Operator Based Multi-Scale Analysis of Simulation Bundles

Jochen Garcke and Rodrigo Iza-Teran

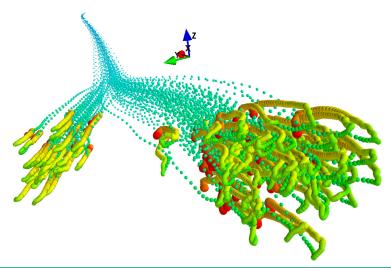
work supported within the BMBF Big Data Initiative in the project

QUIET 2017

jochen.garcke@scai.fraunhofer.de

Visualization of Many Simulations over Time

290 simulations \times 141 time steps



Fraunhofer

jochen.garcke@scai.fraunhofer.de

Numerical Simulation as a Data Source

- numerical simulation used in many industries and sciences
 - automotive engineering crash simulation applications
 - wind turbine design behaviour under lots of different winds
 - wind farm design computational fluid dynamics simulation
 - automotive engineering Aeroacoustic CFD simulations
 - numerical weather forecasts / climate simulations
 - oil- and gas reservoir simulation
 -
- typical goal in engineering: analyse influence of parameters
- each parameter gives a full simulation run as a data point
 - one million grid points (or more)
 - a couple of hundred saved time steps
 - very high dimensional data
- per R&D-step a couple of hundred simulation runs
- data needs to be investigated and analyzed interactively

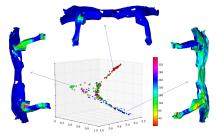
Virtual Product Development in Automotive

- for car crash many disciplines, load cases, and requirements
- mostly limited to scalar outputs (e.g. HIC, firewall intrusion)
- no tools for geometric input variations or deformations
- analyzing full 3D simulation is very time consuming

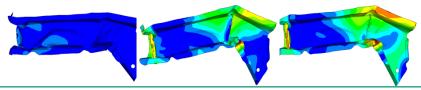
- our aim: automatic organisation of (full) simulation results
 represent *d*-dimensional data in *s*-dimensional space, $d \gg s$
- goal: find intrinsic dimension s of simulation vectors

Dimensionality Reduction / Simulation Space

simulations are high dimensional objects Manifold Learning



simulations are transformed from reference Orbit Space



jochen.garcke@scai.fraunhofer.de

Mathematical Motivation: Orbit Space

• assume simulations are obtained by transformation from reference simulation f_0

• $f = \gamma \cdot f_0$, $\gamma \in G$ with $f, f_0 \in \mathcal{M}$

jochen.garcke@scai.fraunhofer.de

Mathematical Motivation: Orbit Space

• assume simulations are obtained by transformation from reference simulation f_0

• $f = \gamma \cdot f_0$, $\gamma \in G$ with $f, f_0 \in \mathcal{M}$

- parametrize simulations according to such transformations
 - *M* space of all simulations objects
 - M/G space of simulations modulo a transformation group
 - $G \cdot f := \{(\gamma, f) \mid \gamma \in G\}$ is the orbit

Mathematical Motivation: Orbit Space

• assume simulations are obtained by transformation from reference simulation f_0

$$f = \gamma \cdot f_0, \ \gamma \in G \ \text{with} f, f_0 \in \mathcal{M}$$

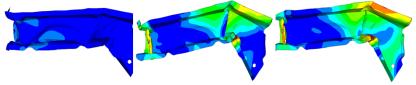
- parametrize simulations according to such transformations
 - *M* space of all simulations objects
 - \mathcal{M}/G space of simulations modulo a transformation group
 - $G \cdot f := \{(\gamma, f) \mid \gamma \in G\}$ is the orbit

exploit G to understand the space of simulations objects M
study objects invariant under group of transformations G

