Sparse Recovery of Hilbert-Valued Signals With Application to High-Dimensional Parametric PDEs

Nick Dexter[†], H. Tran[‡], C. G. Webster^{†‡}

[†]Mathematics Department University of Tennessee, Knoxville, TN

[‡]Computational and Applied Mathematics Group Oak Ridge National Laboratory, Oak Ridge, TN

Supported by: Department of Energy (ASCR)

SISSA QUIET Workshop - Trieste, Italy Thursday, July 19, 2017

Example: We often represent images by expansions like

$$u(\boldsymbol{y}) = \sum_{j=1}^{N} \boldsymbol{z}_{j} \Psi_{j}(\boldsymbol{y})$$

where, e.g., $m{z}=(m{z}_1,\ldots,m{z}_N)\in\mathbb{R}^N$ and $\{\Psi_j\}_{j=1}^N$ are wavelets.

Figure : Left: Original image. Right: Image obtained after setting 99.00% of the coefficients z_j in the biorthogonal wavelet transform to 0.

Example: We often represent images by expansions like

$$u(\boldsymbol{y}) = \sum_{j=1}^{N} \boldsymbol{z}_{j} \Psi_{j}(\boldsymbol{y})$$

where, e.g., $m{z}=(m{z}_1,\ldots,m{z}_N)\in\mathbb{R}^N$ and $\{\Psi_j\}_{j=1}^N$ are wavelets.

Figure : Left: Original image. Right: Image obtained after setting 99.75% of the coefficients z_j in the biorthogonal wavelet transform to 0.

Example: We often represent images by expansions like

$$u(\boldsymbol{y}) = \sum_{j=1}^{N} \boldsymbol{z}_{j} \Psi_{j}(\boldsymbol{y})$$

where, e.g., $m{z}=(m{z}_1,\ldots,m{z}_N)\in\mathbb{R}^N$ and $\{\Psi_j\}_{j=1}^N$ are wavelets.

Figure : Left: Original image. Right: Image obtained after setting 99.95% of the coefficients z_j in the biorthogonal wavelet transform to 0.

Example: We often represent images by expansions like

$$u(\boldsymbol{y}) = \sum_{j=1}^{N} \boldsymbol{z}_{j} \Psi_{j}(\boldsymbol{y})$$

where, e.g., $m{z}=(m{z}_1,\ldots,m{z}_N)\in\mathbb{R}^N$ and $\{\Psi_j\}_{j=1}^N$ are wavelets.

Figure : Left: Original image. Right: Image obtained after setting 99.98% of the coefficients z_j in the biorthogonal wavelet transform to 0.

Question: Can we find sparse solutions when the vector is Hilbert-valued?

- Let \mathcal{V} be a general Hilbert space, e.g., $L^2(D)$ or $H^1_0(D)$
- Hilbert-valued vector: $m{z}=(m{z}_1,\ldots,m{z}_N)\in\mathcal{V}^N=igoplus_{i=1}^N\mathcal{V}$

• z is s-sparse if all but s of its components are 0

• $\|\cdot\|$ a norm on \mathcal{V}^N , $\|\cdot\|$ -error of best *s*-term approximation to \boldsymbol{z} :

 $\sigma_s(\boldsymbol{z}) := \inf\{\|\boldsymbol{z} - \boldsymbol{x}\| : \boldsymbol{x} \in \mathcal{V}^N \text{ is } s\text{-sparse}\}$

• \boldsymbol{z} is compressible if $\sigma_s(\boldsymbol{z}) \to 0$ quickly as s increases

Question: Can we find sparse solutions when the vector is Hilbert-valued?

- Let $\mathcal V$ be a general Hilbert space, e.g., $L^2(D)$ or $H^1_0(D)$
- Hilbert-valued vector: $m{z}=(m{z}_1,\ldots,m{z}_N)\in\mathcal{V}^N=igoplus_{i=1}^N\mathcal{V}$

• z is s-sparse if all but s of its components are 0

• $\|\cdot\|$ a norm on \mathcal{V}^N , $\|\cdot\|$ -error of best *s*-term approximation to *z*:

 $\sigma_s(\boldsymbol{z}) := \inf\{\|\boldsymbol{z} - \boldsymbol{x}\| : \boldsymbol{x} \in \mathcal{V}^N \text{ is } s\text{-sparse}\}$

• \boldsymbol{z} is compressible if $\sigma_s(\boldsymbol{z}) \to 0$ quickly as s increases

Question: Can we find sparse solutions when the vector is Hilbert-valued?

- Let ${\mathcal V}$ be a general Hilbert space, e.g., $L^2(D)$ or $H^1_0(D)$
- Hilbert-valued vector: $m{z}=(m{z}_1,\ldots,m{z}_N)\in\mathcal{V}^N=igoplus_{i=1}^N\mathcal{V}$

• z is s-sparse if all but s of its components are 0

• $\|\cdot\|$ a norm on \mathcal{V}^N , $\|\cdot\|$ -error of best *s*-term approximation to \boldsymbol{z} :

 $\sigma_s(\boldsymbol{z}) := \inf\{\|\boldsymbol{z} - \boldsymbol{x}\| : \boldsymbol{x} \in \mathcal{V}^N \text{ is } s\text{-sparse}\}$

• \boldsymbol{z} is compressible if $\sigma_s(\boldsymbol{z}) \to 0$ quickly as s increases

Question: Can we find sparse solutions when the vector is Hilbert-valued?

- Let $\mathcal V$ be a general Hilbert space, e.g., $L^2(D)$ or $H^1_0(D)$
- Hilbert-valued vector: $m{z}=(m{z}_1,\ldots,m{z}_N)\in\mathcal{V}^N=igoplus_{i=1}^N\mathcal{V}$
- z is s-sparse if all but s of its components are 0

• $\|\cdot\|$ a norm on \mathcal{V}^N , $\|\cdot\|$ -error of best *s*-term approximation to *z*:

 $\sigma_s(oldsymbol{z}) := \inf\{\|oldsymbol{z} - oldsymbol{x}\| : oldsymbol{x} \in \mathcal{V}^N ext{ is } s ext{-sparse}\}$

• \boldsymbol{z} is compressible if $\sigma_s(\boldsymbol{z}) \to 0$ quickly as s increases

Question: Can we find sparse solutions when the vector is Hilbert-valued?

- Let $\mathcal V$ be a general Hilbert space, e.g., $L^2(D)$ or $H^1_0(D)$
- Hilbert-valued vector: $oldsymbol{z}=(oldsymbol{z}_1,\ldots,oldsymbol{z}_N)\in\mathcal{V}^N=igoplus_{i=1}^N\mathcal{V}$
- z is s-sparse if all but s of its components are 0
- $\|\cdot\|$ a norm on \mathcal{V}^N , $\|\cdot\|$ -error of best *s*-term approximation to z:

$$\sigma_s(\boldsymbol{z}) := \inf \{ \| \boldsymbol{z} - \boldsymbol{x} \| : \boldsymbol{x} \in \mathcal{V}^N \text{ is } s \text{-sparse} \}$$

• z is compressible if $\sigma_s(z) \to 0$ quickly as s increases

Question: Can we find sparse solutions when the vector is Hilbert-valued?

- Let $\mathcal V$ be a general Hilbert space, e.g., $L^2(D)$ or $H^1_0(D)$
- Hilbert-valued vector: $oldsymbol{z}=(oldsymbol{z}_1,\ldots,oldsymbol{z}_N)\in\mathcal{V}^N=igoplus_{i=1}^N\mathcal{V}$
- z is s-sparse if all but s of its components are 0
- $\|\cdot\|$ a norm on \mathcal{V}^N , $\|\cdot\|$ -error of best *s*-term approximation to *z*:

$$\sigma_s(\boldsymbol{z}) := \inf \{ \| \boldsymbol{z} - \boldsymbol{x} \| : \boldsymbol{x} \in \mathcal{V}^N \text{ is } s \text{-sparse} \}$$

• \boldsymbol{z} is compressible if $\sigma_s(\boldsymbol{z}) \to 0$ quickly as s increases

Question: Can we find sparse solutions when the vector is Hilbert-valued?

- Let $\mathcal V$ be a general Hilbert space, e.g., $L^2(D)$ or $H^1_0(D)$
- Hilbert-valued vector: $m{z}=(m{z}_1,\ldots,m{z}_N)\in\mathcal{V}^N=igoplus_{i=1}^N\mathcal{V}$
- z is s-sparse if all but s of its components are 0
- $\|\cdot\|$ a norm on \mathcal{V}^N , $\|\cdot\|$ -error of best *s*-term approximation to *z*:

$$\sigma_s(\boldsymbol{z}) := \inf\{\|\boldsymbol{z} - \boldsymbol{x}\| : \boldsymbol{x} \in \mathcal{V}^N \text{ is } s\text{-sparse}\}$$

• \boldsymbol{z} is compressible if $\sigma_s(\boldsymbol{z}) \to 0$ quickly as s increases

Outline

1 Recovery of "sparse" Hilbert-valued signals

2 Motivating example: parameterized PDE models

3 Compressed sensing for parametric PDE recovery - "Sparse Recovery of Hilbert-Valued Signals: Theory and Algorithms," D., Tran, Webster, (in progress)

- Foundations
- Algorithms for Hilbert-valued recovery
- Numerical examples

Concluding remarks

Recovery of solutions to high-dimensional PDEs

$$\begin{array}{ccc} \text{parameters} & & \text{PDE model:} \\ \boldsymbol{y} \in \Gamma \subset \mathbb{R}^d & \longrightarrow & \mathcal{L}(a(\cdot, \boldsymbol{y}))[u(\cdot, \boldsymbol{y})] = 0 \\ d \text{ finite, but large} & & \text{in } D \subset \mathbb{R}^n, n = 1, 2, 3 \end{array} \xrightarrow{} \begin{array}{c} \text{quantity of} \\ \text{interest} \\ Q[u(\cdot, \boldsymbol{y})] \end{array}$$

Example: Stochastic elliptic problem on $D \times \Gamma$

$$\begin{bmatrix} -\nabla \cdot (a(x, y)\nabla u(x, y)) = f(x) & \text{in } D \times \Gamma, \\ u(x, y) = 0 & \text{on } \partial D \times \Gamma. \end{bmatrix}$$

- a(x, y) is a random field and $f \in L^2(D)$
- $\boldsymbol{y} = (y_1, \dots, y_d)$ with y_i i.i.d. bounded, e.g., $y_i \sim \mathcal{U}(-1, 1)$

Goal-2: Approximate the solution map $oldsymbol{y}\mapsto u(\,\cdot\,,oldsymbol{y})$ globally in D via an expansion

$$u(\,\cdot\,,oldsymbol{y})pprox u_{\Lambda_0}(\,\cdot\,,oldsymbol{y}):=\sum\nolimits_{j\in\Lambda_0}oldsymbol{z}_j(\,\cdot\,)\Psi_j(oldsymbol{y}).$$

• $\boldsymbol{z}=(\boldsymbol{z}_1,\ldots,\boldsymbol{z}_N)\in\mathcal{V}^N$, \mathcal{V} a Hilbert space, in this case $\mathcal{V}=H^1_0(D)$

• $\{\Psi_j\}_{j\in\Lambda_0}$ are, e.g., an orthonormal basis of $\mathcal{P}_{\Lambda_0}(\Gamma)$ or interpolating polynomials

Recovery of solutions to high-dimensional PDEs

$$\begin{array}{ccc} \text{parameters} & \text{PDE model:} \\ \boldsymbol{y} \in \Gamma \subset \mathbb{R}^d & \longrightarrow & \mathcal{L}(a(\cdot, \boldsymbol{y}))[u(\cdot, \boldsymbol{y})] = 0 \\ d \text{ finite, but large} & \text{in } D \subset \mathbb{R}^n, n = 1, 2, 3 \end{array} \xrightarrow{} \begin{array}{c} \text{quantity of} \\ \text{in } u \in \mathbb{R}^n, n = 1, 2, 3 \end{array}$$

Example: Stochastic elliptic problem on $\overline{D} \times \Gamma$

$$-\nabla \cdot (a(x, y)\nabla u(x, y)) = f(x) \quad \text{in } D \times \Gamma, u(x, y) = 0 \quad \text{on } \partial D \times \Gamma.$$
 (1)

- a(x, y) is a random field and $f \in L^2(D)$
- $\boldsymbol{y} = (y_1, \dots, y_d)$ with y_i i.i.d. bounded, e.g., $y_i \sim \mathcal{U}(-1, 1)$

Goal-2: Approximate the solution map $oldsymbol{y}\mapsto u(\,\cdot\,,oldsymbol{y})$ globally in D via an expansion

$$u(\cdot, \boldsymbol{y}) pprox u_{\Lambda_0}(\cdot, \boldsymbol{y}) := \sum_{j \in \Lambda_0} \boldsymbol{z}_j(\cdot) \Psi_j(\boldsymbol{y}).$$

• $\boldsymbol{z}=(\boldsymbol{z}_1,\ldots,\boldsymbol{z}_N)\in\mathcal{V}^N$, \mathcal{V} a Hilbert space, in this case $\mathcal{V}=H^1_0(D)$

• $\{\Psi_j\}_{j\in\Lambda_0}$ are, e.g., an orthonormal basis of $\mathcal{P}_{\Lambda_0}(\Gamma)$ or interpolating polynomials

Recovery of solutions to high-dimensional PDEs

$$\begin{array}{ccc} \text{parameters} & \text{PDE model:} \\ \boldsymbol{y} \in \Gamma \subset \mathbb{R}^d & \longrightarrow & \mathcal{L}(a(\cdot, \boldsymbol{y}))[u(\cdot, \boldsymbol{y})] = 0 \\ \text{d finite, but large} & \text{in } D \subset \mathbb{R}^n, n = 1, 2, 3 \end{array} \xrightarrow{} \begin{array}{c} \text{quantity of} \\ \text{interest} \\ Q[u(\cdot, \boldsymbol{y})] \end{array}$$

Example: Stochastic elliptic problem on $\overline{D} \times \Gamma$

$$-\nabla \cdot (a(x, \boldsymbol{y}) \nabla u(x, \boldsymbol{y})) = f(x) \quad \text{in } D \times \Gamma, \\ u(x, \boldsymbol{y}) = 0 \quad \text{on } \partial D \times \Gamma.$$
 (1)

•
$$a(x, y)$$
 is a random field and $f \in L^2(D)$

• $\boldsymbol{y} = (y_1, \dots, y_d)$ with y_i i.i.d. bounded, e.g., $y_i \sim \mathcal{U}(-1, 1)$

Goal-2: Approximate the solution map $y \mapsto u(\cdot, y)$ globally in D via an expansion

$$u(\,\cdot\,,oldsymbol{y})pprox u_{\Lambda_0}(\,\cdot\,,oldsymbol{y}):=\sum\nolimits_{j\in\Lambda_0}oldsymbol{z}_j(\,\cdot\,)\Psi_j(oldsymbol{y}).$$

• $\boldsymbol{z}=(\boldsymbol{z}_1,\ldots,\boldsymbol{z}_N)\in\mathcal{V}^N$, \mathcal{V} a Hilbert space, in this case $\mathcal{V}=H^1_0(D)$

• $\{\Psi_j\}_{j\in\Lambda_0}$ are, e.g., an orthonormal basis of $\mathcal{P}_{\Lambda_0}(\Gamma)$ or interpolating polynomials

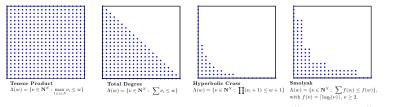
First steps \rightarrow truncation (selection of the index sets in high-dimensions)

Goal-2: Approximate the solution map $y \mapsto u(\cdot, y)$ globally in D via an expansion

$$u(\,\cdot\,,oldsymbol{y})pprox u_{oldsymbol{\Lambda}_{oldsymbol{0}}}(\,\cdot\,,oldsymbol{y}):=\sum\nolimits_{j\inoldsymbol{\Lambda}_{oldsymbol{0}}}oldsymbol{z}_{j}(\,\cdot\,)\Psi_{j}(oldsymbol{y}).$$

The first step is to truncate the infinite expansion $u = \sum_j z_j \Psi_j$.

