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The lognormal problem

Elliptic PDE with lognormal diffusion coefficient
Approximate solution u: RN +— H}(D) of random elliptic PDE on D C R?

=V - (a(x,&) Vu(x,£)) = f(x), u(x,€) =0o0n 9D

with lognormal diffusion coefficient

log a(x, &) = +Z¢m ) Ems E~p= ®N(07 1),

m>1

where ¢g, ¢m € L°°(D) and series converges p-a.e. in L°(D).

Under mild assumptions there holds

ve B H0) = {vi R 5 H0) st [ 1@ y0(e6) < oo
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Part |

Sparse grids approximation of the lognormal problem
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Existing results

Convergence analysis and algebraic convergence rates in infinite
dimensions available so far for:

@ Best N-term approximations
» Bounded ¢ € [-1,1]": Cohen et al., 2011; Bachmayr et al., 2016

» Gaussian & € RY: Hoang & Schwab, 2014; Bachmayr et al., 2016
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Existing results

Convergence analysis and algebraic convergence rates in infinite
dimensions available so far for:

@ Best N-term approximations
» Bounded ¢ € [-1,1]": Cohen et al., 2011; Bachmayr et al., 2016

» Gaussian & € RY: Hoang & Schwab, 2014; Bachmayr et al., 2016

@ Sparse grid quadrature methods
» Bounded ¢ € [-1,1]N: Schillings & Schwab, 2011

» Gaussian & € RY: Chen, 2016

@ Sparse grid polynomial collocation methods
» Bounded ¢ € [-1,1]V: Chkifa et al., 2014; Chkifa et al., 2015

» Gaussian & € RY: this talk!

Notation: in this talk:

» m, M refer to random variables;
» n, N to terms in expansion.
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PCE and sparse grids expansions of u

o F .= {V € Ng‘ : Vm > 0 for only finitely many m}
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PCE and sparse grids expansions of u

o F .= {V € Ng‘ : Vm > 0 for only finitely many m}

o u(€)=>,cruyHy(§) is the PCE of u

» H, (&) multivariate Hermite polynomial of order v, € &p.

® Upu =) ;cp Aju is the sparse collocation approximation of u
» finite ANC F
> Ai = ®m€N Akm = ®m€N(Lkm - Lkm_l)
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o F .= {I/ € Ng‘ : Vm > 0 for only finitely many m}

o u(€)=>,cruyHy(§) is the PCE of u

» H, (&) multivariate Hermite polynomial of order v, € &p.

® Upu =) ;cp Aju is the sparse collocation approximation of u
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S
> Ai = Qpen Bky = men(Liy — Liy—1)
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PCE and sparse grids expansions of u

o F .= {l/ € Ng‘ : Vm > 0 for only finitely many m}

o u(€)=>,cruyHy(§) is the PCE of u

» H, (&) multivariate Hermite polynomial of order v, € &p.

® Upu =) ;cp Aju is the sparse collocation approximation of u
finite A C F
Ai = @ men L = @ en(Livn — Liy—1)
Ly univariate Lagrangian interpolant operator over k points
A C F is monotone (downward closed) if k € A =iec AVi<k.
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PCE and sparse grids expansions of u

o F .= {l/ € Ng‘ : Vm > 0 for only finitely many m}

o u(€)=>,cruyHy(§) is the PCE of u

» H, (&) multivariate Hermite polynomial of order v, € &p.

