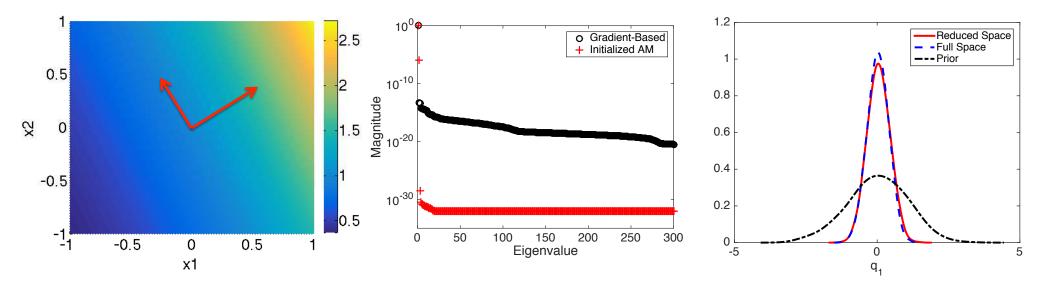
Sensitivity Analysis and Active Subspace Construction for Surrogate Models Employed for Bayesian Inference

#### **Ralph C. Smith**

Department of Mathematics North Carolina State University

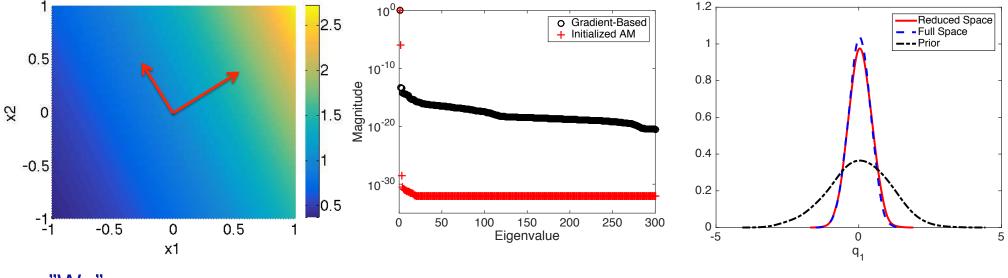


Support: DOE Consortium for Advanced Simulation of LWR (CASL) NNSA Consortium for Nonproliferation Enabling Capabilities (CNEC) NSF Grant CMMI-1306290, Collaborative Research CDS&E AFOSR Grant FA9550-15-1-0299

# Sensitivity Analysis and Active Subspace Construction for Surrogate Models Employed for Bayesian Inference

### **Ralph C. Smith**

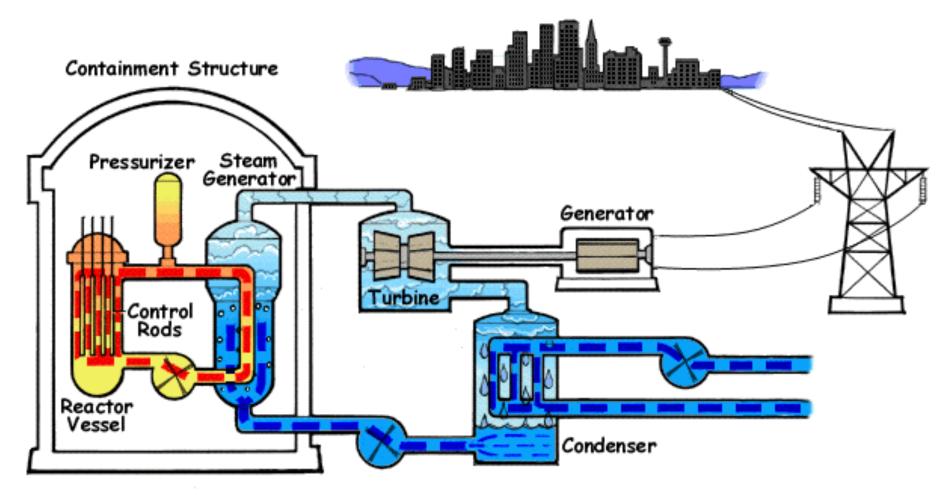
Department of Mathematics North Carolina State University



#### "We":

Kayla Coleman, Lider Leon, Allison Lewis, Mohammad Abdo (NCSU) Brian Williams (LANL), Max Morris (Iowa State University) Billy Oates, Paul Miles (Florida State University)

# Example 1: Pressurized Water Reactors (PWR)



### Models:

- Involve neutron transport, thermal-hydraulics, chemistry, fuels
- Inherently multi-scale, multi-physics.