• Common choices of the multi-index set Λ_0 :



• Each choice induces a truncation error $\eta_{\Lambda_0} := \|u - u_{\Lambda_0}\| = \left\|\sum_{j \notin \Lambda_0} z_j \Psi_j\right\| = \|z_{\Lambda_0^c}\|$

- Algorithm costs scale poorly with dimension, $N:=\#(\Lambda_0)$ grows quickly
- Optimal choice: s most effective indices to minimize η (unknown in general)

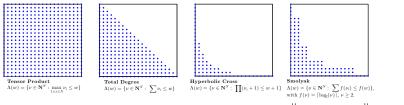
First steps \rightarrow truncation (selection of the index sets in high-dimensions)

Goal-2: Approximate the solution map $y \mapsto u(\cdot, y)$ globally in D via an expansion

$$u(\,\cdot\,,oldsymbol{y})pprox u_{oldsymbol{\Lambda}_{oldsymbol{0}}}(\,\cdot\,,oldsymbol{y}):=\sum\nolimits_{j\inoldsymbol{\Lambda}_{oldsymbol{0}}}oldsymbol{z}_{j}(\,\cdot\,)\Psi_{j}(oldsymbol{y}).$$

The first step is to truncate the infinite expansion $u = \sum_j z_j \Psi_j$.

• Common choices of the multi-index set Λ_0 :



• Each choice induces a truncation error $\eta_{\Lambda_0} := \|u - u_{\Lambda_0}\| = \left\|\sum_{j \notin \Lambda_0} \boldsymbol{z}_j \Psi_j\right\| = \|\boldsymbol{z}_{\Lambda_0^c}\|$

- Algorithm costs scale poorly with dimension, $N := \#(\Lambda_0)$ grows quickly
- Optimal choice: s most effective indices to minimize η (unknown in general)

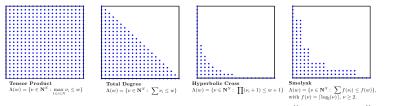
First steps \rightarrow truncation (selection of the index sets in high-dimensions)

Goal-2: Approximate the solution map $y \mapsto u(\cdot, y)$ globally in D via an expansion

$$u(\,\cdot\,,oldsymbol{y})pprox u_{oldsymbol{\Lambda}_{oldsymbol{0}}}(\,\cdot\,,oldsymbol{y}):=\sum\nolimits_{j\inoldsymbol{\Lambda}_{oldsymbol{0}}}oldsymbol{z}_{j}(\,\cdot\,)\Psi_{j}(oldsymbol{y}).$$

The first step is to truncate the infinite expansion $u = \sum_j z_j \Psi_j$.

• Common choices of the multi-index set Λ_0 :



• Each choice induces a truncation error $\eta_{\Lambda_0} := \|u - u_{\Lambda_0}\| = \left\|\sum_{j \notin \Lambda_0} \boldsymbol{z}_j \Psi_j\right\| = \|\boldsymbol{z}_{\Lambda_0^c}\|$

- Algorithm costs scale poorly with dimension, $N:=\#(\Lambda_0)$ grows quickly
- Optimal choice: s most effective indices to minimize η (unknown in general)

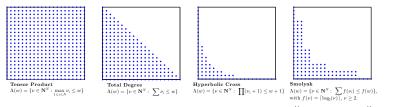
First steps \rightarrow truncation (selection of the index sets in high-dimensions)

Goal-2: Approximate the solution map $y \mapsto u(\cdot, y)$ globally in D via an expansion

$$u(\cdot, \boldsymbol{y}) pprox u_{\boldsymbol{\Lambda}_{\boldsymbol{0}}}(\cdot, \boldsymbol{y}) := \sum_{j \in \boldsymbol{\Lambda}_{\boldsymbol{0}}} \boldsymbol{z}_{j}(\cdot) \Psi_{j}(\boldsymbol{y}).$$

The first step is to truncate the infinite expansion $u = \sum_j z_j \Psi_j$.

• Common choices of the multi-index set Λ_0 :



• Each choice induces a truncation error $\eta_{\Lambda_0} := \|u - u_{\Lambda_0}\| = \left\|\sum_{j \notin \Lambda_0} \boldsymbol{z}_j \Psi_j\right\| = \|\boldsymbol{z}_{\Lambda_0^c}\|$

- Algorithm costs scale poorly with dimension, $N:=\#(\Lambda_0)$ grows quickly
- Optimal choice: s most effective indices to minimize η (unknown in general)

Sparse solutions to parameterized PDEs

Question: When can we hope that the solution to a parameterized PDE, e.g.,

is sparse (compressible)?

Assuming

- Coercivity and continuity of a: there exists $0 < a_{\min} \le a_{\max}$ such that $a_{\min} \le a \le a_{\max}$ uniformly in $\overline{D} \times \Gamma$.
- Holomorphic parameter dependence: complex continuation, a^{*}: C^d → L[∞](D), is an L[∞](D)-valued holomorphic function on C^d.

Then the best s-term approximation u_{Λ_s} obeys

$$\|u - u_{\Lambda_s}\|_{\mathcal{V},2}^2 = \underbrace{\sigma_s(z_{\Lambda_s})_{\mathcal{V},2}}_{\text{finite part}} + \underbrace{\eta_{\Lambda_s}}_{\text{infinite part}} \lesssim s^2 \exp(-2(\kappa s)^{1/d}),$$

 κ depending on the size and shape of Λ_s [Tran, Webster, Zhang '16].

Sparse solutions to parameterized PDEs

Question: When can we hope that the solution to a parameterized PDE, e.g.,

is sparse (compressible)?

Assuming

- Ocercivity and continuity of a: there exists 0 < a_{min} ≤ a_{max} such that a_{min} ≤ a ≤ a_{max} uniformly in D × Γ.
- **Objective** Holomorphic parameter dependence: complex continuation, $a^* : \mathbb{C}^d \to L^{\infty}(D)$, is an $L^{\infty}(D)$ -valued holomorphic function on \mathbb{C}^d .

Then the best s-term approximation u_{Λ_s} obeys

$$\|u - u_{\Lambda_s}\|_{\mathcal{V},2}^2 = \underbrace{\sigma_s(z_{\Lambda_s})_{\mathcal{V},2}}_{\text{finite part}} + \underbrace{\eta_{\Lambda_s}}_{\text{infinite part}} \lesssim s^2 \exp(-2(\kappa s)^{1/d}),$$

 κ depending on the size and shape of Λ_s [Tran, Webster, Zhang '16].

Sparse solutions to parameterized PDEs

Question: When can we hope that the solution to a parameterized PDE, e.g.,

is sparse (compressible)?

Assuming

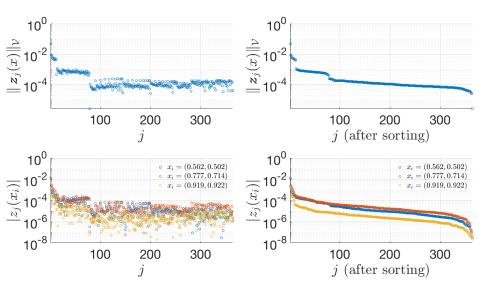
- Ocercivity and continuity of a: there exists 0 < a_{min} ≤ a_{max} such that a_{min} ≤ a ≤ a_{max} uniformly in D × Γ.
- e Holomorphic parameter dependence: complex continuation, a^{*} : C^d → L[∞](D), is an L[∞](D)-valued holomorphic function on C^d.

Then the best s-term approximation u_{Λ_s} obeys

$$\|u - u_{\Lambda_s}\|_{\mathcal{V},2}^2 = \underbrace{\sigma_s(\boldsymbol{z}_{\Lambda_s})_{\mathcal{V},2}}_{\text{finite part}} + \underbrace{\eta_{\Lambda_s}}_{\text{infinite part}} \lesssim s^2 \exp(-2(\kappa s)^{1/d}),$$

 κ depending on the size and shape of Λ_s [Tran, Webster, Zhang '16].

Motivating example: parameterized PDE models Log transformed KL example: $a(x, y) \approx 0.5 + \exp(\varphi_0 + \sum_{k=1}^{d} \sqrt{\lambda_k} \varphi_k y_k), d = 11, L_c = 1/64$



Problem setup

Goal-1: Given an operator $\Psi : \mathcal{V}^N \to \mathcal{V}^m$ and $u \in \mathcal{V}^m$ (the "data") with $m \ll N$, we want to solve $\Psi z = u$ for z (the "signal"), when z is *s*-sparse (or compressible).

Question: How can we set up this problem to approximate solutions to parametric PDEs?

Standard measurement scheme for compressed sensing (CS) requires:

- Multi-index set Λ_0 of size N
- Random samples $\{y_i\}_{i=1}^m \subset \Gamma$ drawn from a measure $\varrho(y)$, e.g., Monte Carlo
- Bounded orthonormal system (BOS) $\{\Psi_j\}_{j\in\Lambda_0}$, i.e.,

$$\langle \Psi_j, \Psi_k \rangle_{\varrho} = \delta_{j,k} \ \ \forall j,k \qquad \text{and} \qquad \sup_{j \in \Lambda_0} \|\Psi_j\|_{L^{\infty}_{\rho}(\Gamma)} = \Theta < \infty$$

Set: $[\Psi]_{i,j} = \Psi_j(y_i)$ and $[u]_i = u(y_i) \in \mathcal{V}$ $1 \le i \le m, 1 \le j \le N$ Then our "operator" (matrix) $\Psi : \mathcal{V}^N \to \mathcal{V}^m$ is defined by the action

$$[\Psi z]_i = \sum_{j=1}^N z_j \Psi_j(y_i) \in \mathcal{V} \qquad z \in \mathcal{V}^N, \ 1 \le i \le m.$$

Problem setup

Goal-1: Given an operator $\Psi : \mathcal{V}^N \to \mathcal{V}^m$ and $u \in \mathcal{V}^m$ (the "data") with $m \ll N$, we want to solve $\Psi z = u$ for z (the "signal"), when z is *s*-sparse (or compressible).

Question: How can we set up this problem to approximate solutions to parametric PDEs?

Standard measurement scheme for compressed sensing (CS) requires:

- Multi-index set Λ_0 of size N
- Random samples $\{m{y}_i\}_{i=1}^m \subset \Gamma$ drawn from a measure $\varrho(m{y})$, e.g., Monte Carlo
- Bounded orthonormal system (BOS) $\{\Psi_j\}_{j\in\Lambda_0}$, i.e.,

$$\langle \Psi_j, \Psi_k \rangle_{\varrho} = \delta_{j,k} \ \ \forall j,k \qquad \text{and} \qquad \sup_{j \in \Lambda_0} \|\Psi_j\|_{L^\infty_{\varrho}(\Gamma)} = \Theta < \infty$$

Set: $[\Psi]_{i,j} = \Psi_j(y_i)$ and $[u]_i = u(y_i) \in \mathcal{V}$ $1 \le i \le m, 1 \le j \le N$ Then our "operator" (matrix) $\Psi : \mathcal{V}^N \to \mathcal{V}^m$ is defined by the action

$$[\Psi z]_i = \sum_{j=1}^N z_j \Psi_j(y_i) \in \mathcal{V} \qquad z \in \mathcal{V}^N, \ 1 \le i \le m.$$

Compressed sensing for parametric PDE recovery Problem setup

Goal-1: Given an operator $\Psi : \mathcal{V}^N \to \mathcal{V}^m$ and $u \in \mathcal{V}^m$ (the "data") with $m \ll N$, we want to solve $\Psi z = u$ for z (the "signal"), when z is *s*-sparse (or compressible).

Question: How can we set up this problem to approximate solutions to parametric PDEs?

Standard measurement scheme for compressed sensing (CS) requires:

- Multi-index set Λ_0 of size N
- Random samples $\{m{y}_i\}_{i=1}^m \subset \Gamma$ drawn from a measure $\varrho(m{y})$, e.g., Monte Carlo
- Bounded orthonormal system (BOS) $\{\Psi_j\}_{j\in\Lambda_0}$, i.e.,

$$\langle \Psi_j, \Psi_k \rangle_{\varrho} = \delta_{j,k} \ \ \forall j,k \qquad \text{and} \qquad \sup_{j \in \Lambda_0} \|\Psi_j\|_{L^\infty_{\varrho}(\Gamma)} = \Theta < \infty$$

$$\begin{split} \textbf{Set:} \quad & [\Psi]_{i,j} = \Psi_j(\boldsymbol{y}_i) \quad \text{ and } \quad & [\boldsymbol{u}]_i = u(\boldsymbol{y}_i) \in \mathcal{V} \quad \ 1 \leq i \leq m, \ 1 \leq j \leq N \\ \text{Then our "operator" (matrix) } \Psi: \mathcal{V}^N \to \mathcal{V}^m \text{ is defined by the action} \end{split}$$

$$[\boldsymbol{\Psi} \boldsymbol{z}]_i = \sum_{j=1}^N \boldsymbol{z}_j \Psi_j(\boldsymbol{y}_i) \in \mathcal{V} \qquad \boldsymbol{z} \in \mathcal{V}^N, \ 1 \leq i \leq m.$$

Recovery in the Hilbert-valued setting

It is easy to see that:

•
$$(\mathcal{V}^N, \langle \cdot, \cdot \rangle_{\mathcal{V},2})$$
, with $\langle \boldsymbol{z}, \boldsymbol{z}' \rangle_{\mathcal{V},2} := \sum_{j \in \Lambda_0} \langle \boldsymbol{z}_j, \boldsymbol{z}'_j \rangle_{\mathcal{V}}$ is a Hilbert space

•
$$(\mathcal{V}^N, \|\cdot\|_{\mathcal{V},p})$$
, with $\|\boldsymbol{z}\|_{\mathcal{V},p} := \left(\sum_{j \in \Lambda_0} \|\boldsymbol{z}_j\|_{\mathcal{V}}^p\right)^{1/p}$ is a Banach space

For $\mathbf{\Psi}: \mathcal{V}^N
ightarrow \mathcal{V}^m$ we define the operator norm as

$$\|\Psi\|_{p \to q} = \sup_{\|x\|_{\mathcal{V},p}=1} \|\Psi x\|_{\mathcal{V},q} = \sup_{x \neq 0} \frac{\|\Psi x\|_{\mathcal{V},q}}{\|x\|_{\mathcal{V},p}} \quad \text{with} \quad \|\Psi\|_p := \|\Psi\|_{p \to p}.$$

The inner product also allows us to define adjoints

$$\langle \boldsymbol{\Psi} \boldsymbol{x}, \boldsymbol{y}
angle_{\mathcal{V},2} = \langle \boldsymbol{x}, \boldsymbol{\Psi}^* \boldsymbol{y}
angle_{\mathcal{V},2}$$

in the standard way.