® Upu =) ;cp Aju is the sparse collocation approximation of u
finite A C F
Ai = @ men L = @ en(Livn — Liy—1)
Ly univariate Lagrangian interpolant operator over k points
A C F is monotone (downward closed) if k € A =iec AVi<k.
If A C F monotone Uy is exact on Py = span{&',i € A}
* UsH, =H, ifveA
* AiH, =0ifigANandv €N
associated sparse grid =p

vy vVvVTVYyywy

v
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Our convergence result

Theorem
© If there exists a sequence (Tm) st for p € (0,2)
(Tm') € £°(N)

(o)
the KL modes ¢, satisfy sup Z Tm|Pm(X)| < 00
D

xeD 1

and a choice of points st HA,-H,,HL%L <(1+Kv) for6 >0, K>1,
there exist nested monotone and finite sets Ay C F with |Ay| = N st
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lu— Upyulliz < CIEA,17°

Lorenzo Tamellini (CNR-IMATI) April 6, 2016 7 /19



Our convergence result

Theorem
© If there exists a sequence (Tm) st for p € (0,2)
(Tm') € £°(N)

(o)
the KL modes ¢, satisfy sup Z Tm|Pm(X)| < 00
D

xeD 1

and a choice of points st HA,-H,,HL%L <(1+Kv) for6 >0, K>1,
there exist nested monotone and finite sets Ay C F with |Ay| = N st

lu— Upyullz < CN7, s=

lu— Upyulliz < CIEA,17°

© Gauss-Hermite nodes satisfy the bound above with § = 1, K > 2.18e
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Comments

@ The proof builds on Bachmayr et al., 2016 and Chen, 2016
@ Technical additions:

» Bound on Hermite polynomials (uses Abramovitz & Stegun, 1972,
Nevai, 1980; Szegé, 1975)

[AiH, |2, < (14 Kv), i,v >0,K >2.18Ve

» Bound on |Z,]: for =5 based on linear growth of points (e.g.
Gauss-Hermite nodes)

=, < NOAED)
—Al > 2 .

@ The proof is constructive, provides an estimate of the optimal set Ay
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Sketch of proof - see also Bachmayr et al., 2016 & Chen, 2016

||f — U/\Nf||L2 < choose Ay as the N largest &, (see later)
n
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Sketch of proof - see also Bachmayr et al., 2016 & Chen, 2016

”f — U/\NfHL2 < choose A as the N largest &, (see later)
e
< E HfV”Hg(D) (- U/\)H,,||Li due to exactness on monotone sets

veF\Ay —_—

=cy
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i
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Sketch of proof - see also Bachmayr et al., 2016 & Chen, 2016

||f - U/\Nf||L2 < choose Ay as the N largest &, (see later)
i

< Z ”fVHHg(D) [[(I — Un)Hu ;2 due to exactness on monotone sets
vEF\Ay _—

=cy

A

Z CVIIquHé(D) nb: cannot apply Stechkin here, CI/Hfu”Hé(D) not monotone
veF\Ay

Z <C"> (b’1//2||fV||H3(D)) , with by ad-hoc sequence that controls ||, ||

1/2
veF\Ay b /

v
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Sketch of proof - see also Bachmayr et al., 2016 & Chen, 2016

||f - U/\Nf||L2 < choose Ay as the N largest &, (see later)
i

< Z IIquH&(D) (1 — U/\)H,,H,_i due to exactness on monotone sets

veF\Ay —
=cp
< Z CV”fVHHg(D) nb: cannot apply Stechkin here, CI/HfV”Hé(D) not monotone
veF\Ay
v 1/2 .
= Z <b1/2> (by/ ||fV||Hé(D)) , with b, ad-hoc sequence that controls ||, ||
veF\Ay v
1/2 ,\ 12
C: 2
<| > b,,||f,,||f_lé(D) 1 f explicit form for 2 > £, due to
veEF\Ay veF\Ay ¥ e exactness of Uy,

e bound on Hermite pol.
e summability hyp on ™,

2, = Hm>1(um)29+2—r7_,;2(1/\1’m)
0=1r=2(20+1)+2/p+1)

bounded due to hyp. on 7,
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Sketch of proof - see also Bachmayr et al., 2016 & Chen, 2016
||f - U/\NfHL2 < choose Ay as the N largest &, (see later)

