m} \in \xi_{m}$.
- $U_{\Lambda} u:=\sum_{\mathbf{i} \in \Lambda} \Delta_{\mathbf{i}} u$ is the sparse collocation approximation of u

PCE and sparse grids expansions of u

- $\mathcal{F}:=\left\{\boldsymbol{\nu} \in \mathbb{N}_{0}^{\mathbb{N}}: \nu_{m}>0\right.$ for only finitely many $\left.m\right\}$
- $u(\xi)=\sum_{\nu \in \mathcal{F}} u_{\nu} H_{\nu}(\xi)$ is the PCE of u
- $H_{\nu}(\boldsymbol{\xi})$ multivariate Hermite polynomial of order $\nu_{m} \in \xi_{m}$.
- $U_{\Lambda} u:=\sum_{\mathbf{i} \in \Lambda} \Delta_{\mathbf{i}} u$ is the sparse collocation approximation of u
- finite $\wedge \subset \mathcal{F}$

PCE and sparse grids expansions of u

- $\mathcal{F}:=\left\{\boldsymbol{\nu} \in \mathbb{N}_{0}^{\mathbb{N}}: \nu_{m}>0\right.$ for only finitely many $\left.m\right\}$
- $u(\xi)=\sum_{\nu \in \mathcal{F}} u_{\nu} H_{\nu}(\xi)$ is the PCE of u
- $H_{\nu}(\boldsymbol{\xi})$ multivariate Hermite polynomial of order $\nu_{m} \in \xi_{m}$.
- $U_{\Lambda} u:=\sum_{\mathbf{i} \in \Lambda} \Delta_{\mathbf{i}} u$ is the sparse collocation approximation of u
- finite $\wedge \subset \mathcal{F}$
- $\Delta_{\mathbf{i}}=\bigotimes_{m \in \mathbb{N}} \Delta_{k_{m}}=\bigotimes_{m \in \mathbb{N}}\left(L_{k_{m}}-L_{k_{m}-1}\right)$

PCE and sparse grids expansions of u

- $\mathcal{F}:=\left\{\boldsymbol{\nu} \in \mathbb{N}_{0}^{\mathbb{N}}: \nu_{m}>0\right.$ for only finitely many $\left.m\right\}$
- $u(\boldsymbol{\xi})=\sum_{\nu \in \mathcal{F}} u_{\nu} H_{\nu}(\boldsymbol{\xi})$ is the PCE of u
- $H_{\nu}(\boldsymbol{\xi})$ multivariate Hermite polynomial of order $\nu_{m} \in \xi_{m}$.
- $U_{\Lambda} u:=\sum_{\mathbf{i} \in \Lambda} \Delta_{\mathbf{i}} u$ is the sparse collocation approximation of u
- finite $\wedge \subset \mathcal{F}$
- $\Delta_{\mathbf{i}}=\bigotimes_{m \in \mathbb{N}} \Delta_{k_{m}}=\bigotimes_{m \in \mathbb{N}}\left(L_{k_{m}}-L_{k_{m}-1}\right)$
- L_{k} univariate Lagrangian interpolant operator over k points

PCE and sparse grids expansions of u

- $\mathcal{F}:=\left\{\boldsymbol{\nu} \in \mathbb{N}_{0}^{\mathbb{N}}: \nu_{m}>0\right.$ for only finitely many $\left.m\right\}$
- $u(\xi)=\sum_{\nu \in \mathcal{F}} u_{\nu} H_{\nu}(\boldsymbol{\xi})$ is the PCE of u
- $H_{\nu}(\boldsymbol{\xi})$ multivariate Hermite polynomial of order $\nu_{m} \in \xi_{m}$.
- $U_{\Lambda} u:=\sum_{\mathbf{i} \in \Lambda} \Delta_{\mathbf{i}} u$ is the sparse collocation approximation of u
- finite $\wedge \subset \mathcal{F}$
- $\Delta_{\mathbf{i}}=\bigotimes_{m \in \mathbb{N}} \Delta_{k_{m}}=\bigotimes_{m \in \mathbb{N}}\left(L_{k_{m}}-L_{k_{m}-1}\right)$
- L_{k} univariate Lagrangian interpolant operator over k points
- $\Lambda \subset \mathcal{F}$ is monotone (downward closed) if $\mathbf{k} \in \Lambda \Rightarrow \mathbf{i} \in \Lambda \forall \mathbf{i} \leq \mathbf{k}$.

PCE and sparse grids expansions of u

- $\mathcal{F}:=\left\{\boldsymbol{\nu} \in \mathbb{N}_{0}^{\mathbb{N}}: \nu_{m}>0\right.$ for only finitely many $\left.m\right\}$
- $u(\boldsymbol{\xi})=\sum_{\nu \in \mathcal{F}} u_{\nu} H_{\nu}(\boldsymbol{\xi})$ is the PCE of u
- $H_{\nu}(\boldsymbol{\xi})$ multivariate Hermite polynomial of order $\nu_{m} \in \xi_{m}$.
- $U_{\Lambda} u:=\sum_{\mathbf{i} \in \Lambda} \Delta_{\mathbf{i}} u$ is the sparse collocation approximation of u
- finite $\wedge \subset \mathcal{F}$
- $\Delta_{\mathbf{i}}=\bigotimes_{m \in \mathbb{N}} \Delta_{k_{m}}=\bigotimes_{m \in \mathbb{N}}\left(L_{k_{m}}-L_{k_{m}-1}\right)$
- L_{k} univariate Lagrangian interpolant operator over k points
- $\Lambda \subset \mathcal{F}$ is monotone (downward closed) if $\mathbf{k} \in \Lambda \Rightarrow \mathbf{i} \in \Lambda \forall \mathbf{i} \leq \mathbf{k}$.
- If $\Lambda \subset \mathcal{F}$ monotone U_{Λ} is exact on $\mathcal{P}_{\Lambda}=\operatorname{span}\left\{\xi^{i}, \mathbf{i} \in \Lambda\right\}$
$\star U_{\Lambda} H_{\nu}=H_{\nu}$ if $\nu \in \Lambda$
$\star \Delta_{\mathbf{i}} H_{\nu}=0$ if $\mathbf{i} \notin \Lambda$ and $\boldsymbol{\nu} \in \Lambda$