These facts give us the necessary structure to establish many of the recovery guarantees and convergence results that hold in the real and complex-valued cases.

Recovery in the Hilbert-valued setting

It is easy to see that:

•
$$(\mathcal{V}^N, \langle \cdot, \cdot \rangle_{\mathcal{V},2})$$
, with $\langle \boldsymbol{z}, \boldsymbol{z}' \rangle_{\mathcal{V},2} := \sum_{j \in \Lambda_0} \langle \boldsymbol{z}_j, \boldsymbol{z}'_j \rangle_{\mathcal{V}}$ is a Hilbert space

•
$$(\mathcal{V}^N, \|\cdot\|_{\mathcal{V},p})$$
, with $\|\boldsymbol{z}\|_{\mathcal{V},p} := \left(\sum_{j \in \Lambda_0} \|\boldsymbol{z}_j\|_{\mathcal{V}}^p\right)^{1/p}$ is a Banach space

For $oldsymbol{\Psi}:\mathcal{V}^N
ightarrow\mathcal{V}^m$ we define the operator norm as

$$\|\Psi\|_{p\rightarrow q} = \sup_{\|\boldsymbol{x}\|_{\mathcal{V},p}=1} \|\Psi\boldsymbol{x}\|_{\mathcal{V},q} = \sup_{\boldsymbol{x}\neq\boldsymbol{0}} \frac{\|\Psi\boldsymbol{x}\|_{\mathcal{V},q}}{\|\boldsymbol{x}\|_{\mathcal{V},p}} \qquad \text{with} \quad \|\Psi\|_p := \|\Psi\|_{p\rightarrow p}.$$

The inner product also allows us to define adjoints

$$\langle \boldsymbol{\Psi} \boldsymbol{x}, \boldsymbol{y}
angle_{\mathcal{V},2} = \langle \boldsymbol{x}, \boldsymbol{\Psi}^* \boldsymbol{y}
angle_{\mathcal{V},2}$$

in the standard way.

These facts give us the necessary structure to establish many of the recovery guarantees and convergence results that hold in the real and complex-valued cases.

Recovery in the Hilbert-valued setting

It is easy to see that:

•
$$(\mathcal{V}^N, \langle \cdot, \cdot \rangle_{\mathcal{V},2})$$
, with $\langle \boldsymbol{z}, \boldsymbol{z}' \rangle_{\mathcal{V},2} := \sum_{j \in \Lambda_0} \langle \boldsymbol{z}_j, \boldsymbol{z}'_j \rangle_{\mathcal{V}}$ is a Hilbert space

•
$$(\mathcal{V}^N, \|\cdot\|_{\mathcal{V},p})$$
, with $\|\boldsymbol{z}\|_{\mathcal{V},p} := \left(\sum_{j \in \Lambda_0} \|\boldsymbol{z}_j\|_{\mathcal{V}}^p\right)^{1/p}$ is a Banach space

For $\mathbf{\Psi}:\mathcal{V}^N
ightarrow\mathcal{V}^m$ we define the operator norm as

$$\|\Psi\|_{p\rightarrow q} = \sup_{\|\boldsymbol{x}\|_{\mathcal{V},p}=1} \|\Psi\boldsymbol{x}\|_{\mathcal{V},q} = \sup_{\boldsymbol{x}\neq\boldsymbol{0}} \frac{\|\Psi\boldsymbol{x}\|_{\mathcal{V},q}}{\|\boldsymbol{x}\|_{\mathcal{V},p}} \qquad \text{with} \quad \|\Psi\|_p := \|\Psi\|_{p\rightarrow p}.$$

The inner product also allows us to define adjoints

$$\langle \boldsymbol{\Psi} \boldsymbol{x}, \boldsymbol{y}
angle_{\mathcal{V},2} = \langle \boldsymbol{x}, \boldsymbol{\Psi}^* \boldsymbol{y}
angle_{\mathcal{V},2}$$

in the standard way.

These facts give us the necessary structure to establish many of the recovery guarantees and convergence results that hold in the real and complex-valued cases.

Recovery in the Hilbert-valued setting

It is easy to see that:

•
$$(\mathcal{V}^N, \langle \cdot, \cdot \rangle_{\mathcal{V},2})$$
, with $\langle \boldsymbol{z}, \boldsymbol{z}' \rangle_{\mathcal{V},2} := \sum_{j \in \Lambda_0} \langle \boldsymbol{z}_j, \boldsymbol{z}'_j \rangle_{\mathcal{V}}$ is a Hilbert space

•
$$(\mathcal{V}^N, \|\cdot\|_{\mathcal{V},p})$$
, with $\|\boldsymbol{z}\|_{\mathcal{V},p} := \left(\sum_{j \in \Lambda_0} \|\boldsymbol{z}_j\|_{\mathcal{V}}^p\right)^{1/p}$ is a Banach space

For ${f \Psi}: {\cal V}^N
ightarrow {\cal V}^m$ we define the operator norm as

$$\|\Psi\|_{p\rightarrow q} = \sup_{\|\boldsymbol{x}\|_{\mathcal{V},p}=1} \|\Psi\boldsymbol{x}\|_{\mathcal{V},q} = \sup_{\boldsymbol{x}\neq\boldsymbol{0}} \frac{\|\Psi\boldsymbol{x}\|_{\mathcal{V},q}}{\|\boldsymbol{x}\|_{\mathcal{V},p}} \qquad \text{with} \quad \|\Psi\|_p := \|\Psi\|_{p\rightarrow p}.$$

The inner product also allows us to define adjoints

$$\langle \boldsymbol{\Psi} \boldsymbol{x}, \boldsymbol{y}
angle_{\mathcal{V},2} = \langle \boldsymbol{x}, \boldsymbol{\Psi}^* \boldsymbol{y}
angle_{\mathcal{V},2}$$

in the standard way.

These facts give us the necessary structure to establish many of the recovery guarantees and convergence results that hold in the real and complex-valued cases.

In compressed sensing, uniform recovery is guaranteed by the restricted isometry property (RIP) of the normalized matrix $\tilde{\Psi} = \frac{1}{\sqrt{m}}\Psi$.

RIP for \mathcal{V}^N : there exists a small $\delta_{\mathcal{V},s}$ such that for all s-sparse $m{z}\in\mathcal{V}^N$

 $(1 - \delta_{\mathcal{V},s}) \|\boldsymbol{z}\|_{\mathcal{V},2}^2 \le \|\tilde{\boldsymbol{\Psi}}\boldsymbol{z}\|_{\mathcal{V},2}^2 \le (1 + \delta_{\mathcal{V},s}) \|\boldsymbol{z}\|_{\mathcal{V},2}^2 \qquad (\mathcal{V}\text{-}\mathsf{RIP})$

Theorem [D., Tran, Webster '16

- A matrix Ψ satisfies RIP with δ_s iff it satisfies \mathcal{V} -RIP with $\delta_{\mathcal{V},s} = \delta_s$.
- Query complexity for complex-valued signal recovery carries over to this case. Hence if, for $\delta \in (0,1),$

$$m \ge C_{\delta}\Theta^2 s \log^2(s) \log(N),$$

then with high probability $ilde{\mathbf{\Psi}}$ satisfies the \mathcal{V} -RIP with $\delta_s \leq \delta$.

In compressed sensing, uniform recovery is guaranteed by the restricted isometry property (RIP) of the normalized matrix $\tilde{\Psi} = \frac{1}{\sqrt{m}}\Psi$.

RIP for \mathcal{V}^N : there exists a small $\delta_{\mathcal{V},s}$ such that for all *s*-sparse $\boldsymbol{z} \in \mathcal{V}^N$

$$(1 - \delta_{\mathcal{V},s}) \|\boldsymbol{z}\|_{\mathcal{V},2}^2 \le \|\tilde{\boldsymbol{\Psi}}\boldsymbol{z}\|_{\mathcal{V},2}^2 \le (1 + \delta_{\mathcal{V},s}) \|\boldsymbol{z}\|_{\mathcal{V},2}^2 \qquad (\mathcal{V}\text{-}\mathsf{RIP})$$

Theorem [D., Tran, Webster '16

- A matrix Ψ satisfies RIP with δ_s iff it satisfies \mathcal{V} -RIP with $\delta_{\mathcal{V},s} = \delta_s$.
- Query complexity for complex-valued signal recovery carries over to this case. Hence if, for $\delta \in (0,1),$

$$m \ge C_{\delta}\Theta^2 s \log^2(s) \log(N),$$

then with high probability $ilde{\mathbf{\Psi}}$ satisfies the \mathcal{V} -RIP with $\delta_s \leq \delta$.

In compressed sensing, uniform recovery is guaranteed by the restricted isometry property (RIP) of the normalized matrix $\tilde{\Psi} = \frac{1}{\sqrt{m}}\Psi$.

RIP for \mathcal{V}^N : there exists a small $\delta_{\mathcal{V},s}$ such that for all *s*-sparse $\boldsymbol{z} \in \mathcal{V}^N$

$$(1 - \delta_{\mathcal{V},s}) \|\boldsymbol{z}\|_{\mathcal{V},2}^2 \le \|\tilde{\boldsymbol{\Psi}}\boldsymbol{z}\|_{\mathcal{V},2}^2 \le (1 + \delta_{\mathcal{V},s}) \|\boldsymbol{z}\|_{\mathcal{V},2}^2 \qquad (\mathcal{V}\text{-}\mathsf{RIP})$$

Theorem [D., Tran, Webster '16]

- A matrix $\tilde{\Psi}$ satisfies RIP with δ_s iff it satisfies V-RIP with $\delta_{V,s} = \delta_s$.
- Query complexity for complex-valued signal recovery carries over to this case. Hence if, for $\delta \in (0,1),$

$$m \ge C_{\delta}\Theta^2 s \log^2(s) \log(N),$$

then with high probability $\tilde{\Psi}$ satisfies the V-RIP with $\delta_s \leq \delta$.

The recovery guarantees from the last theorem say that we can expect to find good approximations to $\Psi z = u$ when z is s-sparse (compressible), if we take enough samples.

Solving the following constrained optimization problem can give sparse approximations.

Basis pursuit denoising (BPDN) problem for \mathcal{V}^N :

minimize_{$z \in \mathcal{V}^N$} $\|z\|_{\mathcal{V},1}$ subject to $\|\Psi z - u\|_{\mathcal{V},2} \le \eta/\sqrt{m}$.

- Can cast the BPDN problem as an unconstrained convex optimization problem
- Long history of research on iterative methods for fixed-point problems on Hilbert spaces dating back to the 1950-60's with *well-developed* convergence theory
- Easy to show that if δ_{2s} for $\tilde{\Psi}$ satisfies $\delta_{2s} < 4/\sqrt{41}$, then solutions $z^{\#}$ of the BPDN problem approx. the true solution z (satisfying the constraint) with error

$$\|\boldsymbol{z} - \boldsymbol{z}^{\#}\|_{\mathcal{V},2} \leq \frac{C}{\sqrt{s}} \sigma_s(\boldsymbol{z})_{\mathcal{V},1} + D\eta,$$

where C, D > 0 depend only on δ_{2s} , and $\sigma_s(z)_{\mathcal{V},p}$ is the error of the best s-term approximation to z in the norm $\|\cdot\|_{\mathcal{V},p}$

The recovery guarantees from the last theorem say that we can expect to find good approximations to $\Psi z = u$ when z is s-sparse (compressible), if we take enough samples.

Solving the following constrained optimization problem can give sparse approximations.

Basis pursuit denoising (BPDN) problem for \mathcal{V}^N :	
$minimize_{\bm{z}\in\mathcal{V}^N} ~\ \bm{z}\ _{\mathcal{V},1} ~ \text{subject to} ~ \ \bm{\Psi}\bm{z}-\bm{u}\ _{\mathcal{V},2} \leq \eta/\sqrt{m}.$	

- Can cast the BPDN problem as an unconstrained convex optimization problem
- Long history of research on iterative methods for fixed-point problems on Hilbert spaces dating back to the 1950-60's with *well-developed* convergence theory
- Easy to show that if δ_{2s} for $\tilde{\Psi}$ satisfies $\delta_{2s} < 4/\sqrt{41}$, then solutions $z^{\#}$ of the BPDN problem approx. the true solution z (satisfying the constraint) with error

$$\|\boldsymbol{z} - \boldsymbol{z}^{\#}\|_{\mathcal{V},2} \leq \frac{C}{\sqrt{s}} \sigma_s(\boldsymbol{z})_{\mathcal{V},1} + D\eta,$$

where C, D > 0 depend only on δ_{2s} , and $\sigma_s(z)_{V,p}$ is the error of the best s-term approximation to z in the norm $\|\cdot\|_{V,p}$

Compressed sensing for parametric PDE recovery

The recovery guarantees from the last theorem say that we can expect to find good approximations to $\Psi z = u$ when z is s-sparse (compressible), if we take enough samples.

Solving the following constrained optimization problem can give sparse approximations.

Basis pursuit denoising (BPDN) problem for \mathcal{V}^N :

minimize_{$z \in \mathcal{V}^N$} $||z||_{\mathcal{V},1}$ subject to $||\Psi z - u||_{\mathcal{V},2} \le \eta/\sqrt{m}$.

- Can cast the BPDN problem as an unconstrained convex optimization problem
- Long history of research on iterative methods for fixed-point problems on Hilbert spaces dating back to the 1950-60's with *well-developed* convergence theory
- Easy to show that if δ_{2s} for $\tilde{\Psi}$ satisfies $\delta_{2s} < 4/\sqrt{41}$, then solutions $z^{\#}$ of the BPDN problem approx. the true solution z (satisfying the constraint) with error

$$\|\boldsymbol{z} - \boldsymbol{z}^{\#}\|_{\mathcal{V},2} \leq \frac{C}{\sqrt{s}} \sigma_s(\boldsymbol{z})_{\mathcal{V},1} + D\eta,$$

where C, D > 0 depend only on δ_{2s} , and $\sigma_s(z)_{V,p}$ is the error of the best s-term approximation to z in the norm $\|\cdot\|_{V,p}$

Compressed sensing for parametric PDE recovery

The recovery guarantees from the last theorem say that we can expect to find good approximations to $\Psi z = u$ when z is s-sparse (compressible), if we take enough samples.

Solving the following constrained optimization problem can give sparse approximations.