< Z ”fVHHé(D) [1(1 — UA)HVH,_a due to exactness on monotone sets

veEF\Ay —_—
=cp
< Z c,,||fVHHé(D) nb: cannot apply Stechkin here, CI/HfV”Hé(D) not monotone
veF\Ay
G
= Z < 172> (b'l//ZHfVHHé(D)) , with b, ad-hoc sequence that controls ||, ||
veF\Ay by
1/2 L\ 12
G 2
<{ > b,,||f,,||f_lé(D) 1 3 b" explicit form for &2 > 7, due to
veF\Ay veF\A\y ¥ e exactness of Uy,
e bound on Hermite pol.
bounded due to hyp. on 7, ° summability hyp on Tm
R —r_—2(1AUm
& = [Tz (vm)?+2 717, 2010
2 e 0=Lr=2Q0+1)+2/p+1)
< Z b””f"Hf-lé(D) . Z &2 , & is monotone = use Stechkin
vEF vEF\An
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Sketch of proof - see also Bachmayr et al., 2016 & Chen, 2016
||f - U/\NfHL2 < choose Ay as the N largest &, (see later)

< Z ”fVHHé(D) [1(1 — UA)HVH,_a due to exactness on monotone sets

veEF\Ay —_—
=cp
< Z c,,||fVHHé(D) nb: cannot apply Stechkin here, CI/HfV”Hé(D) not monotone
veF\Ay
G
= Z < 172> (b'l//ZHfVHHé(D)) , with b, ad-hoc sequence that controls ||, ||
veF\Ay by
1/2 L\ 12
G 2
<{ > b,,||f,,||f_lé(D) 1 3 bi explicit form for &2 > 7, due to
veF\Ay veF\A\y ¥ e exactness of Uy,
e bound on Hermite pol.
bounded due to hyp. on 7, ° summability hyp on Tm
R —r_—2(1AUm
& = [Tz (vm)?+2 717, 2010
2 e 0=Lr=2Q0+1)+2/p+1)
< Z b””f"Hf-lé(D) . Z &2 , & is monotone = use Stechkin
vEF vEF\An

IN

C(N +1)~(/P=1/2) | then use bound |5, | = O(N?)
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Numerical results

lognormal problem on D = [0, 1] (Bachmayr et al., 2016)

_% <a(x, £) d;iU(x,ﬁ)) =0.03sin(2mx),  u(0,£) = u(1,£) =0

where log a behaves like a smoothed Brownian bridge:

log a(x, &) =0.1 g m)q sin(mmx) &m, qg>1.
(w
m=1

=:¢pm(x)
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Numerical results

lognormal problem on D = [0, 1] (Bachmayr et al., 2016)

_% (a(x, £) C%U()@Q) =0.03sin(2mx),  u(0,£) = u(1,£) =0

where log a behaves like a smoothed Brownian bridge:

log a(x, &) —Olz

sm (m7x) &m, qg>1.

ﬁ_/
=:¢pm(x)

Predicted convergence rate

u—Unyulliz < CN~—(a-15) < C|E/\N|_(q_21'5),
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Numerical results

lognormal problem on D = [0, 1] (Bachmayr et al., 2016)
d d :
p (a(x, &) &u(x,§)> = 0.03sin(27x), u(0,€) =u(1,€)=0

where log a behaves like a smoothed Brownian bridge:

V2

(wm)e
—_———
=:¢m(X)

sin(mmx) &m, qg=>1

log a(x, &) =0.1 Z
m=1

Predicted convergence rate

u—Unyulliz < cN—(a-15) < CEANI_(q_ZLS).