Symmetry

Structure Preservation in Transformation of Objects

 $\hfill isometric invariant \rightarrow$ distance preserving

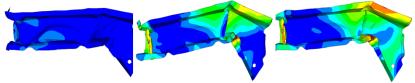


jochen.garcke@scai.fraunhofer.de

Symmetry

Structure Preservation in Transformation of Objects

 $\hfill isometric invariant \rightarrow distance preserving$



• affine invariant \rightarrow collinearity preserving

■ conformal invariant → angle preserving

jochen.garcke@scai.fraunhofer.de

Invariance: Simple ODE Example

simulations as solutions of the ODE system in some interval for different initial conditions

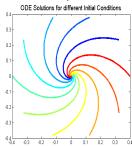
$$\dot{y} = y^3 + x^2 y - x - y$$

$$\dot{x} = x^3 + xy^2 - x + y$$

• substitute $x = r \cdot cos(\theta)$, $y = r \cdot sin(\theta)$ to get the invariant,

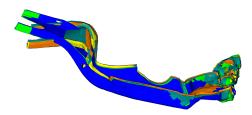
$$\frac{dr}{d\theta} = r(1-r^2)$$

- invariant for transformation $(r, \theta) \rightarrow (r, \theta + \gamma)$ i.e. a rotation with group parameter γ
- based on Lie group methods for solving ODE
- for simulations: no closed form available



Invariance for Simulation Bundles

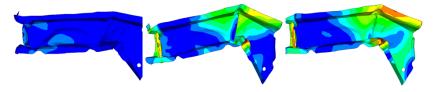
- although no closed form available, principle can be used invariance
- variability is in many cases distance preserving look for distance preserving operator



- different simulations have different surface deformations
- Laplace-Beltrami operator is distance preserving on a mesh
- 'NICA operator' for nonlinear transformation of point cloud

Proposition (Iza-Teran, G., 2016)

The discrete approximation L_{K}^{h} of the Laplace-Beltrami operator, constructed using graph distances from one mesh $K^{i=\kappa}$, is (approximately) the same for all meshes i = 1, ..., m in the set of meshes undergoing isometric transformations.



jochen.garcke@scai.fraunhofer.de

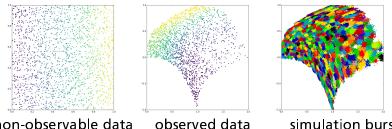
Spectral Decomposition of an Operator

- on a manifold (S,g) define eigenvalue problem $-\Delta_S \phi = \lambda \phi$
- the operator is positive semidefinite, all eigenvalues λ_k, k ≥ 0 are real positive and isolated with finite multiplicity
- use corresponding discrete operator and its discrete eigenfunctions $\{\phi_i\}_i^N$
- spectral decomposition for function f on mesh gives

$$f = \sum_{i=1}^{N} \alpha^{i} \phi_{i}, \, \alpha^{i} = < f, \phi_{i} >$$

 distance of coefficients αⁱ₁, αⁱ₂ gives good distance measure for the corresponding simulations f¹, f²

NICA weighted Graph Laplacian on Point Cloud



non-observable data

simulation burst

- estimate local covariance matrices per mesh point, this allows approximation of distances in non-observable space
- use these distances (from observed data) as weights in graph, resulting in NICA-weighted graph Laplacian
- constructed NICA-weighted graph Laplacian is invariant to the nonlinear transformation (Singer & Coifman, 2008)

Operator Basis

Approximation Properties

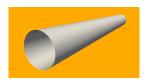
Proposition (Iza-Teran, G., 2016)

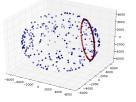
Using the eigenvectors ϕ of the NICA operator as an orthogonal basis, thresholding the orthogonal expansion given by $f = \sum_{i=0}^{\infty} \alpha^i \phi_i$, $\alpha^i = \langle f, \phi_i \rangle$ using only N_t - terms, the first few coefficients decay very fast, depending on the degree of smoothness of the function f.