PCE and sparse grids expansions of u

- $\mathcal{F}:=\left\{\boldsymbol{\nu} \in \mathbb{N}_{0}^{\mathbb{N}}: \nu_{m}>0\right.$ for only finitely many $\left.m\right\}$
- $u(\boldsymbol{\xi})=\sum_{\nu \in \mathcal{F}} u_{\nu} H_{\nu}(\boldsymbol{\xi})$ is the PCE of u
- $H_{\nu}(\boldsymbol{\xi})$ multivariate Hermite polynomial of order $\nu_{m} \in \xi_{m}$.
- $U_{\Lambda} u:=\sum_{\mathbf{i} \in \Lambda} \Delta_{\mathbf{i}} u$ is the sparse collocation approximation of u
- finite $\wedge \subset \mathcal{F}$
- $\Delta_{\mathbf{i}}=\bigotimes_{m \in \mathbb{N}} \Delta_{k_{m}}=\bigotimes_{m \in \mathbb{N}}\left(L_{k_{m}}-L_{k_{m}-1}\right)$
- L_{k} univariate Lagrangian interpolant operator over k points
- $\Lambda \subset \mathcal{F}$ is monotone (downward closed) if $\mathbf{k} \in \Lambda \Rightarrow \mathbf{i} \in \Lambda \forall \mathbf{i} \leq \mathbf{k}$.
- If $\Lambda \subset \mathcal{F}$ monotone U_{Λ} is exact on $\mathcal{P}_{\Lambda}=\operatorname{span}\left\{\xi^{i}, \mathbf{i} \in \Lambda\right\}$
$\star U_{\Lambda} H_{\nu}=H_{\nu}$ if $\nu \in \Lambda$
$\star \Delta_{\mathbf{i}} H_{\nu}=0$ if $\mathbf{i} \notin \Lambda$ and $\boldsymbol{\nu} \in \Lambda$
- associated sparse grid Ξ_{\wedge}

Our convergence result

Theorem
(1) If there exists a sequence $\left(\tau_{m}\right)$ st for $p \in(0,2)$

Our convergence result

Theorem
(1) If there exists a sequence $\left(\tau_{m}\right)$ st for $p \in(0,2)$
$\left(\tau_{m}^{-1}\right) \in \ell^{p}(\mathbb{N})$

Our convergence result

Theorem
(1) If there exists a sequence $\left(\tau_{m}\right)$ st for $p \in(0,2)$

- $\left(\tau_{m}^{-1}\right) \in \ell^{p}(\mathbb{N})$
the $K L$ modes ϕ_{m} satisfy $\sup _{x \in D} \sum_{m=1}^{\infty} \tau_{m}\left|\phi_{m}(x)\right|<\infty$

Our convergence result

Theorem

(1) If there exists a sequence $\left(\tau_{m}\right)$ st for $p \in(0,2)$

- $\left(\tau_{m}^{-1}\right) \in \ell^{p}(\mathbb{N})$
the $K L$ modes ϕ_{m} satisfy $\sup _{x \in D} \sum_{m=1}^{\infty} \tau_{m}\left|\phi_{m}(x)\right|<\infty$
and a choice of points st $\left\|\Delta_{i} H_{\nu}\right\|_{L_{\mu}^{2}} \leq(1+K \nu)^{\theta}$ for $\theta \geq 0, K \geq 1$,

Our convergence result

Theorem

(1) If there exists a sequence $\left(\tau_{m}\right)$ st for $p \in(0,2)$
$\left(\tau_{m}^{-1}\right) \in \ell^{p}(\mathbb{N})$
the $K L$ modes ϕ_{m} satisfy $\sup _{x \in D} \sum_{m=1}^{\infty} \tau_{m}\left|\phi_{m}(x)\right|<\infty$
and a choice of points st $\left\|\Delta_{i} H_{\nu}\right\|_{L_{\mu}^{2}} \leq(1+K \nu)^{\theta}$ for $\theta \geq 0, K \geq 1$, there exist nested monotone and finite sets $\Lambda_{N} \subset \mathcal{F}$ with $\left|\Lambda_{N}\right|=N$ st

$$
\begin{aligned}
& \left\|u-U_{\Lambda_{N}} u\right\|_{L_{\mu}^{2}} \leq C N^{-s}, \quad s=\frac{1}{p}-\frac{1}{2} \\
& \left\|u-U_{\Lambda_{N}} u\right\|_{L_{\mu}^{2}} \leq\left.\left. C\right|_{\Xi_{\Lambda_{N}}}\right|^{-s} \quad s=\frac{1}{2 p}-\frac{1}{4} .
\end{aligned}
$$

Our convergence result

Theorem

(1) If there exists a sequence $\left(\tau_{m}\right)$ st for $p \in(0,2)$
$\left(\tau_{m}^{-1}\right) \in \ell^{p}(\mathbb{N})$
the $K L$ modes ϕ_{m} satisfy $\sup _{x \in D} \sum_{m=1}^{\infty} \tau_{m}\left|\phi_{m}(x)\right|<\infty$
and a choice of points st $\left\|\Delta_{i} H_{\nu}\right\|_{L_{\mu}^{2}} \leq(1+K \nu)^{\theta}$ for $\theta \geq 0, K \geq 1$, there exist nested monotone and finite sets $\Lambda_{N} \subset \mathcal{F}$ with $\left|\Lambda_{N}\right|=N$ st

$$
\begin{aligned}
& \left\|u-U_{\Lambda_{N}} u\right\|_{L_{\mu}^{2}} \leq C N^{-s}, \quad s=\frac{1}{p}-\frac{1}{2} \\
& \left\|u-U_{\Lambda_{N}} u\right\|_{L_{\mu}^{2}} \leq\left.\left. C\right|_{\AA_{\Lambda_{N}}}\right|^{-s} \quad s=\frac{1}{2 p}-\frac{1}{4} .
\end{aligned}
$$