Sparse grid software

Sparse grids Matlab kit, available at https://csqi.epfl.ch/.
Latest version: 17-5
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Algorithm to generate the sets Ay
Algorithm based on Gerstner & Griebel, 2003

Build up Ay by subsequently adding new multiindex from neighborhood

Ant1 = Ay U{vy}, vy = arg max h(v)
veN (Ay)

where h: F — R is a heuristic (for improvement by adding v) and
N(Ay) :=={i € F: Ay U{i} is monotone}.
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Algorithm to generate the sets Ay
Algorithm based on Gerstner & Griebel, 2003

Build up Ay by subsequently adding new multiindex from neighborhood

Ant1 = Ay U{vy}, vy = arg max h(v)
veN (Ay)

where h: F — R is a heuristic (for improvement by adding v) and

N(Ay) :={i € F: Ay U/{i} is monotone}.

add new random variables increasingly (make sure always K “unexplored”
variables)

Two choices for h(v)

@ A-priori heuristic: h(v) = ¢, from the constructive proof

. L. ||AVUHL2
@ Adaptive heuristic: h(v) ~ |:(7u)|M

evaluated by quadrature, given evaluations of u at tensor grid =(*).
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Results: convergence wrt |=,,|

—A—extended grid
a-posteriori grid

10 a-priori grid

---s=0.5

---s=0.4

10' 10° 10° 10*
Iz, |
N

g=1
expect no convergence,
a-priori s = 0.4;

a-posteriori s = 0.5

@ Extended grid = a-posteriori with evaluations in the neighbourhood

@ Expected rate smaller than observed:

» summability argument could be improved
» bound between number of elements and points not sharp
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Results:

lIt-U, fil.2

N

—A—extended grid
a-posteriori grid
a-—priori grid

---s=0.8

---s=0.7

10' 10° 10°
Iz, |
N

4

10

convergence wrt |=x, |

g=15
expect s = 0;
a-priori s = 0.7,

a-posteriori s = 0.8

@ Extended grid = a-posteriori with evaluations in the neighbourhood

@ Expected rate smaller than observed:

» summability argument could be improved
» bound between number of elements and points not sharp
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Results: convergence wrt |=,,|

—A—extended grid
6 a-posteriori grid
a-—priori grid
---s=1.1

---s=1

10' 10° 10°
I, |
N

10*

q=2
expect s = 0.25;
a-priori s = 1.0;

a-posteriori s = 1.1

@ Extended grid = a-posteriori with evaluations in the neighbourhood

@ Expected rate smaller than observed:

» summability argument could be improved
» bound between number of elements and points not sharp
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Results: convergence wrt |=,,|

---s=17
---s=17

—A—extended grid
a-posteriori grid
a-—priori grid

10' 10° 10° 10
I, |
N

4

qg=3

expect s = 0.75;
a-priori s = 1.7,
a-posteriori s = 1.7

@ Extended grid = a-posteriori with evaluations in the neighbourhood

@ Expected rate smaller than observed:

» summability argument could be improved
» bound between number of elements and points not sharp
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Results: convergence wrt |Ap|

. 1
~, M
1072 1 "“-.::;--._‘r’f 115
28 g oA T _ 249
78131 -
= g=1
z 107A
2 expect no convergence;
= a-posteriori grid a—priori S = 05,
~ a-—priori grid ..
1071 —bestN-term | a-posteriori s = 0.5
---s=0.5
---s=05 ‘
10’ 10° 10° 10*
A

@ Labels show the number of activated random variables
@ Similar rate to before = growth of points linear in [Ay]

@ best-/N-terms obtained by converting sparse grid into Hermite polynomials
and sorting the coefficients
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Results: convergence wrt |Ap|

0% SN 2
.24
1 - 5
. 28 SAe. 11 .
521074 78 13 .. 289 q = 1.5
< 1 i
> expect s = 0;
1
= a—posteriori grid a-priort s = 08,
_ a-—priori grid ..
107 —best N—term a-posteriori s = 0.9
---5=0.9
---5=0.8 ‘ ‘
10’ 10° 10° 10!