- proof uses connection of operator to Sturm-Liouville problem
- approximation properties depend (unsurprisingly) on smoothness of f

Summary: Orbit Space / Simulation Space

- assumption: transformation group G sends simul. to simul.
- project simulation bundle into basis obtained from operator
- G is reflected in the spectral coefficients
- estimate dimensionality based on decay of the coefficients
- exploit G to understand the space of simulations objects M
- use projection coefficients of orbits to characterize M/G
- or: orbit can be approximated by projection coefficients





jochen.garcke@scai.fraunhofer.de

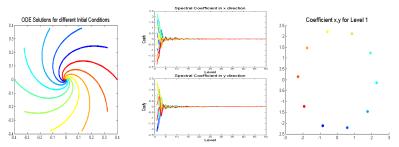
Analysis of ODE Example with Invariant Operator

simulations as solutions of the ODE system in some interval for different initial conditions

$$\dot{y} = y^3 + x^2y - x - y$$

$$\dot{x} = x^3 + xy^2 - x + y$$

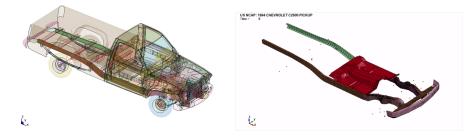
take a solution and calculate a rotation invariant operator



jochen.garcke@scai.fraunhofer.de

Analysis of Numerical Simulations of a Car Crash

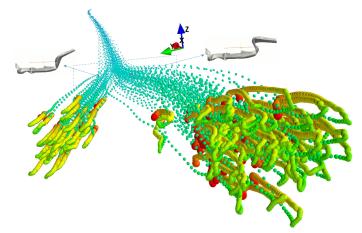
US NCAP: 1994 Chevrolet C2500 Pickup Time - 0



- simulations results are 3D deformations
- thickness values of 9 parts of the car structure are varied randomly up to 30% to obtain 116 numerical simulations
- chose relevant structural part and time step for analysis

jochen.garcke@scai.fraunhofer.de Copyright 2017 Fraunhofer Gesellschaft

Visualization of All Time Steps in LB-decomposition



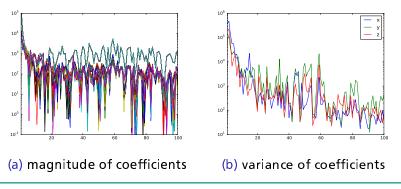
 for each mesh point resulting x, y, and z coordinates of simulation i gives function values for φⁱ_x, φⁱ_y, and φⁱ_z

Fraunhofer

jochen.garcke@scai.fraunhofer.de

NICA-weighted Graph Laplacian

- for each mesh point resulting x, y, and z coordinates of simulation *i* gives function values for ϕ_x^i , ϕ_y^i , and ϕ_z^i
- spectral decomposition computed for a selected time step
- consider first 100 spectral coefficients