Basis pursuit denoising (BPDN) problem for \mathcal{V}^N :

minimize_{$z \in \mathcal{V}^N$} $||z||_{\mathcal{V},1}$ subject to $||\Psi z - u||_{\mathcal{V},2} \leq \eta/\sqrt{m}$.

- Can cast the BPDN problem as an unconstrained convex optimization problem
- Long history of research on iterative methods for fixed-point problems on Hilbert spaces dating back to the 1950-60's with *well-developed* convergence theory
- Easy to show that if δ_{2s} for $\tilde{\Psi}$ satisfies $\delta_{2s} < 4/\sqrt{41}$, then solutions $z^{\#}$ of the BPDN problem approx. the true solution z (satisfying the constraint) with error

$$\|\boldsymbol{z} - \boldsymbol{z}^{\#}\|_{\mathcal{V},2} \leq \frac{C}{\sqrt{s}} \sigma_s(\boldsymbol{z})_{\mathcal{V},1} + D\eta,$$

where C, D > 0 depend only on δ_{2s} , and $\sigma_s(z)_{V,p}$ is the error of the best s-term approximation to z in the norm $\|\cdot\|_{V,p}$

Compressed sensing for parametric PDE recovery

The recovery guarantees from the last theorem say that we can expect to find good approximations to $\Psi z = u$ when z is s-sparse (compressible), if we take enough samples.

Solving the following constrained optimization problem can give sparse approximations.

Basis pursuit denoising (BPDN) problem for \mathcal{V}^N :

minimize_{$z \in \mathcal{V}^N$} $||z||_{\mathcal{V},1}$ subject to $||\Psi z - u||_{\mathcal{V},2} \leq \eta/\sqrt{m}$.

- Can cast the BPDN problem as an unconstrained convex optimization problem
- Long history of research on iterative methods for fixed-point problems on Hilbert spaces dating back to the 1950-60's with *well-developed* convergence theory
- Easy to show that if δ_{2s} for $\tilde{\Psi}$ satisfies $\delta_{2s} < 4/\sqrt{41}$, then solutions $z^{\#}$ of the BPDN problem approx. the true solution z (satisfying the constraint) with error

$$\|\boldsymbol{z} - \boldsymbol{z}^{\#}\|_{\mathcal{V},2} \leq \frac{C}{\sqrt{s}}\sigma_s(\boldsymbol{z})_{\mathcal{V},1} + D\eta,$$

where C, D > 0 depend only on δ_{2s} , and $\sigma_s(z)_{\mathcal{V},p}$ is the error of the best *s*-term approximation to z in the norm $\|\cdot\|_{\mathcal{V},p}$

Compressed sensing for parametric PDE recovery - algorithms Basic strategy: adapt existing algorithms for Hilbert-valued function recovery

Goal-3: Find solutions to the basis pursuit denoising problem over \mathcal{V}^N :

minimize
$$_{\boldsymbol{z}\in\mathcal{V}^{N}}\|\boldsymbol{z}\|_{\mathcal{V},1}$$
 subject to $\|\boldsymbol{\Psi}\boldsymbol{z}-\boldsymbol{u}\|_{\mathcal{V},2}\leq\eta/\sqrt{m}$ (2)

Strategy: Extend algorithms for real-valued recovery to recovery in \mathcal{V}^N

- Forward-backward splitting: [Lions, Mercier '79], [Chen, Rockafeller '89], [Daubechies, Defrise, De Mol '04], [Combettes '04], and in [Hale, Yin, Zhang '08] was applied to compressed sensing problems with a continuation strategy (FPC),
- **Bregman iterations:** for Total Variation-based image restoration [Osher, Burger, Goldfarb, Xu, Yin '05] and applied to compressed sensing in [Yin, Osher, Goldfarb, Darbon '08]. Equivalent to the augmented Lagrangian method under certain parameterizations, and has nice error-forgetting properties [Yin, Osher '12].

Challenges:

- Proving strong convergence in this setting
- Implementing and parallelizing these algorithms

Compressed sensing for parametric PDE recovery - algorithms Basic strategy: adapt existing algorithms for Hilbert-valued function recovery

Goal-3: Find solutions to the basis pursuit denoising problem over \mathcal{V}^N :

minimize_{$$z \in \mathcal{V}^N$$} $\|z\|_{\mathcal{V},1}$ subject to $\|\Psi z - u\|_{\mathcal{V},2} \le \eta/\sqrt{m}$ (2)

Strategy: Extend algorithms for real-valued recovery to recovery in \mathcal{V}^N

- Forward-backward splitting: [Lions, Mercier '79], [Chen, Rockafeller '89], [Daubechies, Defrise, De Mol '04], [Combettes '04], and in [Hale, Yin, Zhang '08] was applied to compressed sensing problems with a continuation strategy (FPC),
- **Bregman iterations:** for Total Variation-based image restoration [Osher, Burger, Goldfarb, Xu, Yin '05] and applied to compressed sensing in [Yin, Osher, Goldfarb, Darbon '08]. Equivalent to the augmented Lagrangian method under certain parameterizations, and has nice error-forgetting properties [Yin, Osher '12].

Challenges:

- Proving strong convergence in this setting
- Implementing and parallelizing these algorithms

Compressed sensing for parametric PDE recovery - algorithms Basic strategy: adapt existing algorithms for Hilbert-valued function recovery

Goal-3: Find solutions to the basis pursuit denoising problem over \mathcal{V}^N :

minimize_{$$z \in \mathcal{V}^N$$} $\|z\|_{\mathcal{V},1}$ subject to $\|\Psi z - u\|_{\mathcal{V},2} \le \eta/\sqrt{m}$ (2)

Strategy: Extend algorithms for real-valued recovery to recovery in \mathcal{V}^N

- Forward-backward splitting: [Lions, Mercier '79], [Chen, Rockafeller '89], [Daubechies, Defrise, De Mol '04], [Combettes '04], and in [Hale, Yin, Zhang '08] was applied to compressed sensing problems with a continuation strategy (FPC),
- **Bregman iterations:** for Total Variation-based image restoration [Osher, Burger, Goldfarb, Xu, Yin '05] and applied to compressed sensing in [Yin, Osher, Goldfarb, Darbon '08]. Equivalent to the augmented Lagrangian method under certain parameterizations, and has nice error-forgetting properties [Yin, Osher '12].

Challenges:

- Proving strong convergence in this setting
- Implementing and parallelizing these algorithms

Formulation of the forward-backward splitting method

Can solve (2) by solving the related problem for appropriately chosen values of μ :

minimize_{$$z \in \mathcal{V}^N$$} $\underbrace{\|z\|_{\mathcal{V},1} + \frac{\mu}{2} \|\Psi z - u\|_{\mathcal{V},2}^2}_{=: F_{\mu}(z)}$. (3)

Recall: the subdifferential of a proper function $F : \mathcal{V}^N \to (-\infty, \infty]$ at a point $x \in \mathcal{V}^N$ is the set-valued operator

$$\partial F(\boldsymbol{x}) = \left\{ \boldsymbol{v} \in \mathcal{V}^N : F(\boldsymbol{z}) \ge F(\boldsymbol{x}) + \langle \boldsymbol{v}, \boldsymbol{z} - \boldsymbol{x} \rangle \text{ for all } \boldsymbol{z} \in \mathcal{V}^N \right\}.$$
(4)

The elements of $\partial F(x)$ are called subgradients of F at x. When the function F is convex and differentiable at x, $\partial F(x) = \{\nabla F(x)\}$, i.e. ∂F is single-valued.

Define the splitting $\partial F_{\mu}(z) = T_1(z) + T_2(z)$, where

- $T_1(\boldsymbol{z}) = \partial \|\boldsymbol{z}\|_{\mathcal{V},1} \leftarrow \text{non-differentiable part of } F_{\mu}$
- $T_2(\boldsymbol{z}) = \frac{\mu}{2} \nabla \| \boldsymbol{\Psi} \boldsymbol{z} \boldsymbol{u} \|_{\mathcal{V},2}^2 \leftarrow \text{differentiable part of } F_{\mu}$

 T_1, T_2 are (sub)gradients of proper l.s.c. convex fcns., hence maximal monitone operators \Rightarrow (3) is an instance of a monitone inclusion problem, vast literature on this topic.

Formulation of the forward-backward splitting method

r

Can solve (2) by solving the related problem for appropriately chosen values of μ :

ninimize_{$$z \in \mathcal{V}^N$$} $\underbrace{\|z\|_{\mathcal{V},1} + \frac{\mu}{2} \|\Psi z - u\|_{\mathcal{V},2}^2}_{=: F_{\mu}(z)}$. (3)

Recall: the subdifferential of a proper function $F : \mathcal{V}^N \to (-\infty, \infty]$ at a point $x \in \mathcal{V}^N$ is the set-valued operator

$$\partial F(\boldsymbol{x}) = \left\{ \boldsymbol{v} \in \mathcal{V}^N : F(\boldsymbol{z}) \ge F(\boldsymbol{x}) + \langle \boldsymbol{v}, \boldsymbol{z} - \boldsymbol{x} \rangle \text{ for all } \boldsymbol{z} \in \mathcal{V}^N \right\}.$$
(4)

The elements of $\partial F(x)$ are called subgradients of F at x. When the function F is convex and differentiable at x, $\partial F(x) = \{\nabla F(x)\}$, i.e. ∂F is single-valued.

Define the splitting $\partial F_{\mu}(\boldsymbol{z}) = T_1(\boldsymbol{z}) + T_2(\boldsymbol{z})$, where

- $T_1(\boldsymbol{z}) = \partial \|\boldsymbol{z}\|_{\mathcal{V},1} \leftarrow \text{non-differentiable part of } F_{\mu}$
- $T_2(\boldsymbol{z}) = \frac{\mu}{2} \nabla \| \boldsymbol{\Psi} \boldsymbol{z} \boldsymbol{u} \|_{\mathcal{V},2}^2 \leftarrow \text{differentiable part of } F_{\mu}$

 T_1, T_2 are (sub)gradients of proper l.s.c. convex fcns., hence maximal monitone operators \Rightarrow (3) is an instance of a monitone inclusion problem, vast literature on this topic.

Formulation of the forward-backward splitting method

r

Can solve (2) by solving the related problem for appropriately chosen values of μ :

ninimize_{$$z \in \mathcal{V}^N$$} $\underbrace{\|z\|_{\mathcal{V},1} + \frac{\mu}{2} \|\Psi z - u\|_{\mathcal{V},2}^2}_{=: F_{\mu}(z)}$. (3)

Recall: the subdifferential of a proper function $F : \mathcal{V}^N \to (-\infty, \infty]$ at a point $x \in \mathcal{V}^N$ is the set-valued operator

$$\partial F(\boldsymbol{x}) = \left\{ \boldsymbol{v} \in \mathcal{V}^N : F(\boldsymbol{z}) \ge F(\boldsymbol{x}) + \langle \boldsymbol{v}, \boldsymbol{z} - \boldsymbol{x} \rangle \text{ for all } \boldsymbol{z} \in \mathcal{V}^N \right\}.$$
(4)

The elements of $\partial F(x)$ are called subgradients of F at x. When the function F is convex and differentiable at x, $\partial F(x) = \{\nabla F(x)\}$, i.e. ∂F is single-valued.

Define the splitting $\partial F_{\mu}(\boldsymbol{z}) = T_1(\boldsymbol{z}) + T_2(\boldsymbol{z})$, where

- $T_1(\boldsymbol{z}) = \partial \|\boldsymbol{z}\|_{\mathcal{V},1} \leftarrow \text{non-differentiable part of } F_{\mu}$
- $T_2(z) = \frac{\mu}{2} \nabla \| \Psi z u \|_{\mathcal{V},2}^2 \leftarrow \text{differentiable part of } F_{\mu}$

 T_1, T_2 are (sub)gradients of proper l.s.c. convex fcns., hence maximal monitone operators \Rightarrow (3) is an instance of a monitone inclusion problem, vast literature on this topic.

Formulation of the forward-backward splitting method

Theorem from Convex Analysis [Fermat's Rule]

A vector x is a minimum of the proper function F if and only if $\mathbf{0} \in \partial F(x)$.

Hence, if $X^* = \{ z \in \mathcal{V}^N : F_\mu(z) \text{ is minimized} \}$ (the solution set), then since T_2 is single-valued, and $(I + \tau T_1)$ is invertible

$$z \in X^* \iff \mathbf{0} \in \partial F_{\mu}(z) \iff \mathbf{0} \in (I + \tau T_1)z - (I - \tau T_2)z$$
$$\iff (I - \tau T_2)z \in (I + \tau T_1)z$$
$$\iff z = (I + \tau T_1)^{-1}(I - \tau T_2)z.$$

Forward-backward iteration: $m{z}^{(k+1)}:=(I+ au T_1)^{-1}(I- au T_2)m{z}^{(k)}$, a fixed point alg.

In particular, since $T_2=
abla\phi_2(m{z})$ where $\phi_2=rac{1}{2}\|m{\Psi}m{z}-m{u}\|^2_{\mathcal{V},2}$ is differentiable, we see that

$$G_{\tau}(\boldsymbol{z}) := (I - \tau T_2)\boldsymbol{z} = (I - \tau \nabla \phi_2)\boldsymbol{z} = \boldsymbol{z} - \tau \boldsymbol{\Psi}^* (\boldsymbol{\Psi} \boldsymbol{z} - \boldsymbol{u}),$$

which is a step of the gradient descent method, i.e., an (explicit) forward step.

 $T_2 \text{ is } \| \Psi^* \Psi \|_2 \text{-Lipschitz} \quad \Rightarrow \quad G_\tau \text{ is nonexpansive whenever } 0 < \tau < 2/\lambda_{\max}(\Psi^* \Psi).$

Formulation of the forward-backward splitting method

Theorem from Convex Analysis [Fermat's Rule]

A vector \boldsymbol{x} is a minimum of the proper function F if and only if $\boldsymbol{0} \in \partial F(\boldsymbol{x})$.

Hence, if $X^* = \{ z \in \mathcal{V}^N : F_\mu(z) \text{ is minimized} \}$ (the solution set), then since T_2 is single-valued, and $(I + \tau T_1)$ is invertible

$$\boldsymbol{z} \in X^* \iff \boldsymbol{0} \in \partial F_{\mu}(\boldsymbol{z}) \iff \boldsymbol{0} \in (I + \tau T_1)\boldsymbol{z} - (I - \tau T_2)\boldsymbol{z}$$
$$\iff (I - \tau T_2)\boldsymbol{z} \in (I + \tau T_1)\boldsymbol{z}$$
$$\iff \boldsymbol{z} = (I + \tau T_1)^{-1}(I - \tau T_2)\boldsymbol{z}.$$

Forward-backward iteration: $\boldsymbol{z}^{(k+1)} := (I + \tau T_1)^{-1}(I - \tau T_2)\boldsymbol{z}^{(k)}$, a fixed point alg.

