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Why do we care about “sparse” signals?

Example: We often represent images by expansions like

u(y) =
∑N

j=1
zjΨj(y)

where, e.g., z = (z1, . . . , zN ) ∈ RN and {Ψj}Nj=1 are wavelets.

Figure : Left: Original image. Right: Image obtained after setting 99.00% of the coefficients
zj in the biorthogonal wavelet transform to 0.

Many practical problems have interesting solutions that are sparse.

2 / 25



Why do we care about “sparse” signals?

Example: We often represent images by expansions like

u(y) =
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j=1
zjΨj(y)

where, e.g., z = (z1, . . . , zN ) ∈ RN and {Ψj}Nj=1 are wavelets.

Figure : Left: Original image. Right: Image obtained after setting 99.75% of the coefficients
zj in the biorthogonal wavelet transform to 0.

Many practical problems have interesting solutions that are sparse.
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Recovery of “sparse” Hilbert-valued signals

Question: Can we find sparse solutions when the vector is Hilbert-valued?

Let V be a general Hilbert space, e.g., L2(D) or H1
0 (D)

Hilbert-valued vector: z = (z1, . . . , zN ) ∈ VN =
⊕N

i=1 V

z is s-sparse if all but s of its components are 0

‖ · ‖ a norm on VN , ‖ · ‖-error of best s-term approximation to z:

σs(z) := inf{‖z − x‖ : x ∈ VN is s-sparse}

z is compressible if σs(z)→ 0 quickly as s increases

Goal-1: Given an operator Ψ : VN → Vm and u ∈ Vm (the “data”) with m� N , we
want to solve Ψz = u for z (the “signal”), when z is s-sparse (or compressible).
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Motivating example: parameterized PDE models
Recovery of solutions to high-dimensional PDEs

parameters
y ∈ Γ ⊂ Rd

d finite, but large
−→

PDE model:
L(a( · ,y))[u( · ,y)] = 0
in D ⊂ Rn, n = 1, 2, 3

−→
quantity of

interest
Q[u( · ,y)]

Example: Stochastic elliptic problem on D × Γ{
−∇ · (a(x,y)∇u(x,y)) = f(x) in D × Γ,

u(x,y) = 0 on ∂D × Γ.
(1)

a(x,y) is a random field and f ∈ L2(D)

y = (y1, . . . , yd) with yi i.i.d. bounded, e.g., yi ∼ U(−1, 1)

Goal-2: Approximate the solution map y 7→ u( · ,y) globally in D via an expansion

u( · ,y) ≈ uΛ0( · ,y) :=
∑

j∈Λ0

zj( · )Ψj(y).

z = (z1, . . . , zN ) ∈ VN , V a Hilbert space, in this case V = H1
0 (D)

{Ψj}j∈Λ0 are, e.g., an orthonormal basis of PΛ0(Γ) or interpolating polynomials
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Motivating example: parameterized PDE models
First steps → truncation (selection of the index sets in high-dimensions)

Goal-2: Approximate the solution map y 7→ u( · ,y) globally in D via an expansion

u( · ,y) ≈ uΛ0( · ,y) :=
∑

j∈Λ0

zj( · )Ψj(y).

The first step is to truncate the infinite expansion u =
∑
j zjΨj .

Common choices of the multi-index set Λ0:

Tensor Product

Λ(w) = {ν ∈ N
N : max

1≤i≤N

νi ≤ w}
Total Degree

Λ(w) = {ν ∈ NN :
∑

νi ≤ w}

Hyperbolic Cross

Λ(w) = {ν ∈ NN :
∏

(νi + 1) ≤ w + 1}

Smolyak

Λ(w) = {ν ∈ NN :
∑

f (νi) ≤ f (w)},

with f (ν) = ⌈log2(ν)⌉, ν ≥ 2.