(2) Gauss-Hermite nodes satisfy the bound above with $\theta=1, K \geq 2.18$ e

Comments

- The proof builds on Bachmayr et al., 2016 and Chen, 2016

Comments

- The proof builds on Bachmayr et al., 2016 and Chen, 2016
- Technical additions:

Comments

- The proof builds on Bachmayr et al., 2016 and Chen, 2016
- Technical additions:
- Bound on Hermite polynomials (uses Abramovitz \& Stegun, 1972; Nevai, 1980; Szegö, 1975)

$$
\left\|\Delta_{i} H_{\nu}\right\|_{L_{\mu}^{2}} \leq(1+K \nu), i, \nu \geq 0, K \geq 2.18 \sqrt{e}
$$

Comments

- The proof builds on Bachmayr et al., 2016 and Chen, 2016
- Technical additions:
- Bound on Hermite polynomials (uses Abramovitz \& Stegun, 1972; Nevai, 1980; Szegö, 1975)

$$
\left\|\Delta_{i} H_{\nu}\right\|_{L_{\mu}^{2}} \leq(1+K \nu), \quad i, \nu \geq 0, K \geq 2.18 \sqrt{e}
$$

- Bound on $\left|\bar{Z}_{\wedge}\right|$: for Ξ_{Λ} based on linear growth of points (e.g. Gauss-Hermite nodes)

$$
\left|\Xi_{\Lambda}\right| \leq \frac{|\Lambda|(|\Lambda|+1)}{2} .
$$

Comments

- The proof builds on Bachmayr et al., 2016 and Chen, 2016
- Technical additions:
- Bound on Hermite polynomials (uses Abramovitz \& Stegun, 1972; Nevai, 1980; Szegö, 1975)

$$
\left\|\Delta_{i} H_{\nu}\right\|_{L_{\mu}^{2}} \leq(1+K \nu), i, \nu \geq 0, K \geq 2.18 \sqrt{e}
$$

- Bound on $\left|\bar{\Xi}_{\wedge}\right|$: for Ξ_{\wedge} based on linear growth of points (e.g. Gauss-Hermite nodes)

$$
\left|\Xi_{\wedge}\right| \leq \frac{|\Lambda|(|\Lambda|+1)}{2} \text {. }
$$

- The proof is constructive, provides an estimate of the optimal set Λ_{N}

Sketch of proof - see also Bachmayr et al., 2016 \& Chen, 2016

$$
\left\|f-U_{\Lambda_{N}} f\right\|_{L_{\mu}^{2}} \leq \text { choose } \Lambda_{N} \text { as the } N \text { largest } \hat{c}_{\nu} \text { (see later) }
$$

Sketch of proof - see also Bachmayr et al., 2016 \& Chen, 2016

$$
\begin{aligned}
\left\|f-U_{\Lambda_{N}} f\right\|_{L_{\mu}^{2}} & \leq \text { choose } \Lambda_{N} \text { as the } N \text { largest } \hat{c}_{\nu} \text { (see later) } \\
& \leq \sum_{\nu \in \mathcal{F} \backslash \Lambda_{N}}\left\|f_{\nu}\right\|_{H_{0}^{1}(D)} \underbrace{\left\|\left(I-U_{\Lambda}\right) H_{\nu}\right\|_{L_{\mu}^{2}}}_{:=c_{\nu}} \text { due to exactness on monotone sets }
\end{aligned}
$$

Sketch of proof - see also Bachmayr et al., 2016 \& Chen, 2016

$\left\|f-U_{\Lambda_{N}} f\right\|_{L_{\mu}^{2}} \leq$ choose Λ_{N} as the N largest \hat{c}_{ν} (see later)

$$
\begin{aligned}
& \leq \sum_{\nu \in \mathcal{F} \backslash \Lambda_{N}}\left\|f_{\nu}\right\|_{H_{0}^{1}(D)} \underbrace{\left\|\left(I-U_{\Lambda}\right) H_{\nu}\right\|_{L_{\mu}^{2}}}_{:=c_{\nu}} \text { due to exactness on monotone sets } \\
& \leq \sum_{\nu \in \mathcal{F} \backslash \Lambda_{N}} c_{\nu}\left\|f_{\nu}\right\|_{H_{0}^{1}(D)} \text { nb: cannot apply Stechkin here, } c_{\nu}\left\|f_{\nu}\right\|_{H_{0}^{1}(D)} \text { not monotone }
\end{aligned}
$$

Sketch of proof - see also Bachmayr et al., 2016 \& Chen, 2016

$\left\|f-U_{\Lambda_{N}} f\right\|_{L_{\mu}^{2}} \leq$ choose Λ_{N} as the N largest \hat{c}_{ν} (see later)

$$
\begin{aligned}
& \leq \sum_{\nu \in \mathcal{F} \backslash \Lambda_{N}}\left\|f_{\nu}\right\|_{H_{0}^{1}(D)} \underbrace{\left\|\left(I-U_{\Lambda}\right) H_{\nu}\right\|_{L_{\mu}^{2}}}_{:=c_{\nu}} \text { due to exactness on monotone sets } \\
& \leq \sum_{\nu \in \mathcal{F} \backslash \Lambda_{N}} c_{\nu}\left\|f_{\nu}\right\|_{H_{0}^{1}(D)} \text { nb: cannot apply Stechkin here, } c_{\nu}\left\|f_{\nu}\right\|_{H_{0}^{1}(D)} \text { not monotone } \\
& =\sum_{\nu \in \mathcal{F} \backslash \Lambda_{N}}\left(\frac{c_{\nu}}{b_{\nu}^{1 / 2}}\right)\left(b_{\nu}^{1 / 2}\left\|f_{\nu}\right\|_{H_{0}^{1}(D)}\right), \text { with } b_{\nu} \text { ad-hoc sequence that controls }\left\|f_{\nu}\right\|
\end{aligned}
$$