In particular, since $T_2 = \nabla \phi_2(z)$ where $\phi_2 = \frac{1}{2} \| \Psi z - u \|_{\mathcal{V},2}^2$ is differentiable, we see that

$$G_{\tau}(\boldsymbol{z}) := (I - \tau T_2)\boldsymbol{z} = (I - \tau \nabla \phi_2)\boldsymbol{z} = \boldsymbol{z} - \tau \boldsymbol{\Psi}^* (\boldsymbol{\Psi} \boldsymbol{z} - \boldsymbol{u}),$$

which is a step of the gradient descent method, i.e., an (explicit) forward step.

 $T_2 \text{ is } \| \Psi^* \Psi \|_2 \text{-Lipschitz} \quad \Rightarrow \quad G_\tau \text{ is nonexpansive whenever } 0 < \tau < 2/\lambda_{\max}(\Psi^* \Psi).$

Formulation of the forward-backward splitting method

Theorem from Convex Analysis [Fermat's Rule]

A vector \boldsymbol{x} is a minimum of the proper function F if and only if $\boldsymbol{0} \in \partial F(\boldsymbol{x})$.

Hence, if $X^* = \{ z \in \mathcal{V}^N : F_\mu(z) \text{ is minimized} \}$ (the solution set), then since T_2 is single-valued, and $(I + \tau T_1)$ is invertible

$$\boldsymbol{z} \in X^* \iff \boldsymbol{0} \in \partial F_{\mu}(\boldsymbol{z}) \iff \boldsymbol{0} \in (I + \tau T_1)\boldsymbol{z} - (I - \tau T_2)\boldsymbol{z}$$
$$\iff (I - \tau T_2)\boldsymbol{z} \in (I + \tau T_1)\boldsymbol{z}$$
$$\iff \boldsymbol{z} = (I + \tau T_1)^{-1}(I - \tau T_2)\boldsymbol{z}.$$

Forward-backward iteration: $\boldsymbol{z}^{(k+1)} := (I + \tau T_1)^{-1}(I - \tau T_2)\boldsymbol{z}^{(k)}$, a fixed point alg.

In particular, since $T_2 = \nabla \phi_2(z)$ where $\phi_2 = \frac{1}{2} \| \Psi z - u \|_{\mathcal{V},2}^2$ is differentiable, we see that

$$G_{\tau}(\boldsymbol{z}) := (I - \tau T_2)\boldsymbol{z} = (I - \tau \nabla \phi_2)\boldsymbol{z} = \boldsymbol{z} - \tau \boldsymbol{\Psi}^* (\boldsymbol{\Psi} \boldsymbol{z} - \boldsymbol{u}),$$

which is a step of the gradient descent method, i.e., an (explicit) forward step.

 $T_2 \text{ is } \|\Psi^*\Psi\|_2 \text{-Lipschitz} \quad \Rightarrow \quad G_\tau \text{ is nonexpansive whenever } 0 < \tau < 2/\lambda_{\max}(\Psi^*\Psi).$

Formulation of the forward-backward splitting method

Denote by $J_{\tau} := (I + \tau T_1)^{-1}$ the resolvent of τT_1 . We can also characterize J_{τ} in terms of the Moreau proximity operator associated with $T_1 = \partial \| \cdot \|_{\mathcal{V},1}$:

$$\operatorname{Prox}_{\tau} \boldsymbol{x} := (I + \tau \partial \| \cdot \|_{\mathcal{V},1})^{-1} \boldsymbol{x} = (I + \tau T_1)^{-1},$$

so that J_{τ} is a step of the proximal-point method.

A well-known result says that for $p, x \in \mathcal{V}^N$, $p = \operatorname{Prox}_{\tau} x \iff x - p \in \tau \partial \|p\|_{\mathcal{V},1}$, so that J_{τ} can also be seen as an (implicit) subgradient step, i.e. a *backward* step.

This gives rise to both the *forward-backward* and *proximal-gradient* names for the composition $S_{\tau}(\boldsymbol{x}) := J_{\tau} \circ G_{\tau}(\boldsymbol{x}) = (I + \tau T_1)^{-1} (I - \tau T_2) \boldsymbol{x}.$

An operator $T: \mathcal{V}^N \to \mathcal{V}^N$ is said to be firmly nonexpansive (FNE) if

$$||T\boldsymbol{x} - T\boldsymbol{y}||_{\mathcal{V},2}^2 \le ||\boldsymbol{x} - \boldsymbol{y}||_{\mathcal{V},2}^2 - ||(I - T)\boldsymbol{x} - (I - T)\boldsymbol{y}||_{\mathcal{V},2}^2 \qquad \forall \boldsymbol{x}, \boldsymbol{y} \in \mathcal{V}^N.$$
(5)

Another well-known result says: T_1 maximally monitone $\Rightarrow J_{\tau}$ is component-wise FNE.

Formulation of the forward-backward splitting method

Denote by $J_{\tau} := (I + \tau T_1)^{-1}$ the resolvent of τT_1 . We can also characterize J_{τ} in terms of the Moreau proximity operator associated with $T_1 = \partial \| \cdot \|_{\mathcal{V},1}$:

$$\operatorname{Prox}_{\tau} \boldsymbol{x} := (I + \tau \partial \| \cdot \|_{\mathcal{V},1})^{-1} \boldsymbol{x} = (I + \tau T_1)^{-1},$$

so that J_{τ} is a step of the proximal-point method.

A well-known result says that for $p, x \in \mathcal{V}^N$, $p = \operatorname{Prox}_{\tau} x \iff x - p \in \tau \partial \|p\|_{\mathcal{V},1}$, so that J_{τ} can also be seen as an (implicit) subgradient step, i.e. a *backward* step.

This gives rise to both the *forward-backward* and *proximal-gradient* names for the composition $S_{\tau}(\boldsymbol{x}) := J_{\tau} \circ G_{\tau}(\boldsymbol{x}) = (I + \tau T_1)^{-1}(I - \tau T_2)\boldsymbol{x}.$

An operator $T:\mathcal{V}^N o\mathcal{V}^N$ is said to be firmly nonexpansive (FNE) if

$$||T\boldsymbol{x} - T\boldsymbol{y}||_{\mathcal{V},2}^2 \le ||\boldsymbol{x} - \boldsymbol{y}||_{\mathcal{V},2}^2 - ||(I - T)\boldsymbol{x} - (I - T)\boldsymbol{y}||_{\mathcal{V},2}^2 \qquad \forall \boldsymbol{x}, \boldsymbol{y} \in \mathcal{V}^N.$$
(5)

Another well-known result says: T_1 maximally monitone $\Rightarrow J_{\tau}$ is component-wise FNE.

Formulation of the forward-backward splitting method

Denote by $J_{\tau} := (I + \tau T_1)^{-1}$ the resolvent of τT_1 . We can also characterize J_{τ} in terms of the Moreau proximity operator associated with $T_1 = \partial \| \cdot \|_{\mathcal{V},1}$:

$$\operatorname{Prox}_{\tau} \boldsymbol{x} := (I + \tau \partial \| \cdot \|_{\mathcal{V},1})^{-1} \boldsymbol{x} = (I + \tau T_1)^{-1},$$

so that J_{τ} is a step of the proximal-point method.

A well-known result says that for $p, x \in \mathcal{V}^N$, $p = \operatorname{Prox}_{\tau} x \iff x - p \in \tau \partial \|p\|_{\mathcal{V},1}$, so that J_{τ} can also be seen as an (implicit) subgradient step, i.e. a *backward* step.

This gives rise to both the *forward-backward* and *proximal-gradient* names for the composition $S_{\tau}(\boldsymbol{x}) := J_{\tau} \circ G_{\tau}(\boldsymbol{x}) = (I + \tau T_1)^{-1}(I - \tau T_2)\boldsymbol{x}.$

An operator $T:\mathcal{V}^N o\mathcal{V}^N$ is said to be firmly nonexpansive (FNE) if

 $||T\boldsymbol{x} - T\boldsymbol{y}||_{\mathcal{V},2}^2 \le ||\boldsymbol{x} - \boldsymbol{y}||_{\mathcal{V},2}^2 - ||(I - T)\boldsymbol{x} - (I - T)\boldsymbol{y}||_{\mathcal{V},2}^2 \qquad \forall \boldsymbol{x}, \boldsymbol{y} \in \mathcal{V}^N.$ (5)

Another well-known result says: T_1 maximally monitone $\Rightarrow J_{\tau}$ is component-wise FNE.

Formulation of the forward-backward splitting method

Denote by $J_{\tau} := (I + \tau T_1)^{-1}$ the resolvent of τT_1 . We can also characterize J_{τ} in terms of the Moreau proximity operator associated with $T_1 = \partial \| \cdot \|_{\mathcal{V},1}$:

$$\operatorname{Prox}_{\tau} \boldsymbol{x} := (I + \tau \partial \| \cdot \|_{\mathcal{V},1})^{-1} \boldsymbol{x} = (I + \tau T_1)^{-1},$$

so that J_{τ} is a step of the proximal-point method.

A well-known result says that for $p, x \in \mathcal{V}^N$, $p = \operatorname{Prox}_{\tau} x \iff x - p \in \tau \partial \|p\|_{\mathcal{V},1}$, so that J_{τ} can also be seen as an (implicit) subgradient step, i.e. a *backward* step.

This gives rise to both the *forward-backward* and *proximal-gradient* names for the composition $S_{\tau}(\boldsymbol{x}) := J_{\tau} \circ G_{\tau}(\boldsymbol{x}) = (I + \tau T_1)^{-1}(I - \tau T_2)\boldsymbol{x}.$

An operator $T: \mathcal{V}^N \to \mathcal{V}^N$ is said to be firmly nonexpansive (FNE) if

$$\|T\boldsymbol{x} - T\boldsymbol{y}\|_{\mathcal{V},2}^{2} \leq \|\boldsymbol{x} - \boldsymbol{y}\|_{\mathcal{V},2}^{2} - \|(I - T)\boldsymbol{x} - (I - T)\boldsymbol{y}\|_{\mathcal{V},2}^{2} \qquad \forall \boldsymbol{x}, \boldsymbol{y} \in \mathcal{V}^{N}.$$
(5)

Another well-known result says: T_1 maximally monitone $\Rightarrow J_{\tau}$ is component-wise FNE.

Formulation of the forward-backward splitting method

Denote by $J_{\tau} := (I + \tau T_1)^{-1}$ the resolvent of τT_1 . We can also characterize J_{τ} in terms of the Moreau proximity operator associated with $T_1 = \partial \| \cdot \|_{\mathcal{V},1}$:

$$\operatorname{Prox}_{\tau} \boldsymbol{x} := (I + \tau \partial \| \cdot \|_{\mathcal{V},1})^{-1} \boldsymbol{x} = (I + \tau T_1)^{-1},$$

so that J_{τ} is a step of the proximal-point method.

A well-known result says that for $p, x \in \mathcal{V}^N$, $p = \operatorname{Prox}_{\tau} x \iff x - p \in \tau \partial \|p\|_{\mathcal{V},1}$, so that J_{τ} can also be seen as an (implicit) subgradient step, i.e. a *backward* step.

This gives rise to both the *forward-backward* and *proximal-gradient* names for the composition $S_{\tau}(\boldsymbol{x}) := J_{\tau} \circ G_{\tau}(\boldsymbol{x}) = (I + \tau T_1)^{-1} (I - \tau T_2) \boldsymbol{x}.$

An operator $T: \mathcal{V}^N \to \mathcal{V}^N$ is said to be firmly nonexpansive (FNE) if

$$\|T\boldsymbol{x} - T\boldsymbol{y}\|_{\mathcal{V},2}^{2} \leq \|\boldsymbol{x} - \boldsymbol{y}\|_{\mathcal{V},2}^{2} - \|(I - T)\boldsymbol{x} - (I - T)\boldsymbol{y}\|_{\mathcal{V},2}^{2} \qquad \forall \boldsymbol{x}, \boldsymbol{y} \in \mathcal{V}^{N}.$$
(5)

Another well-known result says: T_1 maximally monitone $\Rightarrow J_{\tau}$ is component-wise FNE.

Let $0 < \tau < 2/\lambda_{\max}(\Psi^*\Psi)$. Then the iterations $\boldsymbol{x}^{(k+1)} := J_{\tau} \circ G_{\tau}(\boldsymbol{x}^{(k)})$ converge strongly to an element $\boldsymbol{x}^* \in X^*$ from any $\boldsymbol{x}^{(0)} \in \mathcal{V}^N$.

Sketch: Opial's Theorem \Rightarrow weak convergence [Daubechies, et al '04], [Combettes '04].

Finite convergence is easily obtained for $j \in \Lambda_0$ s.t. $\|(\Psi^*(\Psi x^* - u))_j\|_{\mathcal{V}} < 1$. We focus on the set $j \in \Lambda_0$ s.t. $\|(\Psi^*(\Psi x^* - u))_j\|_{\mathcal{V}} = 1$, i.e., the complement.

 J_{τ} is component-wise given by $(I - \mathcal{P}_{\tau})$, where \mathcal{P}_{τ} is metric projection onto $B_{\mathcal{V}}(0, \tau)$ $\Rightarrow J_{\tau}(y), \mathcal{P}_{\tau}(y)$, and y are colinear with the origin for any $y \in \mathcal{V}^{N}$.

 $J_{ au}$ component-wise FNE and $(I - J_{ au}) = (I - I + \mathcal{P}_{ au}) = \mathcal{P}_{ au}$, imply

$$\begin{aligned} \|\boldsymbol{x}_{j}^{(k+1)} - \boldsymbol{x}_{j}^{*}\|_{\mathcal{V}}^{2} &\leq \|G_{\tau}(\boldsymbol{x}_{j}^{(k)}) - G_{\tau}(\boldsymbol{x}_{j}^{*})\|_{\mathcal{V}}^{2} - \|(I - J_{\tau})G_{\tau}(\boldsymbol{x}_{j}^{(k)}) - (I - J_{\tau})G_{\tau}(\boldsymbol{x}_{j}^{*})\|_{\mathcal{V}}^{2} \\ &\leq \|\boldsymbol{x}_{j}^{(k)} - \boldsymbol{x}_{j}^{*}\|_{\mathcal{V}}^{2} - \underbrace{\|\mathcal{P}_{\tau} \circ G_{\tau}(\boldsymbol{x}_{j}^{(k)}) - \mathcal{P}_{\tau} \circ G_{\tau}(\boldsymbol{x}_{j}^{*})\|_{\mathcal{V}}^{2}}_{\mathcal{V}}, \end{aligned}$$

Let $0 < \tau < 2/\lambda_{\max}(\Psi^*\Psi)$. Then the iterations $\boldsymbol{x}^{(k+1)} := J_{\tau} \circ G_{\tau}(\boldsymbol{x}^{(k)})$ converge strongly to an element $\boldsymbol{x}^* \in X^*$ from any $\boldsymbol{x}^{(0)} \in \mathcal{V}^N$.

Sketch: Opial's Theorem \Rightarrow weak convergence [Daubechies, et al '04], [Combettes '04].