Each choice induces a truncation error ηΛ0 := ‖u− uΛ0‖ =
∥∥∥∑j 6∈Λ0

zjΨj

∥∥∥ = ‖zΛc
0
‖

Algorithm costs scale poorly with dimension, N := #(Λ0) grows quickly

Optimal choice: s most effective indices to minimize η (unknown in general)
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Motivating example: parameterized PDE models
Sparse solutions to parameterized PDEs

Question: When can we hope that the solution to a parameterized PDE, e.g.,{
−∇ · (a(x,y)∇u(x,y)) = f(x) in D × Γ,

u(x,y) = 0 on ∂D × Γ.

is sparse (compressible)?

Assuming

1 Coercivity and continuity of a: there exists 0 < amin ≤ amax such that
amin ≤ a ≤ amax uniformly in D × Γ.

2 Holomorphic parameter dependence: complex continuation, a∗ : Cd → L∞(D),
is an L∞(D)-valued holomorphic function on Cd.

Then the best s-term approximation uΛs obeys

‖u− uΛs‖
2
V,2 = σs(zΛs)V,2︸ ︷︷ ︸

finite part

+ ηΛs︸︷︷︸
infinite part

<∼ s2 exp(−2(κs)1/d),

κ depending on the size and shape of Λs [Tran, Webster, Zhang ’16].
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Motivating example: parameterized PDE models
Log transformed KL example: a(x,y) ≈ 0.5 + exp(ϕ0 +

∑d
k=1

√
λkϕkyk), d = 11, Lc = 1/64
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Compressed sensing for parametric PDE recovery
Problem setup

Goal-1: Given an operator Ψ : VN → Vm and u ∈ Vm (the “data”) with m� N , we
want to solve Ψz = u for z (the “signal”), when z is s-sparse (or compressible).

Question: How can we set up this problem to approximate solutions to parametric PDEs?

Standard measurement scheme for compressed sensing (CS) requires:

Multi-index set Λ0 of size N

Random samples {yi}mi=1 ⊂ Γ drawn from a measure %(y), e.g., Monte Carlo

Bounded orthonormal system (BOS) {Ψj}j∈Λ0 , i.e.,

〈Ψj ,Ψk〉% = δj,k ∀j, k and supj∈Λ0
‖Ψj‖L∞

% (Γ) = Θ <∞

Set: [Ψ]i,j = Ψj(yi) and [u]i = u(yi) ∈ V 1 ≤ i ≤ m, 1 ≤ j ≤ N
Then our “operator” (matrix) Ψ : VN → Vm is defined by the action

[Ψz]i =
∑N

j=1
zjΨj(yi) ∈ V z ∈ VN , 1 ≤ i ≤ m.
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Compressed sensing for parametric PDE recovery
Recovery in the Hilbert-valued setting

It is easy to see that:

(VN , 〈 · , · 〉V,2), with 〈z,z′〉V,2 :=
∑
j∈Λ0
〈zj ,z′j〉V is a Hilbert space

(VN , ‖ · ‖V,p), with ‖z‖V,p :=
(∑

j∈Λ0
‖zj‖pV

)1/p

is a Banach space

For Ψ : VN → Vm we define the operator norm as

‖Ψ‖p→q = sup
‖x‖V,p=1

‖Ψx‖V,q = sup
x 6=0

‖Ψx‖V,q
‖x‖V,p

with ‖Ψ‖p := ‖Ψ‖p→p.

The inner product also allows us to define adjoints

〈Ψx,y〉V,2 = 〈x,Ψ∗y〉V,2

in the standard way.

These facts give us the necessary structure to establish many of the recovery guarantees
and convergence results that hold in the real and complex-valued cases.
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Compressed sensing for parametric PDE recovery

In compressed sensing, uniform recovery is guaranteed by the restricted isometry
property (RIP) of the normalized matrix Ψ̃ = 1√

m
Ψ.

RIP for VN : there exists a small δV,s such that for all s-sparse z ∈ VN

(1− δV,s)‖z‖2V,2 ≤ ‖Ψ̃z‖2V,2 ≤ (1 + δV,s)‖z‖2V,2 (V-RIP)

Theorem [D., Tran, Webster ’16]

A matrix Ψ̃ satisfies RIP with δs iff it satisfies V-RIP with δV,s = δs .