@ Labels show the number of activated random variables

@ Similar rate to before = growth of points linear in [Ay]

@ best-/N-terms obtained by converting sparse grid into Hermite polynomials

and sorting the coefficients
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Results: convergence wrt |Ap|

1072
1
Sy M
o= 028 =9
=210 o8 1 N
> E 1% expect s = 0.5;
- 181 "i. 220 R
- a-posteriori grid 2 a-priort s = ].].,
~ a—priori grid ..
107} — best N-term a-posteriori s = 1.2
---s=12
---s=1.1 ‘
10" 10° 10° 10*

@ Labels show the number of activated random variables

@ Similar rate to before = growth of points linear in [Ay]

@ best-/N-terms obtained by converting sparse grid into Hermite polynomials

and sorting the coefficients
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Results: convergence wrt |Ap|

a-posteriori grid
102t a-priori grid
A, best N-term
1 .
g2
o= 11 S =3
Wl N E 1 7 .
> 1023 expect s = 1.5;
= BN g a-priori s = 2;
107} 7N o3 1 a-posteriori s = 2
130, s,
. 220
10" 10° 10° 10*
Ayl

@ Labels show the number of activated random variables

@ Similar rate to before = growth of points linear in [Ay]

@ best-/N-terms obtained by converting sparse grid into Hermite polynomials

and sorting the coefficients
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Results: convergence wrt |Ay| for several M

—+-M=10
——M=20
102} A - [ | ——M=40
; ——M=80
—+-M=120
M=160

|If - U/\ f||L2
N

Convergence of the sparse grid approximation with increasingly larger
number of dimensions: the asymptotic rate wrt to |Ay| is not constant
with respect to M (but the rate for M — oo is finite).
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Part Il

Monte Carlo Control variate approximation of the
lognormal problem
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Monte Carlo Control Variate
For rough random fields sparse grids may be non-effective.

Remedy: use sparse grids as control var. (preconditioner) for MC

© Consider a smoothed field 2%, such that Q7[u¢] — E[uf] quickly.

smoothed field, € = 1/24 smoothed field € = 1/26 non-smoothed field, e = 0
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Remedy: use sparse grids as control var. (preconditioner) for MC
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@ Define ucy = u — u® + “E[uf]” . There holds
Elucv] = E[u], Var(ucy) = Var(u) + Var(u®) — 2cov(u, uf)

Thus, the smaller ¢, the smaller the MC error, but slower the
convergence Qr[u] — E[uc].
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Monte Carlo Control Variate
For rough random fields sparse grids may be non-effective.
Remedy: use sparse grids as control var. (preconditioner) for MC
@ Consider a smoothed field 2%, such that Q7[u¢] — E[u€] quickly.

@ Define ucy = u — u® + “E[uf]” . There holds
Elucv] = E[u], Var(ucy) = Var(u) + Var(u®) — 2cov(u, uf)

Thus, the smaller ¢, the smaller the MC error, but slower the
convergence Q7[uf] — E[uf].

@ Set E[ucy] ~ %Zucv(wi) _ MZ(U W) — u(wi) + QP[ue].

M can be chosen balancing either the works or the errors of MC and
sparse grids.
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Numerical results - Part Il
Field data: exponential covariance, o = 1, corr. length L. = 0.5
Sparse grids used here:

@ OPT**: a-priori (“quasi-optimal”) construction as in Beck et al, 2012

@ AD**: a-posteriori construction as in Nobile et al, 2014

10° L 100 [ 4
1(1)

107} 3 ! 107k . :

J10%h e ; RRTIEEE ﬁ o
® MC error sy ® : W@ 242(4)

107 b 4 718) B
-e-OPT : U 10 MC error - \\ ey
—e—OPT NN 45(3) 113(4) g

10 8- AD-D ST || TS OPTAN, e=0 . e
—— ADNN-D R 10| —e— OPT NN, g=2°° ”(’\’,2“;’,“—
- - AD-WLinf/NP : R -6

10751l —— ADNN-WLinf/NP| i - *—OPTNN e=2 5

10 10 10° 10° 10* 10° 10° 10’ 10° 10° 10* 10
wprk . work
MCCYV error for adaptive and Sparse grid component of the error for
quasi-optimal sparse grids. ~ 30 r.v. different values of €. The performance
activated. deteriorates as ¢ — 0
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Conclusions

@ Convergence estimates for collocation in lognormal problems, both
wrt number of indices and points
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