Finite convergence is easily obtained for $j \in \Lambda_0$ s.t. $\|(\Psi^*(\Psi x^* - u))_j\|_{\mathcal{V}} < 1$. We focus on the set $j \in \Lambda_0$ s.t. $\|(\Psi^*(\Psi x^* - u))_j\|_{\mathcal{V}} = 1$, i.e., the complement.

 J_{τ} is component-wise given by $(I - \mathcal{P}_{\tau})$, where \mathcal{P}_{τ} is metric projection onto $B_{\mathcal{V}}(\mathbf{0}, \tau)$ $\Rightarrow J_{\tau}(\boldsymbol{y}), \mathcal{P}_{\tau}(\boldsymbol{y})$, and \boldsymbol{y} are colinear with the origin for any $\boldsymbol{y} \in \mathcal{V}^{N}$.

 $J_{ au}$ component-wise FNE and $(I - J_{ au}) = (I - I + \mathcal{P}_{ au}) = \mathcal{P}_{ au}$, imply

$$\begin{aligned} \|\boldsymbol{x}_{j}^{(k+1)} - \boldsymbol{x}_{j}^{*}\|_{\mathcal{V}}^{2} &\leq \|G_{\tau}(\boldsymbol{x}_{j}^{(k)}) - G_{\tau}(\boldsymbol{x}_{j}^{*})\|_{\mathcal{V}}^{2} - \|(I - J_{\tau})G_{\tau}(\boldsymbol{x}_{j}^{(k)}) - (I - J_{\tau})G_{\tau}(\boldsymbol{x}_{j}^{*})\|_{\mathcal{V}}^{2} \\ &\leq \|\boldsymbol{x}_{j}^{(k)} - \boldsymbol{x}_{j}^{*}\|_{\mathcal{V}}^{2} - \underbrace{\|\mathcal{P}_{\tau} \circ G_{\tau}(\boldsymbol{x}_{j}^{(k)}) - \mathcal{P}_{\tau} \circ G_{\tau}(\boldsymbol{x}_{j}^{*})\|_{\mathcal{V}}^{2}}_{\mathcal{V}}, \end{aligned}$$

Let $0 < \tau < 2/\lambda_{\max}(\Psi^*\Psi)$. Then the iterations $\boldsymbol{x}^{(k+1)} := J_{\tau} \circ G_{\tau}(\boldsymbol{x}^{(k)})$ converge strongly to an element $\boldsymbol{x}^* \in X^*$ from any $\boldsymbol{x}^{(0)} \in \mathcal{V}^N$.

Sketch: Opial's Theorem \Rightarrow weak convergence [Daubechies, et al '04], [Combettes '04].

Finite convergence is easily obtained for $j \in \Lambda_0$ s.t. $\|(\Psi^*(\Psi x^* - u))_j\|_{\mathcal{V}} < 1$. We focus on the set $j \in \Lambda_0$ s.t. $\|(\Psi^*(\Psi x^* - u))_j\|_{\mathcal{V}} = 1$, i.e., the complement.

 J_{τ} is component-wise given by $(I - \mathcal{P}_{\tau})$, where \mathcal{P}_{τ} is metric projection onto $B_{\mathcal{V}}(\mathbf{0}, \tau)$ $\Rightarrow J_{\tau}(y), \mathcal{P}_{\tau}(y)$, and y are colinear with the origin for any $y \in \mathcal{V}^{N}$.

 $J_{ au}$ component-wise FNE and $(I - J_{ au}) = (I - I + \mathcal{P}_{ au}) = \mathcal{P}_{ au}$, imply

$$\begin{aligned} \|\boldsymbol{x}_{j}^{(k+1)} - \boldsymbol{x}_{j}^{*}\|_{\mathcal{V}}^{2} &\leq \|G_{\tau}(\boldsymbol{x}_{j}^{(k)}) - G_{\tau}(\boldsymbol{x}_{j}^{*})\|_{\mathcal{V}}^{2} - \|(I - J_{\tau})G_{\tau}(\boldsymbol{x}_{j}^{(k)}) - (I - J_{\tau})G_{\tau}(\boldsymbol{x}_{j}^{*})\|_{\mathcal{V}}^{2} \\ &\leq \|\boldsymbol{x}_{j}^{(k)} - \boldsymbol{x}_{j}^{*}\|_{\mathcal{V}}^{2} - \underbrace{\|\mathcal{P}_{\tau} \circ G_{\tau}(\boldsymbol{x}_{j}^{(k)}) - \mathcal{P}_{\tau} \circ G_{\tau}(\boldsymbol{x}_{j}^{*})\|_{\mathcal{V}}^{2}}_{\mathcal{V}}, \end{aligned}$$

Let $0 < \tau < 2/\lambda_{\max}(\Psi^*\Psi)$. Then the iterations $\boldsymbol{x}^{(k+1)} := J_{\tau} \circ G_{\tau}(\boldsymbol{x}^{(k)})$ converge strongly to an element $\boldsymbol{x}^* \in X^*$ from any $\boldsymbol{x}^{(0)} \in \mathcal{V}^N$.

Sketch: Opial's Theorem \Rightarrow weak convergence [Daubechies, et al '04], [Combettes '04].

Finite convergence is easily obtained for $j \in \Lambda_0$ s.t. $\|(\Psi^*(\Psi x^* - u))_j\|_{\mathcal{V}} < 1$. We focus on the set $j \in \Lambda_0$ s.t. $\|(\Psi^*(\Psi x^* - u))_j\|_{\mathcal{V}} = 1$, i.e., the complement.

 J_{τ} is component-wise given by $(I - \mathcal{P}_{\tau})$, where \mathcal{P}_{τ} is metric projection onto $B_{\mathcal{V}}(\mathbf{0}, \tau)$ $\Rightarrow J_{\tau}(\mathbf{y}), \mathcal{P}_{\tau}(\mathbf{y})$, and \mathbf{y} are collinear with the origin for any $\mathbf{y} \in \mathcal{V}^{N}$.

 J_{τ} component-wise FNE and $(I - J_{\tau}) = (I - I + \mathcal{P}_{\tau}) = \mathcal{P}_{\tau}$, imply

$$\begin{aligned} \|\boldsymbol{x}_{j}^{(k+1)} - \boldsymbol{x}_{j}^{*}\|_{\mathcal{V}}^{2} &\leq \|G_{\tau}(\boldsymbol{x}_{j}^{(k)}) - G_{\tau}(\boldsymbol{x}_{j}^{*})\|_{\mathcal{V}}^{2} - \|(I - J_{\tau})G_{\tau}(\boldsymbol{x}_{j}^{(k)}) - (I - J_{\tau})G_{\tau}(\boldsymbol{x}_{j}^{*})\|_{\mathcal{V}}^{2} \\ &\leq \|\boldsymbol{x}_{j}^{(k)} - \boldsymbol{x}_{j}^{*}\|_{\mathcal{V}}^{2} - \|\mathcal{P}_{\tau} \circ G_{\tau}(\boldsymbol{x}_{j}^{(k)}) - \mathcal{P}_{\tau} \circ G_{\tau}(\boldsymbol{x}_{j}^{*})\|_{\mathcal{V}}^{2}, \end{aligned}$$

Let $0 < \tau < 2/\lambda_{\max}(\Psi^*\Psi)$. Then the iterations $\boldsymbol{x}^{(k+1)} := J_{\tau} \circ G_{\tau}(\boldsymbol{x}^{(k)})$ converge strongly to an element $\boldsymbol{x}^* \in X^*$ from any $\boldsymbol{x}^{(0)} \in \mathcal{V}^N$.

Sketch: Opial's Theorem \Rightarrow weak convergence [Daubechies, et al '04], [Combettes '04].

Finite convergence is easily obtained for $j \in \Lambda_0$ s.t. $\|(\Psi^*(\Psi x^* - u))_j\|_{\mathcal{V}} < 1$. We focus on the set $j \in \Lambda_0$ s.t. $\|(\Psi^*(\Psi x^* - u))_j\|_{\mathcal{V}} = 1$, i.e., the complement.

 J_{τ} is component-wise given by $(I - \mathcal{P}_{\tau})$, where \mathcal{P}_{τ} is metric projection onto $B_{\mathcal{V}}(\mathbf{0}, \tau)$ $\Rightarrow J_{\tau}(\mathbf{y}), \mathcal{P}_{\tau}(\mathbf{y})$, and \mathbf{y} are collinear with the origin for any $\mathbf{y} \in \mathcal{V}^{N}$.

 J_{τ} component-wise FNE and $(I-J_{\tau})=(I-I+\mathcal{P}_{\tau})=\mathcal{P}_{\tau},$ imply

$$\begin{aligned} \|\boldsymbol{x}_{j}^{(k+1)} - \boldsymbol{x}_{j}^{*}\|_{\mathcal{V}}^{2} &\leq \|G_{\tau}(\boldsymbol{x}_{j}^{(k)}) - G_{\tau}(\boldsymbol{x}_{j}^{*})\|_{\mathcal{V}}^{2} - \|(I - J_{\tau})G_{\tau}(\boldsymbol{x}_{j}^{(k)}) - (I - J_{\tau})G_{\tau}(\boldsymbol{x}_{j}^{*})\|_{\mathcal{V}}^{2} \\ &\leq \|\boldsymbol{x}_{j}^{(k)} - \boldsymbol{x}_{j}^{*}\|_{\mathcal{V}}^{2} - \underbrace{\|\mathcal{P}_{\tau} \circ G_{\tau}(\boldsymbol{x}_{j}^{(k)}) - \mathcal{P}_{\tau} \circ G_{\tau}(\boldsymbol{x}_{j}^{*})\|_{\mathcal{V}}^{2}}_{\mathcal{V}}, \end{aligned}$$

 $=:c_{i}^{(k)}$

Iterate:
$$\| \boldsymbol{x}_{j}^{(k+1)} - \boldsymbol{x}_{j}^{*} \|_{\mathcal{V}}^{2} \le \| \boldsymbol{x}_{j}^{(k)} - \boldsymbol{x}_{j}^{*} \|_{\mathcal{V}}^{2} - c_{j}^{(k)} \le \underbrace{\cdots}_{k-\text{times}} \le \| \boldsymbol{x}_{j}^{(0)} - \boldsymbol{x}_{j}^{*} \|_{\mathcal{V}}^{2} - \sum_{\ell=0}^{k} c_{j}^{(\ell)}$$

Rearrange: $\sum_{\ell=0}^{k} c_{j}^{(\ell)} \le \underbrace{\| \boldsymbol{x}_{j}^{(0)} - \boldsymbol{x}_{j}^{*} \|_{\mathcal{V}}^{2}}_{\text{independent of } k} \implies c_{j}^{(k)} \to 0 \text{ as } k \to \infty.$

Collinearity & $c_j^{(k)} \to 0 \Rightarrow \text{angle } \theta_j^{(k)}$ between the iterates $x_j^{(k)}$ and x_j^* is converging to 0. Weak convergence $\implies \|x_j^{(k)}\|_{\mathcal{V}} \cos \theta_j^{(k)} \to \|x_j^*\|_{\mathcal{V}}$ (in cases $x_j^* = 0$ and $x_j^* \neq 0$). Angular convergence $\implies \cos \theta_j^{(k)} \to 1$.

Weak convergence & angular convergence imply $\|\boldsymbol{x}_{j}^{(k)}\|_{\mathcal{V}} \to \|\boldsymbol{x}_{j}^{*}\|_{\mathcal{V}}$ as $k \to \infty$ so that $\|\boldsymbol{x}_{j}^{(k)} - \boldsymbol{x}_{j}^{*}\|_{\mathcal{V}}^{2} = \|\boldsymbol{x}_{j}^{(k)}\|_{\mathcal{V}}^{2} + \|\boldsymbol{x}_{j}^{*}\|_{\mathcal{V}}^{2} - 2\langle \boldsymbol{x}_{j}^{(k)}, \boldsymbol{x}_{j}^{*}\rangle_{\mathcal{V}} \to 0$ as $k \to \infty$. Hence $\boldsymbol{x}_{j}^{(k)} \to \boldsymbol{x}_{j}^{*}$ as $k \to \infty$ for each $j \in \Lambda_{0}$.

$$\begin{aligned} \text{Iterate:} \quad \| \boldsymbol{x}_{j}^{(k+1)} - \boldsymbol{x}_{j}^{*} \|_{\mathcal{V}}^{2} \leq \| \boldsymbol{x}_{j}^{(k)} - \boldsymbol{x}_{j}^{*} \|_{\mathcal{V}}^{2} - c_{j}^{(k)} \leq \underbrace{\cdots}_{k-\text{times}} \leq \| \boldsymbol{x}_{j}^{(0)} - \boldsymbol{x}_{j}^{*} \|_{\mathcal{V}}^{2} - \sum_{\ell=0}^{k} c_{j}^{(\ell)} \\ \text{Rearrange:} \quad \sum_{\ell=0}^{k} c_{j}^{(\ell)} \leq \underbrace{\| \boldsymbol{x}_{j}^{(0)} - \boldsymbol{x}_{j}^{*} \|_{\mathcal{V}}^{2}}_{\text{independent of } k} \implies c_{j}^{(k)} \to 0 \quad \text{as } k \to \infty. \end{aligned}$$

Collinearity & $c_j^{(k)} \to 0 \Rightarrow \text{angle } \theta_j^{(k)}$ between the iterates $x_j^{(k)}$ and x_j^* is converging to 0. Weak convergence $\implies \|x_j^{(k)}\|_{\mathcal{V}} \cos \theta_j^{(k)} \to \|x_j^*\|_{\mathcal{V}}$ (in cases $x_j^* = 0$ and $x_j^* \neq 0$). Angular convergence $\implies \cos \theta_j^{(k)} \to 1$.