Query complexity for complex-valued signal recovery carries over to this case. Hence
if, for δ ∈ (0, 1),

m ≥ CδΘ2s log2(s) log(N),

then with high probability Ψ̃ satisfies the V-RIP with δs ≤ δ.
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Compressed sensing for parametric PDE recovery

The recovery guarantees from the last theorem say that we can expect to find good
approximations to Ψz = u when z is s-sparse (compressible), if we take enough samples.

Solving the following constrained optimization problem can give sparse approximations.

Basis pursuit denoising (BPDN) problem for VN :

minimizez∈VN ‖z‖V,1 subject to ‖Ψz − u‖V,2 ≤ η/
√
m.

Can cast the BPDN problem as an unconstrained convex optimization problem

Long history of research on iterative methods for fixed-point problems on Hilbert
spaces dating back to the 1950-60’s with well-developed convergence theory

Easy to show that if δ2s for Ψ̃ satisfies δ2s < 4/
√

41, then solutions z# of the
BPDN problem approx. the true solution z (satisfying the constraint) with error

‖z − z#‖V,2 ≤
C√
s
σs(z)V,1 +Dη,

where C,D > 0 depend only on δ2s, and σs(z)V,p is the error of the best s-term
approximation to z in the norm ‖ · ‖V,p
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Compressed sensing for parametric PDE recovery - algorithms
Basic strategy: adapt existing algorithms for Hilbert-valued function recovery

Goal-3: Find solutions to the basis pursuit denoising problem over VN :

minimizez∈VN ‖z‖V,1 subject to ‖Ψz − u‖V,2 ≤ η/
√
m (2)

Strategy: Extend algorithms for real-valued recovery to recovery in VN

Forward-backward splitting: [Lions, Mercier ’79], [Chen, Rockafeller ’89],
[Daubechies, Defrise, De Mol ’04], [Combettes ’04], and in [Hale, Yin, Zhang ’08]
was applied to compressed sensing problems with a continuation strategy (FPC),

Bregman iterations: for Total Variation-based image restoration [Osher, Burger,
Goldfarb, Xu, Yin ’05] and applied to compressed sensing in [Yin, Osher, Goldfarb,
Darbon ’08]. Equivalent to the augmented Lagrangian method under certain
parameterizations, and has nice error-forgetting properties [Yin, Osher ’12].

Challenges:

Proving strong convergence in this setting

Implementing and parallelizing these algorithms
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Compressed sensing for parametric PDE recovery - algorithms
Formulation of the forward-backward splitting method

Can solve (2) by solving the related problem for appropriately chosen values of µ:

minimizez∈VN ‖z‖V,1 +
µ

2
‖Ψz − u‖2V,2︸ ︷︷ ︸
=: Fµ(z)

. (3)

Recall: the subdifferential of a proper function F : VN → (−∞,∞] at a point x ∈ VN is
the set-valued operator

∂F (x) =
{
v ∈ VN : F (z) ≥ F (x) + 〈v,z − x〉 for all z ∈ VN

}
. (4)

The elements of ∂F (x) are called subgradients of F at x. When the function F is
convex and differentiable at x, ∂F (x) = {∇F (x)}, i.e. ∂F is single-valued.

Define the splitting ∂Fµ(z) = T1(z) + T2(z), where

T1(z) = ∂‖z‖V,1 ← non-differentiable part of Fµ

T2(z) = µ
2
∇‖Ψz − u‖2V,2 ← differentiable part of Fµ

T1, T2 are (sub)gradients of proper l.s.c. convex fcns., hence maximal monitone operators
⇒ (3) is an instance of a monitone inclusion problem, vast literature on this topic.
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Compressed sensing for parametric PDE recovery - algorithms
Formulation of the forward-backward splitting method

Theorem from Convex Analysis [Fermat’s Rule]

A vector x is a minimum of the proper function F if and only if 0 ∈ ∂F (x).

Hence, if X∗ = {z ∈ VN : Fµ(z) is minimized} (the solution set), then since T2 is
single-valued, and (I + τT1) is invertible

z ∈ X∗ ⇐⇒ 0 ∈ ∂Fµ(z) ⇐⇒ 0 ∈ (I + τT1)z − (I − τT2)z

⇐⇒ (I − τT2)z ∈ (I + τT1)z

⇐⇒ z = (I + τT1)−1(I − τT2)z.