Sketch of proof - see also Bachmayr et al., 2016 \& Chen, 2016

$\left\|f-U_{\Lambda_{N}} f\right\|_{L_{\mu}^{2}} \leq$ choose Λ_{N} as the N largest \hat{c}_{ν} (see later)

$$
\begin{aligned}
& \leq \sum_{\nu \in \mathcal{F} \backslash \Lambda_{N}}\left\|f_{\nu}\right\|_{H_{0}^{1}(D)} \underbrace{\left\|\left(I-U_{\Lambda}\right) H_{\nu}\right\|_{L_{\mu}^{2}}}_{:=c_{\nu}} \text { due to exactness on monotone sets } \\
& \leq \sum_{\nu \in \mathcal{F} \backslash \Lambda_{N}} c_{\nu}\left\|f_{\nu}\right\|_{H_{0}^{1}(D)} \text { nb: cannot apply Stechkin here, } c_{\nu}\left\|f_{\boldsymbol{\nu}}\right\|_{H_{0}^{1}(D)} \text { not monotone } \\
& =\sum_{\nu \in \mathcal{F} \backslash \Lambda_{N}}\left(\frac{c_{\nu}}{\left.b_{\nu}^{1 / 2}\right)}\left(b_{\nu}^{1 / 2}\left\|f_{\nu}\right\|_{H_{0}^{1}(D)}\right), \text { with } b_{\nu} \text { ad-hoc sequence that controls }\left\|f_{\boldsymbol{\nu}}\right\|\right. \\
& \leq \underbrace{\left(\sum_{\boldsymbol{\nu} \in \mathcal{F} \backslash \Lambda_{N}} b_{\nu}\left\|f_{\nu}\right\|_{H_{0}^{1}(D)}^{2}\right)^{1 / 2}}_{\text {bounded due to hyp. on } \tau_{m}} \cdot\left(\sum_{\boldsymbol{\nu} \in \mathcal{F} \backslash \Lambda_{N}} \frac{c_{\nu}^{2}}{b_{\nu}}\right)^{1 / 2} \begin{array}{l}
\text { explicit form for } \hat{c}_{\nu}^{2} \geq \frac{c_{\nu}^{2}}{b_{\nu}} \\
\text { • exactness of } U_{\Lambda_{N}} \\
\bullet \text { bound on Hermite pol. } \\
\bullet \text { summability hyp on } \tau_{m} \\
\hat{c}_{\boldsymbol{\nu}}=\prod_{m \geq 1}\left(\nu_{m}\right)^{2 \theta+2-r} \tau_{m}^{-2\left(1 \wedge \nu_{m}\right)} \\
\theta=1, r=2(2(\theta+1)+2 / p+1)
\end{array}
\end{aligned}
$$

Sketch of proof - see also Bachmayr et al., 2016 \& Chen, 2016

$\left\|f-U_{\Lambda_{N}} f\right\|_{L_{\mu}^{2}} \leq$ choose Λ_{N} as the N largest \hat{c}_{ν} (see later)

$$
\begin{aligned}
& \leq \sum_{\nu \in \mathcal{F} \backslash \Lambda_{N}}\left\|f_{\nu}\right\|_{H_{0}^{1}(D)} \underbrace{\left\|\left(I-U_{\Lambda}\right) H_{\nu}\right\|_{L_{\mu}^{2}}}_{:=c_{\nu}} \text { due to exactness on monotone sets } \\
& \leq \sum_{\nu \in \mathcal{F} \backslash \Lambda_{N}} c_{\nu}\left\|f_{\nu}\right\|_{H_{0}^{1}(D)} \text { nb: cannot apply Stechkin here, } c_{\nu}\left\|f_{\nu}\right\|_{H_{0}^{1}(D)} \text { not monotone } \\
& =\sum_{\nu \in \mathcal{F} \backslash \Lambda_{N}}\left(\frac{c_{\nu}}{b_{\nu}^{1 / 2}}\right)\left(b_{\nu}^{1 / 2}\left\|f_{\nu}\right\|_{H_{0}^{1}(D)}\right) \text {, with } b_{\nu} \text { ad-hoc sequence that controls }\left\|f_{\nu}\right\| \\
& \leq \underbrace{\left(\sum_{\nu \in \mathcal{F} \backslash \Lambda_{N}} b_{\nu}\left\|f_{\nu}\right\|_{H_{0}^{1}(D)}^{2}\right)^{1 / 2}}_{\text {bounded due to hyp. on } \tau_{m}} \cdot\left(\sum_{\nu \in \mathcal{F} \backslash \Lambda_{N}} \frac{c_{\nu}^{2}}{b_{\nu}}\right)^{1 / 2} \begin{array}{l}
\text { explicit form for } \hat{c}_{\nu}^{2} \geq \frac{c_{\nu}^{2}}{b_{\nu}} \\
\text { • exactness of } U_{\Lambda_{N}} \\
\text { - bound on Hermite pol. } \\
\text { - summability hyp on } \tau_{m}
\end{array} \\
& \begin{array}{l}
\hat{c}_{\nu}=\prod_{m \geq 1}\left(\nu_{m}\right)^{2 \theta+2-r} \tau_{m}^{-2\left(1 \wedge \nu_{m}\right)} \\
\theta=1, r=2(2(\theta+1)+2 / p+1)
\end{array} \\
& \leq\left(\sum_{\nu \in \mathcal{F}} b_{\nu}\left\|f_{\boldsymbol{\nu}}\right\|_{H_{0}^{1}(D)}^{2}\right)^{1 / 2} \cdot\left(\sum_{\nu \in \mathcal{F} \backslash \Lambda_{N}} \hat{c}_{\boldsymbol{\nu}}^{2}\right)^{1 / 2}, \hat{c}_{\nu} \text { is monotone } \Rightarrow \text { use Stechkin }
\end{aligned}
$$