**Objective:** Develop Virtual Environment for Reactor Applications (VERA)

**Motivation for Active Subspace Construction** 

### **3-D Neutron Transport Equations:**

$$\frac{1}{|v|} \frac{\partial \varphi}{\partial t} + \Omega \cdot \nabla \varphi + \Sigma_t(r, E) \varphi(r, E, \Omega, t)$$

$$= \int_{4\pi} d\Omega' \int_0^\infty dE' \Sigma_s(E' \to E, \Omega' \to \Omega) \varphi(r, E', \Omega', t)$$

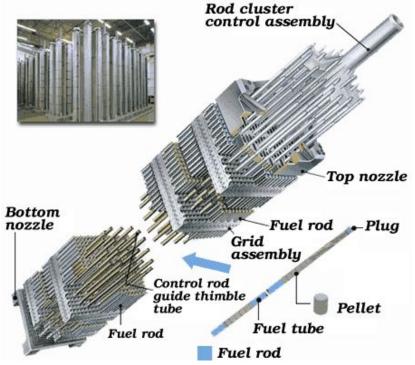
$$+ \frac{\chi(E)}{4\pi} \int_{4\pi} d\Omega' \int_0^\infty dE' \nu(E') \Sigma_f(E') \varphi(r, E', \Omega', t)$$
Rod\_cluster

### Challenges:

• Linear in the state but function of 7 independent variables:

 $r = x, y, z; E; \Omega = \theta, \phi; t$ 

- Very large number of inputs; e.g., 100,000; Active subspace construction critical.
- ORNL Code SCALE: can take minutes to hours to run.
- SCALE TRITON has adjoint capabilities via TSUNAMI-2D and NEWT.



# SCALE6.1: High-Dimensional Example

Setup: Cross-section computations SCALE6.1

- Input Dimension: 7700
- Output  $k_{eff}$ : Magnitude governs reactions

| Materials             |                       |                      | Rea                | ctions                          |                                                  |
|-----------------------|-----------------------|----------------------|--------------------|---------------------------------|--------------------------------------------------|
| $^{234}_{92}\text{U}$ | $^{10}_{5}{ m B}$     | $^{31}_{15}{\rm P}$  | $\Sigma_t$         | $n \rightarrow \gamma$          |                                                  |
| $^{235}_{92}\text{U}$ | $^{11}_{5}{ m B}$     | $_{25}^{55}{ m Mn}$  | $\Sigma_e$         | $n \rightarrow p$               |                                                  |
| $^{236}_{92}\text{U}$ | $^{14}_{7}{ m N}$     | $_{26}$ Fe           | $\Sigma_f$         | $n \rightarrow d$               |                                                  |
| $^{238}_{92}\text{U}$ | $^{15}_{7}{ m N}$     | $^{116}_{50}{ m Sn}$ | $\Sigma_c$         | $n \rightarrow t$               | 6 ss-304 - bpr clad                              |
| $^{1}_{1}\mathrm{H}$  | $^{23}_{11}$ Na       | $^{120}_{50}{ m Sn}$ | $\bar{ u}$         | $n \rightarrow {}^{3}\text{He}$ | 5 air in bprs<br>4 borosilicate glass<br>3 water |
| $^{16}_{8}{ m O}$     | $^{27}_{13}\text{Al}$ | $_{40}$ Zr           | $\chi$             | $n \rightarrow \alpha$          | 2 cladding<br>1 2.561 wt % enric<br>7 rod n-9    |
| $_{6}\mathrm{C}$      | $_{14}\mathrm{Si}$    | <sub>19</sub> K      | $n \rightarrow n'$ | $n \rightarrow 2n$              | PWR Quarter Fuel Lattice                         |

### Note:

- Requires determination of active subspace to reduce input dimensions.
- Finite-difference approximations of gradient ineffective due to dimension