Forward-backward iteration: z(k+1) := (I + τT1)−1(I − τT2)z(k), a fixed point alg.

In particular, since T2 = ∇φ2(z) where φ2 = 1
2
‖Ψz − u‖2V,2 is differentiable, we see that

Gτ (z) := (I − τT2)z = (I − τ∇φ2)z = z − τΨ∗(Ψz − u),

which is a step of the gradient descent method, i.e., an (explicit) forward step.

T2 is ‖Ψ∗Ψ‖2-Lipschitz ⇒ Gτ is nonexpansive whenever 0 < τ < 2/λmax(Ψ∗Ψ).
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Compressed sensing for parametric PDE recovery - algorithms
Formulation of the forward-backward splitting method

Denote by Jτ := (I + τT1)−1 the resolvent of τT1. We can also characterize Jτ in terms
of the Moreau proximity operator associated with T1 = ∂‖ · ‖V,1:

Proxτx := (I + τ∂‖ · ‖V,1)−1x = (I + τT1)−1,

so that Jτ is a step of the proximal-point method.

A well-known result says that for p,x ∈ VN , p = Proxτx ⇐⇒ x− p ∈ τ∂‖p‖V,1,
so that Jτ can also be seen as an (implicit) subgradient step, i.e. a backward step.

This gives rise to both the forward-backward and proximal-gradient names for the
composition Sτ (x) := Jτ ◦Gτ (x) = (I + τT1)−1(I − τT2)x.

An operator T : VN → VN is said to be firmly nonexpansive (FNE) if

‖Tx− Ty‖2V,2 ≤ ‖x− y‖2V,2 − ‖(I − T )x− (I − T )y‖2V,2 ∀x,y ∈ VN . (5)

Another well-known result says: T1 maximally monitone ⇒ Jτ is component-wise FNE.

All of these results can be found in “Convex Analysis and Monotone Operator Theory in
Hilbert Spaces” by Bauschke & Combettes (2010).
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Theorem [D., Tran, Webster ’17]

Let 0 < τ < 2/λmax(Ψ∗Ψ). Then the iterations x(k+1) := Jτ ◦Gτ (x(k)) converge
strongly to an element x∗ ∈ X∗ from any x(0) ∈ VN .

Sketch: Opial’s Theorem ⇒ weak convergence [Daubechies, et al ’04], [Combettes ’04].

Finite convergence is easily obtained for j ∈ Λ0 s.t. ‖(Ψ∗(Ψx∗ − u))j‖V < 1.
We focus on the set j ∈ Λ0 s.t. ‖(Ψ∗(Ψx∗ − u))j‖V = 1, i.e., the complement.

Jτ is component-wise given by (I − Pτ ), where Pτ is metric projection onto BV(0, τ)
⇒ Jτ (y), Pτ (y), and y are colinear with the origin for any y ∈ VN .

Jτ component-wise FNE and (I − Jτ ) = (I − I + Pτ ) = Pτ , imply

‖x(k+1)
j − x∗j‖2V ≤ ‖Gτ (x

(k)
j )−Gτ (x∗j )‖2V − ‖(I − Jτ )Gτ (x

(k)
j )− (I − Jτ )Gτ (x∗j )‖2V

≤ ‖x(k)
j − x∗j‖2V − ‖Pτ ◦Gτ (x

(k)
j )− Pτ ◦Gτ (x∗j )‖2V︸ ︷︷ ︸

=:c
(k)
j

,

from the nonexpansiveness of Gτ , ∀ j ∈ Λ0 and k ∈ N.
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Iterate: ‖x(k+1)
j − x∗j‖2V ≤ ‖x

(k)
j − x∗j‖2V − c

(k)
j ≤ · · ·︸︷︷︸

k-times

≤ ‖x(0)
j − x∗j‖2V −

∑k
`=0 c

(`)
j

Rearrange:
∑k
`=0 c

(`)
j ≤ ‖x

(0)
j − x∗j‖2V︸ ︷︷ ︸

independent of k

=⇒ c
(k)
j → 0 as k →∞.