Sketch of proof - see also Bachmayr et al., 2016 \& Chen, 2016

$\left\|f-U_{\Lambda_{N}} f\right\|_{L_{\mu}^{2}} \leq$ choose Λ_{N} as the N largest \hat{c}_{ν} (see later)

$$
\begin{aligned}
& \leq \sum_{\nu \in \mathcal{F} \backslash \Lambda_{N}}\left\|f_{\nu}\right\|_{H_{0}^{1}(D)} \underbrace{\left\|\left(I-U_{\Lambda}\right) H_{\nu}\right\|_{L_{\mu}^{2}}}_{:=c_{\nu}} \text { due to exactness on monotone sets } \\
& \leq \sum_{\nu \in \mathcal{F} \backslash \Lambda_{N}} c_{\nu}\left\|f_{\nu}\right\|_{H_{0}^{1}(D)} \text { nb: cannot apply Stechkin here, } c_{\nu}\left\|f_{\nu}\right\|_{H_{0}^{1}(D)} \text { not monotone } \\
& =\sum_{\nu \in \mathcal{F} \backslash \Lambda_{N}}\left(\frac{c_{\nu}}{b_{\nu}^{1 / 2}}\right)\left(b_{\nu}^{1 / 2}\left\|f_{\nu}\right\|_{H_{0}^{1}(D)}\right) \text {, with } b_{\nu} \text { ad-hoc sequence that controls }\left\|f_{\nu}\right\| \\
& \leq \underbrace{\left(\sum_{\nu \in \mathcal{F} \backslash \Lambda_{N}} b_{\nu}\left\|f_{\nu}\right\|_{H_{0}^{1}(D)}^{2}\right)^{1 / 2}}_{\text {bounded due to hyp. on } \tau_{m}} \cdot\left(\sum_{\nu \in \mathcal{F} \backslash \Lambda_{N}} \frac{c_{\nu}^{2}}{b_{\nu}}\right)^{1 / 2} \begin{array}{l}
\text { explicit form for } \hat{c}_{\nu}^{2} \geq \frac{c_{\nu}^{2}}{b_{\nu}} \\
\text { • exactness of } U_{\Lambda_{N}} \\
\text { - bound on Hermite pol. } \\
\text { - summability hyp on } \tau_{m}
\end{array} \\
& \begin{array}{l}
\hat{c}_{\nu}=\prod_{m \geq 1}\left(\nu_{m}\right)^{2 \theta+2-r} \tau_{m}^{-2\left(1 \wedge \nu_{m}\right)} \\
\theta=1, r=2(2(\theta+1)+2 / p+1)
\end{array} \\
& \leq\left(\sum_{\nu \in \mathcal{F}} b_{\nu}\left\|f_{\boldsymbol{\nu}}\right\|_{H_{0}^{1}(D)}^{2}\right)^{1 / 2} \cdot\left(\sum_{\nu \in \mathcal{F} \backslash \Lambda_{N}} \hat{c}_{\boldsymbol{\nu}}^{2}\right)^{1 / 2}, \hat{c}_{\nu} \text { is monotone } \Rightarrow \text { use Stechkin } \\
& \leq C(N+1)^{-(1 / p-1 / 2)} \text {, then use bound }\left|\equiv_{\Lambda_{N}}\right|=\mathcal{O}\left(N^{2}\right)
\end{aligned}
$$

Numerical results

lognormal problem on $D=[0,1]$ (Bachmayr et al., 2016)

$$
-\frac{\mathrm{d}}{\mathrm{~d} x}\left(a(x, \boldsymbol{\xi}) \frac{\mathrm{d}}{\mathrm{~d} x} u(x, \boldsymbol{\xi})\right)=0.03 \sin (2 \pi x), \quad u(0, \boldsymbol{\xi})=u(1, \boldsymbol{\xi})=0
$$

where $\log a$ behaves like a smoothed Brownian bridge:

$$
\log a(x, \boldsymbol{\xi})=0.1 \sum_{m=1}^{\infty} \underbrace{\frac{\sqrt{2}}{(\pi m)^{q}} \sin (m \pi x)}_{=: \phi_{m}(x)} \xi_{m}, \quad q \geq 1
$$

Numerical results

lognormal problem on $D=[0,1]$ (Bachmayr et al., 2016)

$$
-\frac{\mathrm{d}}{\mathrm{~d} x}\left(a(x, \boldsymbol{\xi}) \frac{\mathrm{d}}{\mathrm{dx}} u(x, \boldsymbol{\xi})\right)=0.03 \sin (2 \pi x), \quad u(0, \boldsymbol{\xi})=u(1, \boldsymbol{\xi})=0
$$

where $\log a$ behaves like a smoothed Brownian bridge:

$$
\log a(x, \boldsymbol{\xi})=0.1 \sum_{m=1}^{\infty} \underbrace{\frac{\sqrt{2}}{(\pi m)^{q}} \sin (m \pi x)}_{=: \phi_{m}(x)} \xi_{m}, \quad q \geq 1 .
$$

Predicted convergence rate

$$
\left\|u-U_{\Lambda_{N}} u\right\|_{L_{\mu}^{2}} \leq C N^{-(q-1.5)} \leq\left.\left. C\right|_{\Lambda_{N}}\right|^{-\left(\frac{q-1.5}{2}\right)} .
$$