Weak convergence & angular convergence imply $\|\boldsymbol{x}_{j}^{(k)}\|_{\mathcal{V}} \to \|\boldsymbol{x}_{j}^{*}\|_{\mathcal{V}}$ as $k \to \infty$ so that $\|\boldsymbol{x}_{j}^{(k)} - \boldsymbol{x}_{j}^{*}\|_{\mathcal{V}}^{2} = \|\boldsymbol{x}_{j}^{(k)}\|_{\mathcal{V}}^{2} + \|\boldsymbol{x}_{j}^{*}\|_{\mathcal{V}}^{2} - 2\langle \boldsymbol{x}_{j}^{(k)}, \boldsymbol{x}_{j}^{*}\rangle_{\mathcal{V}} \to 0$ as $k \to \infty$. Hence $\boldsymbol{x}_{j}^{(k)} \to \boldsymbol{x}_{j}^{*}$ as $k \to \infty$ for each $j \in \Lambda_{0}$.

$$\begin{aligned} \text{Iterate:} \quad \| \boldsymbol{x}_{j}^{(k+1)} - \boldsymbol{x}_{j}^{*} \|_{\mathcal{V}}^{2} &\leq \| \boldsymbol{x}_{j}^{(k)} - \boldsymbol{x}_{j}^{*} \|_{\mathcal{V}}^{2} - c_{j}^{(k)} &\leq \underbrace{\cdots}_{k\text{-times}} \leq \| \boldsymbol{x}_{j}^{(0)} - \boldsymbol{x}_{j}^{*} \|_{\mathcal{V}}^{2} - \sum_{\ell=0}^{k} c_{j}^{(\ell)} \\ \text{Rearrange:} \quad \sum_{\ell=0}^{k} c_{j}^{(\ell)} &\leq \| \boldsymbol{x}_{j}^{(0)} - \boldsymbol{x}_{j}^{*} \|_{\mathcal{V}}^{2} \implies c_{j}^{(k)} \to 0 \quad \text{as } k \to \infty. \end{aligned}$$

independent of k

 $\begin{array}{ll} \mbox{Collinearity } \& \ c_j^{(k)} \to 0 \Rightarrow \mbox{angle } \theta_j^{(k)} \ \mbox{between the iterates } x_j^{(k)} \ \mbox{and } x_j^* \ \mbox{is converging to } 0. \\ \\ \mbox{Weak convergence} & \Longrightarrow & \|x_j^{(k)}\|_{\mathcal{V}} \cos \theta_j^{(k)} \to \|x_j^*\|_{\mathcal{V}} \ \ \mbox{(in cases } x_j^* = 0 \ \mbox{and } x_j^* \neq 0). \\ \\ \mbox{Angular convergence} & \Longrightarrow & \cos \theta_j^{(k)} \to 1. \end{array}$

Weak convergence & angular convergence imply $\|x_j^{(k)}\|_\mathcal{V} o \|x_j^*\|_\mathcal{V}$ as $k o\infty$ so that

$$\|\boldsymbol{x}_{j}^{(k)} - \boldsymbol{x}_{j}^{*}\|_{\mathcal{V}}^{2} = \|\boldsymbol{x}_{j}^{(k)}\|_{\mathcal{V}}^{2} + \|\boldsymbol{x}_{j}^{*}\|_{\mathcal{V}}^{2} - 2\langle \boldsymbol{x}_{j}^{(k)}, \boldsymbol{x}_{j}^{*}\rangle_{\mathcal{V}} \to 0 \quad \text{as } k \to \infty.$$

Hence $oldsymbol{x}_j^{(k)} o oldsymbol{x}_j^*$ as $k o \infty$ for each $j \in \Lambda_0.$

$$\begin{aligned} \text{Iterate:} \quad \|\boldsymbol{x}_{j}^{(k+1)} - \boldsymbol{x}_{j}^{*}\|_{\mathcal{V}}^{2} \leq \|\boldsymbol{x}_{j}^{(k)} - \boldsymbol{x}_{j}^{*}\|_{\mathcal{V}}^{2} - c_{j}^{(k)} \leq \underbrace{\cdots}_{k\text{-times}} \leq \|\boldsymbol{x}_{j}^{(0)} - \boldsymbol{x}_{j}^{*}\|_{\mathcal{V}}^{2} - \sum_{\ell=0}^{k} c_{j}^{(\ell)} \\ \text{Rearrange:} \quad \sum_{\ell=0}^{k} c_{j}^{(\ell)} \leq \underbrace{\|\boldsymbol{x}_{j}^{(0)} - \boldsymbol{x}_{j}^{*}\|_{\mathcal{V}}^{2}}_{\text{independent of } k} \implies c_{j}^{(k)} \to 0 \quad \text{as } k \to \infty. \end{aligned}$$

$$\begin{aligned} \text{Collinearity } \& c_{j}^{(k)} \to 0 \Rightarrow \text{angle } \theta_{j}^{(k)} \text{ between the iterates } \boldsymbol{x}_{j}^{(k)} \text{ and } \boldsymbol{x}_{j}^{*} \text{ is converging to } 0 \end{aligned}$$

$$\begin{aligned} \text{Weak convergence} \implies \|\boldsymbol{x}_{j}^{(k)}\|_{\mathcal{V}} \cos \theta_{j}^{(k)} \to \|\boldsymbol{x}_{j}^{*}\|_{\mathcal{V}} \quad (\text{in cases } \boldsymbol{x}_{j}^{*} = \mathbf{0} \text{ and } \boldsymbol{x}_{j}^{*} \neq \mathbf{0}). \end{aligned}$$

$$\begin{aligned} \text{Angular convergence} \implies \cos \theta_{j}^{(k)} \to 1. \end{aligned}$$

Weak convergence & angular convergence imply $\|x_i^{(k)}\|_\mathcal{V} o \|x_j^*\|_\mathcal{V}$ as $k o\infty$ so that

$$\|\boldsymbol{x}_{j}^{(k)} - \boldsymbol{x}_{j}^{*}\|_{\mathcal{V}}^{2} = \|\boldsymbol{x}_{j}^{(k)}\|_{\mathcal{V}}^{2} + \|\boldsymbol{x}_{j}^{*}\|_{\mathcal{V}}^{2} - 2\langle \boldsymbol{x}_{j}^{(k)}, \boldsymbol{x}_{j}^{*}\rangle_{\mathcal{V}} \to 0 \quad \text{as } k \to \infty.$$

Hence $oldsymbol{x}_j^{(k)} o oldsymbol{x}_j^*$ as $k o \infty$ for each $j \in \Lambda_0.$

Iterate:
$$\|\boldsymbol{x}_{j}^{(k+1)} - \boldsymbol{x}_{j}^{*}\|_{\mathcal{V}}^{2} \leq \|\boldsymbol{x}_{j}^{(k)} - \boldsymbol{x}_{j}^{*}\|_{\mathcal{V}}^{2} - c_{j}^{(k)} \leq \underbrace{\cdots}_{k-\text{times}} \leq \|\boldsymbol{x}_{j}^{(0)} - \boldsymbol{x}_{j}^{*}\|_{\mathcal{V}}^{2} - \sum_{\ell=0}^{k} c_{j}^{(\ell)}$$

$$\text{Rearrange:} \quad \sum_{\ell=0}^k c_j^{(\ell)} \leq \underbrace{\| \boldsymbol{x}_j^{(0)} - \boldsymbol{x}_j^* \|_{\mathcal{V}}^2}_{\text{independent of } k} \implies c_j^{(k)} \to 0 \quad \text{as } k \to \infty.$$

Collinearity & $c_j^{(k)} \to 0 \Rightarrow \text{angle } \theta_j^{(k)}$ between the iterates $x_j^{(k)}$ and x_j^* is converging to 0. Weak convergence $\implies \|x_j^{(k)}\|_{\mathcal{V}} \cos \theta_j^{(k)} \to \|x_j^*\|_{\mathcal{V}}$ (in cases $x_j^* = \mathbf{0}$ and $x_j^* \neq \mathbf{0}$). Angular convergence $\implies \cos \theta_j^{(k)} \to 1$.

Weak convergence & angular convergence imply $\|\boldsymbol{x}_{j}^{(k)}\|_{\mathcal{V}} \to \|\boldsymbol{x}_{j}^{*}\|_{\mathcal{V}}$ as $k \to \infty$ so that $\|\boldsymbol{x}_{j}^{(k)} - \boldsymbol{x}_{j}^{*}\|_{\mathcal{V}}^{2} = \|\boldsymbol{x}_{j}^{(k)}\|_{\mathcal{V}}^{2} + \|\boldsymbol{x}_{j}^{*}\|_{\mathcal{V}}^{2} - 2\langle \boldsymbol{x}_{j}^{(k)}, \boldsymbol{x}_{j}^{*}\rangle_{\mathcal{V}} \to 0$ as $k \to \infty$. Hence $\boldsymbol{x}_{j}^{(k)} \to \boldsymbol{x}_{j}^{*}$ as $k \to \infty$ for each $j \in \Lambda_{0}$.

Iterate:
$$\|\boldsymbol{x}_{j}^{(k+1)} - \boldsymbol{x}_{j}^{*}\|_{\mathcal{V}}^{2} \leq \|\boldsymbol{x}_{j}^{(k)} - \boldsymbol{x}_{j}^{*}\|_{\mathcal{V}}^{2} - c_{j}^{(k)} \leq \dots \leq \|\boldsymbol{x}_{j}^{(0)} - \boldsymbol{x}_{j}^{*}\|_{\mathcal{V}}^{2} - \sum_{\ell=0}^{k} c_{j}^{(\ell)}$$

$$\text{Rearrange:} \quad \sum_{\ell=0}^k c_j^{(\ell)} \leq \underbrace{\| \boldsymbol{x}_j^{(0)} - \boldsymbol{x}_j^* \|_{\mathcal{V}}^2}_{\text{independent of } k} \implies c_j^{(k)} \to 0 \quad \text{as } k \to \infty.$$

Collinearity & $c_j^{(k)} \to 0 \Rightarrow \text{angle } \theta_j^{(k)}$ between the iterates $x_j^{(k)}$ and x_j^* is converging to 0. Weak convergence $\implies \|x_j^{(k)}\|_{\mathcal{V}} \cos \theta_j^{(k)} \to \|x_j^*\|_{\mathcal{V}}$ (in cases $x_j^* = \mathbf{0}$ and $x_j^* \neq \mathbf{0}$). Angular convergence $\implies \cos \theta_j^{(k)} \to 1$.

Weak convergence & angular convergence imply $\|x_j^{(k)}\|_{\mathcal{V}} o \|x_j^*\|_{\mathcal{V}}$ as $k \to \infty$ so that

$$\| \bm{x}_j^{(k)} - \bm{x}_j^* \|_{\mathcal{V}}^2 = \| \bm{x}_j^{(k)} \|_{\mathcal{V}}^2 + \| \bm{x}_j^* \|_{\mathcal{V}}^2 - 2 \langle \bm{x}_j^{(k)}, \bm{x}_j^* \rangle_{\mathcal{V}} \to 0 \quad \text{as } k \to \infty.$$

Hence $\boldsymbol{x}_{j}^{(k)}
ightarrow \boldsymbol{x}_{j}^{*}$ as $k
ightarrow \infty$ for each $j \in \Lambda_{0}$.

The Bregman distance w.r.t. $J(\cdot) := \|\cdot\|_{\mathcal{V},1}$ between the points u and v in \mathcal{V}^N is defined as

$$D_J^{\boldsymbol{p}}(\boldsymbol{u}, \boldsymbol{v}) = J(\boldsymbol{u}) - J(\boldsymbol{v}) - \langle \boldsymbol{p}, \boldsymbol{u} - \boldsymbol{v} \rangle_{\mathcal{V}, 2},$$

where $p \in \partial J(v)$ is an element of the subdifferential of J at the point v.

The Bregman iterative scheme can be written for \mathcal{V}^N :

$$\boldsymbol{u}^{(0)} \leftarrow \mathbf{0}, \ \boldsymbol{z}^{(0)} \leftarrow \mathbf{0},$$
 (6)

For
$$k = 0, 1, ...$$
 do (7)

$$\boldsymbol{u}^{(k+1)} \leftarrow \boldsymbol{u} + (\boldsymbol{u}^{(k)} - \boldsymbol{\Psi} \boldsymbol{z}^{(k)}), \tag{8}$$

$$\boldsymbol{z}^{(k+1)} \leftarrow \operatorname*{arg\,min}_{\boldsymbol{z} \in \mathcal{V}^N} J(\boldsymbol{z}) + \frac{1}{2} \|\boldsymbol{\Psi}\boldsymbol{z} - \boldsymbol{u}^{(k+1)}\|_{\mathcal{V},2}^2.$$
(9)

We apply the forward-backward splitting to find the intermediate solutions $z^{(k)}$ in (9).

Adding residual back in step (8) gives nice error cancellation, allowing intermediate solns. (9) to be solved less accurately without affecting overall accuracy (error forgetting).

The Bregman distance w.r.t. $J(\cdot) := \|\cdot\|_{\mathcal{V},1}$ between the points u and v in \mathcal{V}^N is defined as

$$D_J^{\boldsymbol{p}}(\boldsymbol{u},\boldsymbol{v}) = J(\boldsymbol{u}) - J(\boldsymbol{v}) - \langle \boldsymbol{p}, \boldsymbol{u} - \boldsymbol{v} \rangle_{\mathcal{V},2},$$

where $p \in \partial J(v)$ is an element of the subdifferential of J at the point v.

The Bregman iterative scheme can be written for \mathcal{V}^N :

$$\boldsymbol{u}^{(0)} \leftarrow \boldsymbol{0}, \ \boldsymbol{z}^{(0)} \leftarrow \boldsymbol{0},$$
 (6)

For
$$k = 0, 1, ...$$
 do (7)

$$\boldsymbol{u}^{(k+1)} \leftarrow \boldsymbol{u} + (\boldsymbol{u}^{(k)} - \boldsymbol{\Psi} \boldsymbol{z}^{(k)}),$$
 (8)

$$\boldsymbol{z}^{(k+1)} \leftarrow \underset{\boldsymbol{z} \in \mathcal{V}^{N}}{\arg\min} J(\boldsymbol{z}) + \frac{1}{2} \| \boldsymbol{\Psi} \boldsymbol{z} - \boldsymbol{u}^{(k+1)} \|_{\mathcal{V},2}^{2}.$$
(9)

We apply the forward-backward splitting to find the intermediate solutions $z^{(k)}$ in (9).

Adding residual back in step (8) gives nice error cancellation, allowing intermediate solns. (9) to be solved less accurately without affecting overall accuracy (error forgetting).

The Bregman distance w.r.t. $J(\cdot) := \|\cdot\|_{\mathcal{V},1}$ between the points u and v in \mathcal{V}^N is defined as

$$D_J^{\boldsymbol{p}}(\boldsymbol{u},\boldsymbol{v}) = J(\boldsymbol{u}) - J(\boldsymbol{v}) - \langle \boldsymbol{p}, \boldsymbol{u} - \boldsymbol{v} \rangle_{\mathcal{V},2},$$

where $p \in \partial J(v)$ is an element of the subdifferential of J at the point v.

The Bregman iterative scheme can be written for \mathcal{V}^N :

$$\boldsymbol{u}^{(0)} \leftarrow \boldsymbol{0}, \ \boldsymbol{z}^{(0)} \leftarrow \boldsymbol{0}, \tag{6}$$

For
$$k = 0, 1, ...$$
 do (7)

$$\boldsymbol{u}^{(k+1)} \leftarrow \boldsymbol{u} + (\boldsymbol{u}^{(k)} - \boldsymbol{\Psi} \boldsymbol{z}^{(k)}),$$
 (8)

$$\boldsymbol{z}^{(k+1)} \leftarrow \operatorname*{arg\,min}_{\boldsymbol{z} \in \mathcal{V}^N} J(\boldsymbol{z}) + \frac{1}{2} \| \boldsymbol{\Psi} \boldsymbol{z} - \boldsymbol{u}^{(k+1)} \|_{\mathcal{V},2}^2. \tag{9}$$

We apply the forward-backward splitting to find the intermediate solutions $z^{(k)}$ in (9).

Adding residual back in step (8) gives nice error cancellation, allowing intermediate solns. (9) to be solved less accurately without affecting overall accuracy (error forgetting).