Collinearity & c
(k)
j → 0 ⇒ angle θ

(k)
j between the iterates x

(k)
j and x∗j is converging to 0.

Weak convergence =⇒ ‖x(k)
j ‖V cos θ

(k)
j → ‖x∗j‖V (in cases x∗j = 0 and x∗j 6= 0).

Angular convergence =⇒ cos θ
(k)
j → 1.

Weak convergence & angular convergence imply ‖x(k)
j ‖V → ‖x

∗
j‖V as k →∞ so that

‖x(k)
j − x∗j‖2V = ‖x(k)

j ‖
2
V + ‖x∗j‖2V − 2〈x(k)

j ,x∗j 〉V → 0 as k →∞.

Hence x
(k)
j → x∗j as k →∞ for each j ∈ Λ0.
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Compressed sensing for parametric PDE recovery - algorithms
Bregman iterations

The Bregman distance w.r.t. J( · ) := ‖ · ‖V,1 between the points u and v in VN is
defined as

Dp
J (u,v) = J(u)− J(v)− 〈p,u− v〉V,2,

where p ∈ ∂J(v) is an element of the subdifferential of J at the point v.

The Bregman iterative scheme can be written for VN :

u(0) ← 0, z(0) ← 0, (6)

For k = 0, 1, . . . do (7)

u(k+1) ← u + (u(k) −Ψz(k)), (8)

z(k+1) ← arg min
z∈VN

J(z) +
1

2
‖Ψz − u(k+1)‖2V,2. (9)

We apply the forward-backward splitting to find the intermediate solutions z(k) in (9).

Adding residual back in step (8) gives nice error cancellation, allowing intermediate solns.
(9) to be solved less accurately without affecting overall accuracy (error forgetting).
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Compressed sensing for parametric PDE recovery - algorithms
Summary of main convergence results shown for forward-backward splitting and Bregman iterations

Forward-backward splitting:

Finite convergence to the complement of the support of an element of X∗

Strong convergence of the whole sequence to a fixed point

Linear convergence, under minimum eigenvalue assumption, with an explicit bound
of the constant

Bregman iterations:

Monotonic decrease in the residual 1
2
‖Ψz(k) − u‖2V,2

Monotonic decrease in the Bregman distance between iterates Dp(k)

J (z(k+1),z(k))

Existence of weak-* convergent subsequences in the Banach space (VN , ‖ · ‖V,1)
whose limit satisfy Ψz = u

Main challenges: Infinite dimensions implies lack of compactness, some geometric
arguments that work in RN don’t hold in VN .
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Compressed sensing for parametric PDE recovery - numerical examples
Stochastic elliptic PDE with affine random coefficient

Stochastic elliptic problem on D = [0, 1]2:{
−∇ · (a(x,y)∇u(x,y)) = f(x) in Γ×D,

u(x,y) = 0 on Γ× ∂D. (10)

Specifically, we focus on the case that yj ∼ U(−
√

3,
√

3), and a(x,y) is given by:

a(x,y) = amin + y1

(√
πL

2

)1/2

+

d∑
j=2

ζjϕj(x)yj ,

ζj = (
√
πL)1/2 exp

(
−
(⌊

j
2

⌋
πL
)2

8

)
, for j > 1,

ϕj(x) =

{
sin
(⌊

j
2

⌋
πx1/Lp

)
, if j is even,

cos
(⌊

j
2

⌋
πx1/Lp

)
, if j is odd,

which is the KL expansion associated with the squared exponential covariance kernel, Lc
is the correlation length, and amin is chosen so that a(x,y) > 0 ∀x ∈ D,y ∈ Γ.
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Stochastic elliptic PDE with affine random coefficient

Stochastic elliptic problem on D = [0, 1]2:{
−∇ · (a(x,y)∇u(x,y)) = f(x) in Γ×D,

u(x,y) = 0 on Γ× ∂D. (10)