Numerical results

lognormal problem on $D=[0,1]$ (Bachmayr et al., 2016)

$$
-\frac{\mathrm{d}}{\mathrm{~d} x}\left(a(x, \boldsymbol{\xi}) \frac{\mathrm{d}}{\mathrm{~d} x} u(x, \boldsymbol{\xi})\right)=0.03 \sin (2 \pi x), \quad u(0, \boldsymbol{\xi})=u(1, \boldsymbol{\xi})=0
$$

where $\log a$ behaves like a smoothed Brownian bridge:

$$
\log a(x, \boldsymbol{\xi})=0.1 \sum_{m=1}^{\infty} \underbrace{\frac{\sqrt{2}}{(\pi m)^{q}} \sin (m \pi x)}_{=: \phi_{m}(x)} \xi_{m}, \quad q \geq 1 .
$$

Predicted convergence rate

$$
\left\|u-U_{\Lambda_{N}} u\right\|_{L_{\mu}^{2}} \leq C N^{-(q-1.5)} \leq\left.\left. C\right|_{\Lambda_{N}}\right|^{-\left(\frac{q-1.5}{2}\right)} .
$$

Sparse grid software

Sparse grids Matlab kit, available at https://csqi.epfl.ch/. Latest version: 17-5

Algorithm to generate the sets Λ_{N}

Algorithm based on Gerstner \& Griebel, 2003
Build up Λ_{N} by subsequently adding new multiindex from neighborhood

$$
\Lambda_{N+1}:=\Lambda_{N} \cup\left\{\boldsymbol{\nu}_{N}^{*}\right\}, \quad \boldsymbol{\nu}_{N}^{*}=\underset{\boldsymbol{\nu} \in \mathcal{N}\left(\Lambda_{N}\right)}{\arg \max } h(\boldsymbol{\nu})
$$

where $h: \mathcal{F} \rightarrow \mathbb{R}$ is a heuristic (for improvement by adding $\boldsymbol{\nu}$) and

$$
\mathcal{N}\left(\Lambda_{N}\right):=\left\{\mathbf{i} \in \mathcal{F}: \Lambda_{N} \cup\{\mathbf{i}\} \text { is monotone }\right\}
$$

Algorithm to generate the sets Λ_{N}

Algorithm based on Gerstner \& Griebel, 2003
Build up Λ_{N} by subsequently adding new multiindex from neighborhood

$$
\Lambda_{N+1}:=\Lambda_{N} \cup\left\{\boldsymbol{\nu}_{N}^{*}\right\}, \quad \boldsymbol{\nu}_{N}^{*}=\underset{\boldsymbol{\nu} \in \mathcal{N}\left(\Lambda_{N}\right)}{\arg \max } h(\boldsymbol{\nu})
$$

where $h: \mathcal{F} \rightarrow \mathbb{R}$ is a heuristic (for improvement by adding $\boldsymbol{\nu}$) and

$$
\mathcal{N}\left(\Lambda_{N}\right):=\left\{\mathbf{i} \in \mathcal{F}: \Lambda_{N} \cup\{\mathbf{i}\} \text { is monotone }\right\}
$$

add new random variables increasingly (make sure always K "unexplored" variables)

Algorithm to generate the sets Λ_{N}

Algorithm based on Gerstner \& Griebel, 2003
Build up Λ_{N} by subsequently adding new multiindex from neighborhood

$$
\Lambda_{N+1}:=\Lambda_{N} \cup\left\{\boldsymbol{\nu}_{N}^{*}\right\}, \quad \boldsymbol{\nu}_{N}^{*}=\underset{\boldsymbol{\nu} \in \mathcal{N}\left(\Lambda_{N}\right)}{\arg \max } h(\boldsymbol{\nu})
$$

where $h: \mathcal{F} \rightarrow \mathbb{R}$ is a heuristic (for improvement by adding $\boldsymbol{\nu}$) and

$$
\mathcal{N}\left(\Lambda_{N}\right):=\left\{\mathbf{i} \in \mathcal{F}: \Lambda_{N} \cup\{\mathbf{i}\} \text { is monotone }\right\}
$$

add new random variables increasingly (make sure always K "unexplored" variables)

Two choices for $h(\boldsymbol{\nu})$

Algorithm to generate the sets Λ_{N}

Algorithm based on Gerstner \& Griebel, 2003
Build up Λ_{N} by subsequently adding new multiindex from neighborhood

$$
\Lambda_{N+1}:=\Lambda_{N} \cup\left\{\boldsymbol{\nu}_{N}^{*}\right\}, \quad \boldsymbol{\nu}_{N}^{*}=\underset{\boldsymbol{\nu} \in \mathcal{N}\left(\Lambda_{N}\right)}{\arg \max } h(\boldsymbol{\nu})
$$

where $h: \mathcal{F} \rightarrow \mathbb{R}$ is a heuristic (for improvement by adding $\boldsymbol{\nu}$) and

$$
\mathcal{N}\left(\Lambda_{N}\right):=\left\{\mathbf{i} \in \mathcal{F}: \Lambda_{N} \cup\{\mathbf{i}\} \text { is monotone }\right\}
$$

add new random variables increasingly (make sure always K "unexplored" variables)

Two choices for $h(\boldsymbol{\nu})$

- A-priori heuristic: $h(\boldsymbol{\nu})=\hat{c}_{\nu}$ from the constructive proof