Mode 1 - Translation

Fraunhofer

jochen.garcke@scai.fraunhofer.de

Mode 2 - Rotation

jochen.garcke@scai.fraunhofer.de

Mode 3 - Global Deformation

jochen.garcke@scai.fraunhofer.de

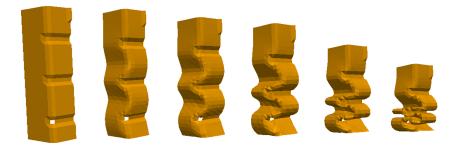
Mode 4 - Local Deformation

jochen.garcke@scai.fraunhofer.de

Combined Modes

jochen.garcke@scai.fraunhofer.de

Geodesic Paths and Orbits



jochen.garcke@scai.fraunhofer.de

High Speed 3D-Point Cloud Measurements

results from joint project with Fraunhofer IOF and EMI

"Hand"-Build Test Structure

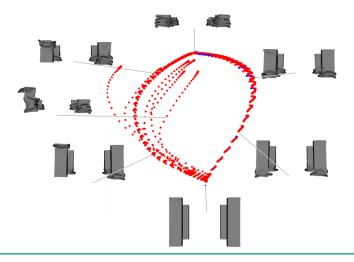
3D-Video of Crash

jochen.garcke@scai.fraunhofer.de

Matching of 3D-Point Data and Simulation

jochen.garcke@scai.fraunhofer.de

Path of Experiment Data in Simulation Space



🗾 Fraunhofer

SCAL

jochen.garcke@scai.fraunhofer.de

Conclusion

- integration of domain knowledge and assumptions into overall data analysis for complex engineering data essential
- introduced orbit space ansatz for analysis of simulation
- allows "virtual" simulations by interpolation in lower dimensional representation of simulation space
- have start of theory and are further extending theory
- approach can be applied to other numerical data, e.g. time series from wind energy plants
- preliminary results using an invariant basis in RBM-context

5th Workshop on Sparse Grids and its Applications

save the date: 23 – 27 July 2018 @TU München prelimary webpage: https://www5.in.tum.de/SGA2018/

jochen.garcke@scai.fraunhofer.de

The Laplace-Beltrami Operator on a Mesh

Let S be a manifold surface isometrically embedded in R^3 , Δ_S be the Laplace-Beltrami operator on S, and K be an (ϵ, η) approx. of S. For any vertex w, the mesh Laplace operator is

$$L_{K}^{h}f(w) = \frac{1}{4\pi h^{2}} \sum_{t \in K} \frac{Area(t)}{\#t} \sum_{p \in V(t)} e^{-\frac{d(p,w)^{2}}{4h}} (f(p) - f(w)),$$

where d(p, w) denotes the graph distance.

Theorem (Laplace-Beltrami Approx. (Belkin et.al.2008))

Put $h(\epsilon, \eta) = \epsilon^{\frac{1}{2.5+\alpha}} + \eta^{\frac{1}{1+\alpha}}$ for an $\alpha > 0$. Then for any function $f \in C^3(S)$ it holds

$$\lim_{\epsilon,\eta\to 0}\sup_{K}\left|\left|L_{K}^{h(\epsilon,\eta)}f-\Delta_{\mathcal{S}}f\right|_{K}\right|\right|_{\infty}=0,$$

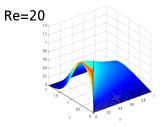
where \sup_{K} is taken over all (ϵ, η) -approximations K of S.

Reduced Basis Method with Invariant Basis

preliminary tests with Burgers' equation

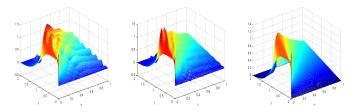
$$\frac{\partial}{\partial t}u(t,x)+u(x,t)\frac{\partial}{\partial x}u(t,x)-q\frac{\partial^2}{\partial x^2}u(x,t)=0$$

• generate a snapshot for POD with Re := 1/q = 20

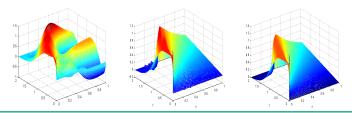


- compute invariant basis from operator invariant to changes which preserve path length along the curve (for t = 0)
- replace the POD basis by an invariant basis

POD vs. Invariant Basis solve problem for Re = 400 with both basis from Re = 20

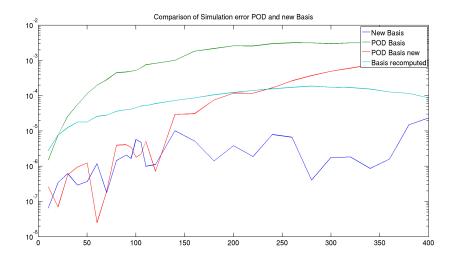


(a) POD (b) Inv. Basis (c) solution
project solution for Re = 400 into both basis from Re = 20



jochen.garcke@scai.fraunhofer.de

Potential of Invariant Approach for RBMs



jochen.garcke@scai.fraunhofer.de