Specifically, we focus on the case that yj ∼ U(−
√

3,
√

3), and a(x,y) is given by:

a(x,y) = amin + y1

(√
πL

2

)1/2

+

d∑
j=2

ζjϕj(x)yj ,

ζj = (
√
πL)1/2 exp

(
−
(⌊

j
2

⌋
πL
)2

8

)
, for j > 1,

ϕj(x) =

{
sin
(⌊

j
2

⌋
πx1/Lp

)
, if j is even,

cos
(⌊

j
2

⌋
πx1/Lp

)
, if j is odd,

which is the KL expansion associated with the squared exponential covariance kernel, Lc
is the correlation length, and amin is chosen so that a(x,y) > 0 ∀x ∈ D,y ∈ Γ.
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Compressed sensing for parametric PDE recovery - numerical examples

Fixed quasi-uniform triangulation of D = [0, 1]2 having 206 points (h ≈ 1/16)

Compressed sensing setup:

Fixed total degree subspace Λ0 with N = #Λ0 large, increasing the number of
samples m following dkN/8e for k = 1, 2, . . . , 7

Compute ηΛ0 := ‖uΛc
0
‖V,2 = ‖ΨzSG

Λ0
− u‖V,2 using stochastic Galerkin, and

set 1.2 · ηΛ0 as tolerance for the BPDN problem (choosing µ appropriately)

Average the results over 24 trials

Compared against:

“Decoupled approach”, solve the same problem with compressed sensing pointwise.

Stochastic Galerkin, with total degree of order p = 2, 3.

Stochastic collocation, with Clenshaw-Curtis points with doubling, level L = 2, 3.

Monte Carlo method, with uniform sampling.
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Compressed sensing for parametric PDE recovery - numerical examples
Comparison of Hilbert-valued and functional recovery strategies.

a(x,y) is the high-dimensional affine coefficient (d = 100, Lc = 1/4)

Λ0 the total degree space of order p = 2 with N = #Λ0 = 5151

For the SGM, SDOF is N , for all other methods, SDOF is m, the number of samples
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Compressed sensing for parametric PDE recovery - numerical examples
Comparison with stochastic Galerkin, stochastic collocation, and Monte Carlo methods

Here we compare against isotropic methods only to highlight the performance of all
methods when no knowledge of the coefficient decay is known.
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a(x,y) is the high-dimensional affine coefficient (d = 20, Lc = 1/4)
Λ0 the total degree space of order p = 2 with N = #Λ0 = 231
For the SGM, SDOF is N , for all other methods, SDOF is m, the number of samples
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Compressed sensing for parametric PDE recovery - numerical examples
Comparison with stochastic Galerkin, stochastic collocation, and Monte Carlo methods

Here we compare against isotropic methods only to highlight the performance of all
methods when no knowledge of the coefficient decay is known.
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a(x,y) is the high-dimensional affine coefficient (d = 40, Lc = 1/4)

Λ0 the total degree space of order p = 2 with N = #Λ0 = 861

For the SGM, SDOF is N , for all other methods, SDOF is m, the number of samples
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Compressed sensing for parametric PDE recovery - numerical examples
Comparison with stochastic Galerkin, stochastic collocation, and Monte Carlo methods

Here we compare against isotropic methods only to highlight the performance of all
methods when no knowledge of the coefficient decay is known.

102 103
10-6

10-5

10-4

10-3

10-2

102 103
10-4

10-3

10-2

10-1

a(x,y) is the high-dimensional affine coefficient (d = 60, Lc = 1/4)

Λ0 the total degree space of order p = 2 with N = #Λ0 = 1891

For the SGM, SDOF is N , for all other methods, SDOF is m, the number of samples
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Compressed sensing for parametric PDE recovery - numerical examples
Comparison with stochastic Galerkin, stochastic collocation, and Monte Carlo methods
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Concluding remarks

Generalization of compressed sensing theory and algorithms to the Hilbert-valued
case and connection to parameterized PDEs

Sparse approximation in the Hilbert-valued setting has been around for a long time

This approach puts approx. error estimates in terms of the best s-term w.r.t. Λ0

More work to be done in the convergence theory of these methods

Recently shown strong convergence for the forward-backward splitting method

Would like to show strong convergence for the Bregman iterations

Need more numerical experiments

Nonlinear parameterized PDEs

Linear vs. nonlinear stochastic parameterization
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