Algorithm to generate the sets Λ_{N}

Algorithm based on Gerstner \& Griebel, 2003
Build up Λ_{N} by subsequently adding new multiindex from neighborhood

$$
\Lambda_{N+1}:=\Lambda_{N} \cup\left\{\boldsymbol{\nu}_{N}^{*}\right\}, \quad \boldsymbol{\nu}_{N}^{*}=\underset{\boldsymbol{\nu} \in \mathcal{N}\left(\Lambda_{N}\right)}{\arg \max } h(\boldsymbol{\nu})
$$

where $h: \mathcal{F} \rightarrow \mathbb{R}$ is a heuristic (for improvement by adding $\boldsymbol{\nu}$) and

$$
\mathcal{N}\left(\Lambda_{N}\right):=\left\{\mathbf{i} \in \mathcal{F}: \Lambda_{N} \cup\{\mathbf{i}\} \text { is monotone }\right\} .
$$

add new random variables increasingly (make sure always K "unexplored" variables)

Two choices for $h(\boldsymbol{\nu})$

- A-priori heuristic: $h(\boldsymbol{\nu})=\hat{c}_{\nu}$ from the constructive proof
- Adaptive heuristic: $h(\nu) \approx \frac{\left\|\Delta_{\nu} u\right\|_{L_{\mu}^{2}}}{|\equiv(\nu)|}$ evaluated by quadrature, given evaluations of u at tensor grid $\Xi^{(\nu)}$.

Results: convergence wrt $\left|\Xi_{\Lambda_{N}}\right|$

$$
\begin{aligned}
& q=1 \\
& \text { expect no convergence; } \\
& \text { a-priori } s=0.4 \text {; } \\
& \text { a-posteriori } s=0.5
\end{aligned}
$$

- Extended grid $=$ a-posteriori with evaluations in the neighbourhood
- Expected rate smaller than observed:
- summability argument could be improved
- bound between number of elements and points not sharp

Results: convergence wrt $\left|\Xi_{\Lambda_{N}}\right|$

- Extended grid $=$ a-posteriori with evaluations in the neighbourhood
- Expected rate smaller than observed:
- summability argument could be improved
- bound between number of elements and points not sharp

Results: convergence wrt $\left|\Xi_{\Lambda_{N}}\right|$

$q=2$
expect $s=0.25$;
a-priori $s=1.0$;
a-posteriori $s=1.1$

- Extended grid $=$ a-posteriori with evaluations in the neighbourhood
- Expected rate smaller than observed:
- summability argument could be improved
- bound between number of elements and points not sharp

Results: convergence wrt $\left|\Xi_{\Lambda_{N}}\right|$

$$
\begin{aligned}
& q=3 \\
& \text { expect } s=0.75 \text {; } \\
& \text { a-priori } s=1.7 \text {; } \\
& \text { a-posteriori } s=1.7
\end{aligned}
$$

- Extended grid $=$ a-posteriori with evaluations in the neighbourhood
- Expected rate smaller than observed:
- summability argument could be improved
- bound between number of elements and points not sharp

Results: convergence wrt $\left|\Lambda_{N}\right|$

$$
q=1
$$

expect no convergence;

$$
\text { a-priori } s=0.5 \text {; }
$$

$$
\text { a-posteriori } s=0.5
$$

- Labels show the number of activated random variables
- Similar rate to before \Rightarrow growth of points linear in $\left|\Lambda_{N}\right|$
- best- N-terms obtained by converting sparse grid into Hermite polynomials and sorting the coefficients

Results: convergence wrt $\left|\Lambda_{N}\right|$

$q=1.5$ expect $s=0$;
a-priori $s=0.8$;
a-posteriori $s=0.9$

- Labels show the number of activated random variables
- Similar rate to before \Rightarrow growth of points linear in $\left|\Lambda_{N}\right|$
- best- N-terms obtained by converting sparse grid into Hermite polynomials and sorting the coefficients

Results: convergence wrt $\left|\Lambda_{N}\right|$

$q=2$
expect $s=0.5$;
a-priori $s=1.1$;
a-posteriori $s=1.2$

- Labels show the number of activated random variables
- Similar rate to before \Rightarrow growth of points linear in $\left|\Lambda_{N}\right|$
- best- N-terms obtained by converting sparse grid into Hermite polynomials and sorting the coefficients

Results: convergence wrt $\left|\Lambda_{N}\right|$

$q=3$
expect $s=1.5$;
a-priori $s=2$;
a-posteriori $s=2$

- Labels show the number of activated random variables
- Similar rate to before \Rightarrow growth of points linear in $\left|\Lambda_{N}\right|$
- best- N-terms obtained by converting sparse grid into Hermite polynomials and sorting the coefficients

Results: convergence wrt $\left|\Lambda_{N}\right|$ for several M

Convergence of the sparse grid approximation with increasingly larger number of dimensions: the asymptotic rate wrt to $\left|\Lambda_{N}\right|$ is not constant with respect to M (but the rate for $M \rightarrow \infty$ is finite).

Part II

Monte Carlo Control variate approximation of the lognormal problem

Monte Carlo Control Variate

For rough random fields sparse grids may be non-effective.
Remedy: use sparse grids as control var. (preconditioner) for MC
(1) Consider a smoothed field a^{ϵ}, such that $\mathcal{Q}_{\mathcal{I}}\left[u^{\epsilon}\right] \rightarrow \mathbb{E}\left[u^{\epsilon}\right]$ quickly.

smoothed field, $\epsilon=1 / 2^{4}$

smoothed field $\epsilon=1 / 2^{6}$

non-smoothed field, $\epsilon=0$

Monte Carlo Control Variate

For rough random fields sparse grids may be non-effective.
Remedy: use sparse grids as control var. (preconditioner) for MC
(1) Consider a smoothed field a^{ϵ}, such that $\mathcal{Q}_{\mathcal{I}}\left[u^{\epsilon}\right] \rightarrow \mathbb{E}\left[u^{\epsilon}\right]$ quickly.
(2) Define $u_{C V}=u-u^{\epsilon}+{ }^{\prime} \mathbb{E}\left[u^{\epsilon}\right]$ ". There holds

$$
\mathbb{E}\left[u_{C V}\right]=\mathbb{E}[u], \quad \operatorname{Var}\left(u_{C V}\right)=\mathbb{V} \operatorname{ar}(u)+\mathbb{V} \operatorname{ar}\left(u^{\epsilon}\right)-2 \operatorname{cov}\left(u, u^{\epsilon}\right)
$$

Thus, the smaller ϵ, the smaller the MC error, but slower the convergence $\mathcal{Q}_{\mathcal{I}}\left[u^{\epsilon}\right] \rightarrow \mathbb{E}\left[u^{\epsilon}\right]$.