## Motivation for Inference on Active Subspaces

Thermo-Hydraulic Equations: Mass, momentum and energy balance for fluid

$$\frac{\partial}{\partial t}(\alpha_f \rho_f) + \nabla \cdot (\alpha_f \rho_f \mathbf{v}_f) = -\Gamma$$

$$\alpha_{f}\rho_{f}\frac{\partial v_{f}}{\partial t} + \alpha_{f}\rho_{f}v_{f}\cdot\nabla v_{f} + \nabla\cdot\sigma_{f}^{R} + \alpha_{f}\nabla\cdot\sigma + \alpha_{f}\nabla\rho_{f}$$
$$= -F^{R} - F + \Gamma(v_{f} - v_{g})/2 + \alpha_{f}\rho_{f}g$$

$$\frac{\partial}{\partial t}(\alpha_{f}\rho_{f}\boldsymbol{e}_{f}) + \nabla \cdot (\alpha_{f}\rho_{f}\boldsymbol{e}_{f}\boldsymbol{v}_{f} + Th) = (T_{g} - T_{f})H + T_{f}\Delta_{f}$$
$$-T_{g}(H - \alpha_{g}\nabla \cdot h) + h \cdot \nabla T - \Gamma[\boldsymbol{e}_{f} + T_{f}(\boldsymbol{s}^{*} - \boldsymbol{s}_{f})]$$
$$-\boldsymbol{\rho}_{f}\left(\frac{\partial\alpha_{f}}{\partial t} + \nabla \cdot (\alpha_{f}\boldsymbol{v}_{f}) + \frac{\Gamma}{\rho_{f}}\right)$$

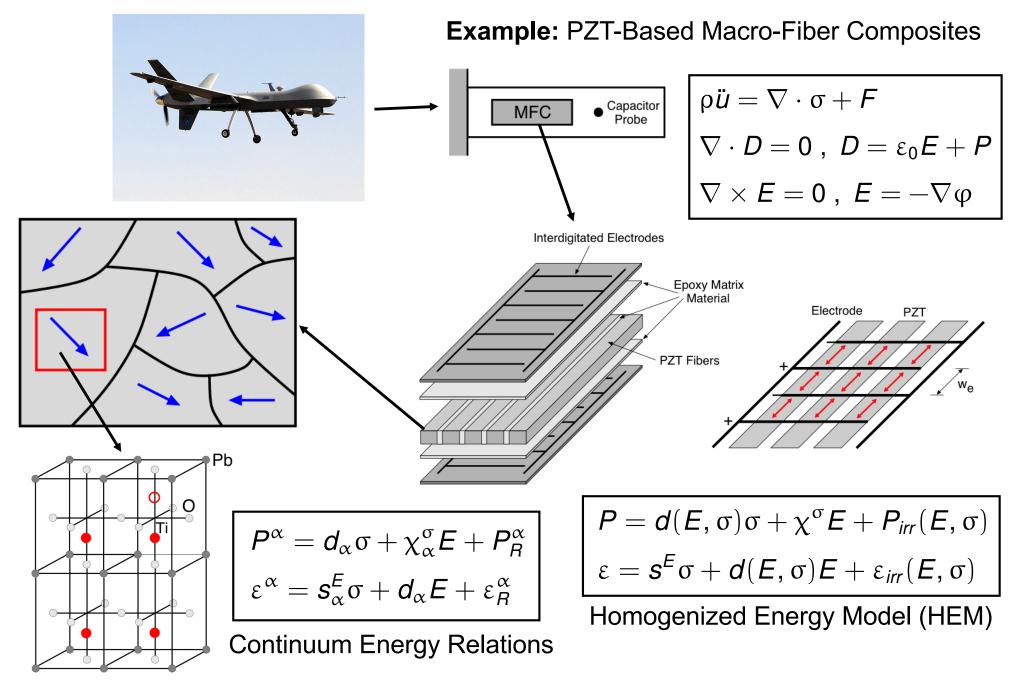
#### Notes:

- Similar relations for gas and bubbly phases
- Reduced models must conserve mass, momentum and energy

### Note:

- CFD and sub-channel codes can have 15-30 closure relations and up to 75 parameters.
- Codes and closure relations often "borrowed" from other physical phenomena;
   e.g., single phase fluids, airflow over a car (CFD code STAR-CCM+)
- Calibration is necessary and closure relations can conflict.

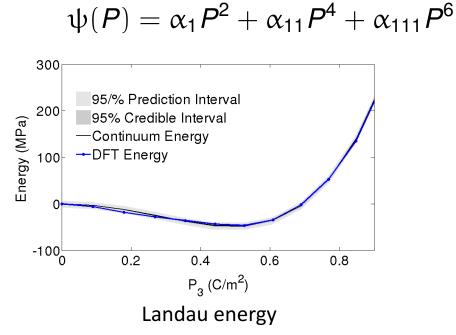
## Example 2. Multiscale Model Development



# **Quantum-Informed Continuum Models**

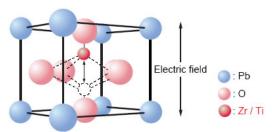
### **Objectives:**

- Employ density function theory (DFT) to construct/calibrate continuum energy relations.
  - e.g., Landau energy