The Bregman distance w.r.t. $J(\cdot) := \|\cdot\|_{\mathcal{V},1}$ between the points u and v in \mathcal{V}^N is defined as

$$D_J^{\boldsymbol{p}}(\boldsymbol{u},\boldsymbol{v}) = J(\boldsymbol{u}) - J(\boldsymbol{v}) - \langle \boldsymbol{p}, \boldsymbol{u} - \boldsymbol{v} \rangle_{\mathcal{V},2},$$

where $p \in \partial J(v)$ is an element of the subdifferential of J at the point v.

The Bregman iterative scheme can be written for \mathcal{V}^N :

$$\boldsymbol{u}^{(0)} \leftarrow \boldsymbol{0}, \ \boldsymbol{z}^{(0)} \leftarrow \boldsymbol{0}, \tag{6}$$

For
$$k = 0, 1, ...$$
 do (7)

$$\boldsymbol{u}^{(k+1)} \leftarrow \boldsymbol{u} + (\boldsymbol{u}^{(k)} - \boldsymbol{\Psi} \boldsymbol{z}^{(k)}),$$
 (8)

$$\boldsymbol{z}^{(k+1)} \leftarrow \operatorname*{arg\,min}_{\boldsymbol{z} \in \mathcal{V}^{N}} J(\boldsymbol{z}) + \frac{1}{2} \| \boldsymbol{\Psi} \boldsymbol{z} - \boldsymbol{u}^{(k+1)} \|_{\mathcal{V},2}^{2}.$$
(9)

We apply the forward-backward splitting to find the intermediate solutions $z^{(k)}$ in (9).

Adding residual back in step (8) gives nice error cancellation, allowing intermediate solns. (9) to be solved less accurately without affecting overall accuracy (error forgetting).

Forward-backward splitting:

- Finite convergence to the complement of the support of an element of X^*
- Strong convergence of the whole sequence to a fixed point
- Linear convergence, under minimum eigenvalue assumption, with an explicit bound of the constant

Bregman iterations:

- Monotonic decrease in the residual $rac{1}{2} \| oldsymbol{\Psi} oldsymbol{z}^{(k)} oldsymbol{u} \|_{\mathcal{V},2}^2$
- Monotonic decrease in the Bregman distance between iterates $D_J^{p^{(k)}}(\pmb{z}^{(k+1)},\pmb{z}^{(k)})$
- Existence of weak-* convergent subsequences in the Banach space $(\mathcal{V}^N, \|\cdot\|_{\mathcal{V},1})$ whose limit satisfy $\Psi z = u$

Main challenges: Infinite dimensions implies lack of compactness, some geometric arguments that work in \mathbb{R}^N don't hold in \mathcal{V}^N .

Forward-backward splitting:

- Finite convergence to the complement of the support of an element of X^*
- Strong convergence of the whole sequence to a fixed point
- Linear convergence, under minimum eigenvalue assumption, with an explicit bound of the constant

Bregman iterations:

- Monotonic decrease in the residual $rac{1}{2} \| m{\Psi} m{z}^{(k)} m{u} \|_{\mathcal{V},2}^2$
- Monotonic decrease in the Bregman distance between iterates $D_J^{m{p}^{(k)}}(m{z}^{(k+1)},m{z}^{(k)})$
- Existence of weak-* convergent subsequences in the Banach space $(\mathcal{V}^N, \|\cdot\|_{\mathcal{V},1})$ whose limit satisfy $\Psi z = u$

Main challenges: Infinite dimensions implies lack of compactness, some geometric arguments that work in \mathbb{R}^N don't hold in \mathcal{V}^N .

Forward-backward splitting:

- Finite convergence to the complement of the support of an element of X^*
- Strong convergence of the whole sequence to a fixed point
- Linear convergence, under minimum eigenvalue assumption, with an explicit bound of the constant

Bregman iterations:

- Monotonic decrease in the residual $rac{1}{2} \| m{\Psi} m{z}^{(k)} m{u} \|_{\mathcal{V},2}^2$
- Monotonic decrease in the Bregman distance between iterates $D_J^{m{p}^{(k)}}(m{z}^{(k+1)},m{z}^{(k)})$
- Existence of weak-* convergent subsequences in the Banach space $(\mathcal{V}^N, \|\cdot\|_{\mathcal{V},1})$ whose limit satisfy $\Psi z = u$

Main challenges: Infinite dimensions implies lack of compactness, some geometric arguments that work in \mathbb{R}^N don't hold in \mathcal{V}^N .

Stochastic elliptic PDE with affine random coefficient

Stochastic elliptic problem on $D = [0, 1]^2$:

<

$$\begin{cases} -\nabla \cdot (a(x, \boldsymbol{y}) \nabla u(x, \boldsymbol{y})) &= f(x) & \text{ in } \Gamma \times D, \\ u(x, \boldsymbol{y}) &= 0 & \text{ on } \Gamma \times \partial D. \end{cases}$$
(10)

$$\begin{aligned} a(x, \boldsymbol{y}) &= a_{\min} + y_1 \left(\frac{\sqrt{\pi}L}{2}\right)^{1/2} + \sum_{j=2}^d \zeta_j \varphi_j(x) y_j, \\ \zeta_j &= (\sqrt{\pi}L)^{1/2} \exp\left(\frac{-\left(\left\lfloor \frac{j}{2} \right\rfloor \pi L\right)^2}{8}\right), \text{ for } j > 1, \\ \varphi_j(x) &= \begin{cases} \sin\left(\left\lfloor \frac{j}{2} \right\rfloor \pi x_1/L_p\right), \text{ if } j \text{ is even,} \\ \cos\left(\left\lfloor \frac{j}{2} \right\rfloor \pi x_1/L_p\right), \text{ if } j \text{ is odd,} \end{cases} \end{aligned}$$

Compressed sensing for parametric PDE recovery - numerical examples Stochastic elliptic PDE with affine random coefficient

Stochastic elliptic problem on $D = [0, 1]^2$:

$$\begin{cases} -\nabla \cdot (a(x, \boldsymbol{y}) \nabla u(x, \boldsymbol{y})) &= f(x) & \text{ in } \Gamma \times D, \\ u(x, \boldsymbol{y}) &= 0 & \text{ on } \Gamma \times \partial D. \end{cases}$$
(10)

Specifically, we focus on the case that $y_j \sim \mathcal{U}(-\sqrt{3},\sqrt{3})$, and a(x, y) is given by:

$$\begin{aligned} a(x, \boldsymbol{y}) &= a_{\min} + y_1 \left(\frac{\sqrt{\pi}L}{2}\right)^{1/2} + \sum_{j=2}^d \zeta_j \varphi_j(x) y_j, \\ \zeta_j &= (\sqrt{\pi}L)^{1/2} \exp\left(\frac{-\left(\left\lfloor \frac{j}{2} \right\rfloor \pi L\right)^2}{8}\right), \text{ for } j > 1, \\ \varphi_j(x) &= \begin{cases} \sin\left(\left\lfloor \frac{j}{2} \right\rfloor \pi x_1/L_p\right), \text{ if } j \text{ is even,} \\ \cos\left(\left\lfloor \frac{j}{2} \right\rfloor \pi x_1/L_p\right), \text{ if } j \text{ is odd,} \end{cases} \end{aligned}$$

which is the KL expansion associated with the squared exponential covariance kernel, L_c is the correlation length, and a_{\min} is chosen so that $a(x, y) > 0 \ \forall x \in D, y \in \Gamma$.

Fixed quasi-uniform triangulation of $D = [0, 1]^2$ having 206 points ($h \approx 1/16$)

Compressed sensing setup:

- Fixed total degree subspace Λ_0 with $N = #\Lambda_0$ large, increasing the number of samples m following $\lceil kN/8 \rceil$ for k = 1, 2, ..., 7
- Compute $\eta_{\Lambda_0} := \|\boldsymbol{u}_{\Lambda_0^c}\|_{\mathcal{V},2} = \|\boldsymbol{\Psi}\boldsymbol{z}_{\Lambda_0}^{SG} \boldsymbol{u}\|_{\mathcal{V},2}$ using stochastic Galerkin, and set $1.2 \cdot \eta_{\Lambda_0}$ as tolerance for the BPDN problem (choosing μ appropriately)
- Average the results over 24 trials

Compared against:

- "Decoupled approach", solve the same problem with compressed sensing pointwise.
- Stochastic Galerkin, with total degree of order p = 2, 3.
- Stochastic collocation, with Clenshaw-Curtis points with doubling, level L = 2, 3.
- Monte Carlo method, with uniform sampling.

Fixed quasi-uniform triangulation of $D = [0, 1]^2$ having 206 points ($h \approx 1/16$)

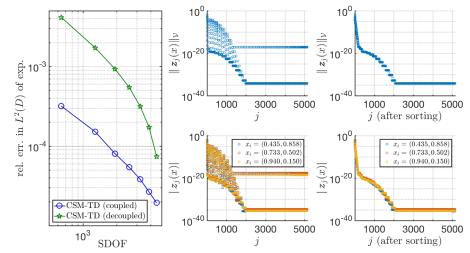
Compressed sensing setup:

- Fixed total degree subspace Λ_0 with $N = #\Lambda_0$ large, increasing the number of samples m following $\lceil kN/8 \rceil$ for k = 1, 2, ..., 7
- Compute $\eta_{\Lambda_0} := \|\boldsymbol{u}_{\Lambda_0^c}\|_{\mathcal{V},2} = \|\boldsymbol{\Psi}\boldsymbol{z}_{\Lambda_0}^{SG} \boldsymbol{u}\|_{\mathcal{V},2}$ using stochastic Galerkin, and set $1.2 \cdot \eta_{\Lambda_0}$ as tolerance for the BPDN problem (choosing μ appropriately)
- Average the results over 24 trials

Compared against:

- "Decoupled approach", solve the same problem with compressed sensing pointwise.
- Stochastic Galerkin, with total degree of order p = 2, 3.
- Stochastic collocation, with Clenshaw-Curtis points with doubling, level L = 2, 3.
- Monte Carlo method, with uniform sampling.

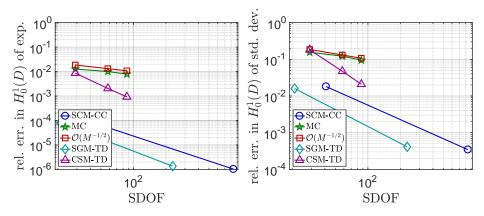
Comparison of Hilbert-valued and functional recovery strategies.



• a(x, y) is the high-dimensional affine coefficient $(d = 100, L_c = 1/4)$

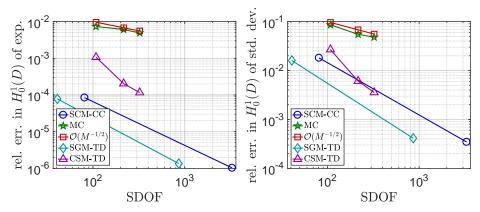
- Λ_0 the total degree space of order p=2 with $N=\#\Lambda_0=5151$
- For the SGM, SDOF is N, for all other methods, SDOF is m, the number of samples

Comparison with stochastic Galerkin, stochastic collocation, and Monte Carlo methods



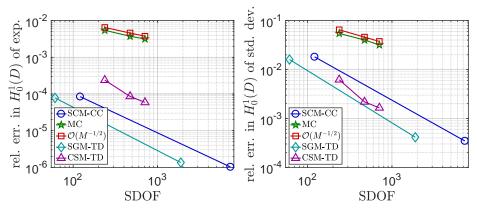
- a(x, y) is the high-dimensional affine coefficient (d = 20, $L_c = 1/4$)
- Λ_0 the total degree space of order p=2 with $N=\#\Lambda_0=231$
- For the SGM, SDOF is N, for all other methods, SDOF is m, the number of samples

Comparison with stochastic Galerkin, stochastic collocation, and Monte Carlo methods



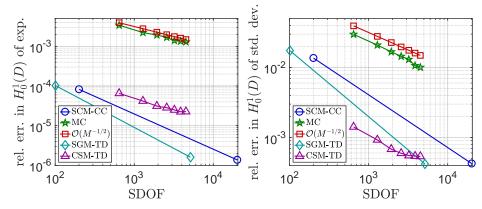
- a(x, y) is the high-dimensional affine coefficient (d = 40, $L_c = 1/4$)
- Λ_0 the total degree space of order p=2 with $N=\#\Lambda_0=861$
- For the SGM, SDOF is N, for all other methods, SDOF is m, the number of samples

Comparison with stochastic Galerkin, stochastic collocation, and Monte Carlo methods



- a(x, y) is the high-dimensional affine coefficient (d = 60, $L_c = 1/4$)
- Λ_0 the total degree space of order p=2 with $N=\#\Lambda_0=1891$
- For the SGM, SDOF is N, for all other methods, SDOF is m, the number of samples

Comparison with stochastic Galerkin, stochastic collocation, and Monte Carlo methods



- a(x, y) is the high-dimensional affine coefficient $(d = 100, L_c = 1/4)$
- Λ_0 the total degree space of order p=2 with $N=\#\Lambda_0=5151$
- For the SGM, SDOF is N, for all other methods, SDOF is m, the number of samples

Concluding remarks

- Generalization of compressed sensing theory and algorithms to the Hilbert-valued case and connection to parameterized PDEs
 - Sparse approximation in the Hilbert-valued setting has been around for a long time
 - This approach puts approx. error estimates in terms of the best s-term w.r.t. Λ_0
- More work to be done in the convergence theory of these methods
 - Recently shown strong convergence for the forward-backward splitting method
 - Would like to show strong convergence for the Bregman iterations
- Need more numerical experiments
 - Nonlinear parameterized PDEs
 - Linear vs. nonlinear stochastic parameterization

Some of the references discussed in this talk

- H. H. BAUSCHKE, P. L. COMBETTES, Convex Analysis and Monotone Operator Theory in Hilbert Spaces. In: CMS Books in Mathematics. Springer. (2010).
- A. CHKIFA, N. DEXTER, H. TRAN, C. G. WEBSTER, Polynomial approximation via compressed sensing of high-dimensional functions on lower sets. In: Mathematics of Computation. American Mathematical Society. (2017).
- P. L. COMBETTES, Solving monotone inclusions via compositions of nonexpansive averaged operators. In: Optimization. Taylor & Francis. (2004).
- I. DAUBECHIES, M. DEFRISE, C. DE MOL, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. In: Communications on Pure and Applied Mathematics. Wiley. (2004).
- E. HALE, W. YIN, Y. ZHANG, Fixed-point continuation for l1-minimization: Methodology and convergence, In: SIAM Journal on Optimization. (2008).
- H. TRAN, C. G. WEBSTER, G. ZHANG, Analysis of quasi-optimal polynomial approximations for parameterized PDEs with deterministic and stochastic coefficients. In: Numerische Mathematik, (2016)
- W. YIN, S. OSHER, D. GOLDFARB, J. DARBON, Bregman Iterative Algorithms for ℓ₁-Minimization with Applications to Compressed Sensing, In: SIAM Journal on Imaging Sciences. (2008)
- W. YIN, S. OSHER, *Error forgetting of Bregman iteration*, In: Journal of Scientific Computing. Springer. (2013)