Monte Carlo Control Variate

For rough random fields sparse grids may be non-effective.
Remedy: use sparse grids as control var. (preconditioner) for MC
(1) Consider a smoothed field a^{ϵ}, such that $\mathcal{Q}_{\mathcal{I}}\left[u^{\epsilon}\right] \rightarrow \mathbb{E}\left[u^{\epsilon}\right]$ quickly.
(2) Define $u_{C V}=u-u^{\epsilon}+" \mathbb{E}\left[u^{\epsilon}\right]$ ". There holds

$$
\mathbb{E}\left[u_{C V}\right]=\mathbb{E}[u], \quad \mathbb{V} \operatorname{ar}\left(u_{C V}\right)=\mathbb{V} \operatorname{ar}(u)+\mathbb{V} \operatorname{ar}\left(u^{\epsilon}\right)-2 \operatorname{cov}\left(u, u^{\epsilon}\right)
$$

Thus, the smaller ϵ, the smaller the MC error, but slower the convergence $\mathcal{Q}_{\mathcal{I}}\left[u^{\epsilon}\right] \rightarrow \mathbb{E}\left[u^{\epsilon}\right]$.
(3)Set $\mathbb{E}\left[u_{C V}\right] \approx \frac{1}{M} \sum_{i=1}^{M} u^{C V}\left(\omega_{i}\right)=\frac{1}{M} \sum_{i=1}^{M}\left(u\left(\omega_{i}\right)-u^{\epsilon}\left(\omega_{i}\right)\right)+\mathcal{Q}_{\mathcal{I}}^{m}\left[u^{\epsilon}\right]$.
M can be chosen balancing either the works or the errors of MC and sparse grids.

Numerical results - Part II

Field data: exponential covariance, $\sigma=1$, corr. length $L_{c}=0.5$

Sparse grids used here:

- OPT**: a-priori ("quasi-optimal") construction as in Beck et al, 2012
- AD**: a-posteriori construction as in Nobile et al, 2014

MCCV error for adaptive and quasi-optimal sparse grids. ~ 30 r.v. activated.

Sparse grid component of the error for different values of ϵ. The performance deteriorates as $\epsilon \rightarrow 0$

Conclusions

- Convergence estimates for collocation in lognormal problems, both wrt number of indices and points

Conclusions

- Convergence estimates for collocation in lognormal problems, both wrt number of indices and points
- Estimates can be made sharper

Conclusions

- Convergence estimates for collocation in lognormal problems, both wrt number of indices and points
- Estimates can be made sharper
- A-priori estimate of optimal set, discovered adaptively; "guarantees" that full a-posteriori is sensible

Conclusions

- Convergence estimates for collocation in lognormal problems, both wrt number of indices and points
- Estimates can be made sharper
- A-priori estimate of optimal set, discovered adaptively; "guarantees" that full a-posteriori is sensible
- For low-regular random fields, preconditioning Monte Carlo using sparse grids as control variate is an interesting alternative to full sparse grids

Conclusions

- Convergence estimates for collocation in lognormal problems, both wrt number of indices and points
- Estimates can be made sharper
- A-priori estimate of optimal set, discovered adaptively; "guarantees" that full a-posteriori is sensible
- For low-regular random fields, preconditioning Monte Carlo using sparse grids as control variate is an interesting alternative to full sparse grids

Advertisment - GAMM-UQ FrontUQ 18 Workshop
Frontiers of Uncertainty Quantification in Subsurface Environments

Conclusions

- Convergence estimates for collocation in lognormal problems, both wrt number of indices and points
- Estimates can be made sharper
- A-priori estimate of optimal set, discovered adaptively; "guarantees" that full a-posteriori is sensible
- For low-regular random fields, preconditioning Monte Carlo using sparse grids as control variate is an interesting alternative to full sparse grids

Advertisment - GAMM-UQ FrontUQ 18 Workshop
Frontiers of Uncertainty Quantification in Subsurface Environments
Follow-up of GAMM-UQ FrontUQ 17 @ TUM, September 2017

Conclusions

- Convergence estimates for collocation in lognormal problems, both wrt number of indices and points
- Estimates can be made sharper
- A-priori estimate of optimal set, discovered adaptively; "guarantees" that full a-posteriori is sensible
- For low-regular random fields, preconditioning Monte Carlo using sparse grids as control variate is an interesting alternative to full sparse grids

Advertisment - GAMM-UQ FrontUQ 18 Workshop
Frontiers of Uncertainty Quantification in Subsurface Environments
Follow-up of GAMM-UQ FrontUQ 17 @ TUM, September 2017
Pavia (Italy), 5-7 September 2018, https://frontuq18.wordpress.com/

Bibliography

O.G. Ernst, B. Sprungk, and L. Tamellini. Convergence of sparse collocation for functions of countably many gaussian random variables (with application to elliptic PDEs) ArXiv e-prints, (1611.07239), 2016
F. Nobile, L. Tamellini, F. Tesei and R. Tempone. An adaptive sparse grid algorithm for elliptic PDEs with lognormal diffusion coefficient Sparse Grids and Applications 2014, Springer.
T
J. Beck, F. Nobile, L. Tamellini, and R. Tempone. A Quasi-optimal Sparse Grids Procedure for Groundwater Flows. Selected papers from the ICOSAHOM '12 conference.