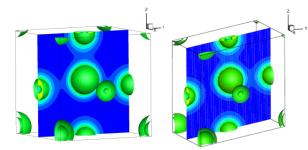


### UQ and SA Issues:

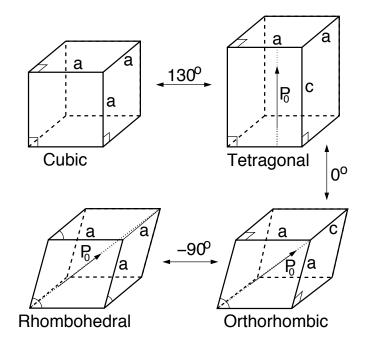
- Is 6<sup>th</sup> order term required to accurately characterize material behavior?
- Note: Determines molecular structure



Lead Titanate Zirconate (PZT)



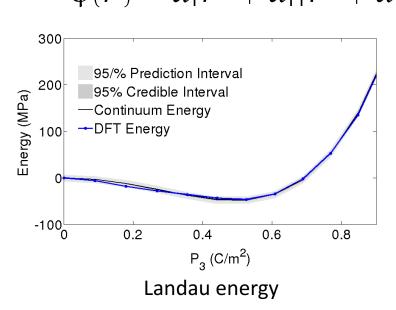
**DFT Electronic Structure Simulation** 



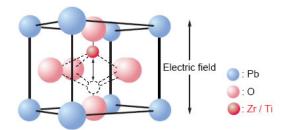
# **Quantum-Informed Continuum Models**

### **Objectives:**

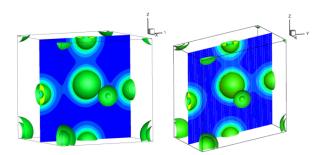
- Employ density function theory (DFT) to construct/calibrate continuum energy relations.
  - e.g., Landau energy



# $\psi(P) = \alpha_1 P^2 + \alpha_{11} P^4 + \alpha_{111} P^6$



Lead Titanate Zirconate (PZT)



**DFT Electronic Structure Simulation** 

### UQ and SA Issues:

- Is 6<sup>th</sup> order term required to accurately characterize material behavior?
- Note: Determines molecular structure

### **Broad Objective:**

• Use UQ/SA to help bridge scales from quantum to system

Global Sensitivity Analysis: Analysis of Variance Sobol' Representation: Y = f(q)

$$f(q) = f_{0} + \sum_{i=1}^{p} f_{i}(q_{i}) + \sum_{i \leq i < j \leq p} f_{ij}(q_{i}, q_{j}) + \dots + f_{12\dots p}(q_{1}, \dots, q_{p})$$

$$= f_{0} + \sum_{i=1}^{p} \sum_{|u|=i} f_{u}(q_{u})$$
where
$$f_{0} = \int_{\Gamma} f(q)\rho(a)dq = \mathbb{E}[f(q)]$$

$$f_{i}(q_{i}) = \mathbb{E}[f(q)|q_{i}] - f_{0}$$

$$f_{ij}(q_{i}, q_{j}) = \mathbb{E}[f(q)|q_{i}, q_{j}] - f_{i}(q_{i}) - f_{j}(q_{j}) - f_{0}$$

**Typical Assumption:**  $q_1, q_2, ..., q_p$  independent. Then

$$\int_{\Gamma} f_u(q_u) f_v(q_v) \rho(q) dq = 0 \quad \text{for } u \neq v$$
$$\Rightarrow \operatorname{var}[f(q)] = \sum_{i=1}^{p} \sum_{|u|=i} \operatorname{var}[f_u(q_u)]$$

Sobol' Indices:

$$S_u = rac{\mathrm{var}[f_u(q_u)]}{\mathrm{var}[f(q)]}$$
 ,  $T_u = \sum_{v \subset u} S_v$ 

**Note:** Magnitude of  $S_i$ ,  $T_i$  quantify contributions of  $q_i$  to var[f(q)]

# **Global Sensitivity Analysis**

**Example:** Quantum-informed continuum model

**Question:** Do we use 4<sup>th</sup> or 6<sup>th</sup>-order Landau energy?

$$\psi(P, q) = \alpha_1 P^2 + \alpha_{11} P^4 + \alpha_{111} P^6$$

Parameters:

 $q = [\alpha_1, \alpha_{11}, \alpha_{111}]$ 

#### **Global Sensitivity Analysis:**

|           | α <sub>1</sub> | $\alpha_{11}$ | α <sub>111</sub> |
|-----------|----------------|---------------|------------------|
| $S_k$     | 0.62           | 0.39          | 0.01             |
| $T_k$     | 0.66           | 0.38          | 0.06             |
| $\mu_k^*$ | 0.17           | 0.07          | 0.03             |

### **Conclusion:**

 $\alpha_{111}$  insignificant and can be fixed

# **Global Sensitivity Analysis**

**Example:** Quantum-informed continuum model

Question: Do we use 4<sup>th</sup> or 6<sup>th</sup>-order Landau energy?

 $\psi(\textbf{\textit{P}},\textbf{\textit{q}}) = \alpha_1 \textbf{\textit{P}}^2 + \alpha_{11} \textbf{\textit{P}}^4 + \alpha_{111} \textbf{\textit{P}}^6$ 

**Parameters:** 

 $q = [\alpha_1, \alpha_{11}, \alpha_{111}]$ 

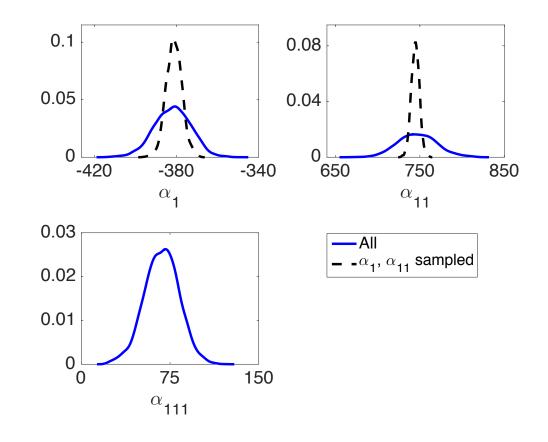
#### **Global Sensitivity Analysis:**

|           | α <sub>1</sub> | $\alpha_{11}$ | α <sub>111</sub> |
|-----------|----------------|---------------|------------------|
| $S_k$     | 0.62           | 0.39          | 0.01             |
| $T_k$     | 0.66           | 0.38          | 0.06             |
| $\mu_k^*$ | 0.17           | 0.07          | 0.03             |

#### **Conclusion:**

 $\alpha_{111}$  insignificant and can be fixed

**Problem:** We obtain different distributions when we perform Bayesian inference with fixed non-influential parameters



# **Global Sensitivity Analysis**

**Example:** Quantum-informed continuum model

Question: Do we use 4<sup>th</sup> or 6<sup>th</sup>-order Landau energy?

$$\psi(P, q) = \alpha_1 P^2 + \alpha_{11} P^4 + \alpha_{111} P^6$$

**Parameters:** 

 $q = [\alpha_1, \alpha_{11}, \alpha_{111}]$ 

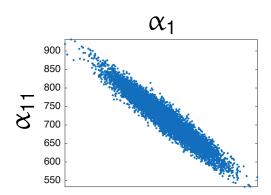
### **Global Sensitivity Analysis:**

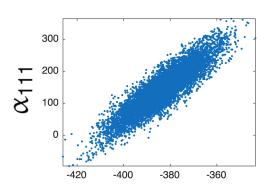
|           | α <sub>1</sub> | $\alpha_{11}$ | α <sub>111</sub> |
|-----------|----------------|---------------|------------------|
| $S_k$     | 0.62           | 0.39          | 0.01             |
| $T_k$     | 0.66           | 0.38          | 0.06             |
| $\mu_k^*$ | 0.17           | 0.07          | 0.03             |

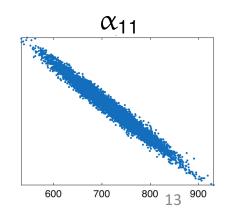
### Note: Must accommodate correlation

### Problem:

- Parameters correlated
- Cannot fix  $\alpha_{111}$







## Global Sensitivity Analysis: Analysis of Variance

Sobol' Representation:

$$f(q) = f_0 + \sum_{i=1}^{p} \sum_{|u|=i} f_u(q_u)$$

One Solution: Take variance to obtain

$$var[f(q)] = \sum_{i=1}^{p} \sum_{|u|=i} cov[f_u(q_u), f(q)]$$

#### Sobol' Indices:

$$S_u = rac{\operatorname{cov}[f_u(q_u), f(q)]}{\operatorname{var}[f(q)]}$$

#### Pros:

 Provides variance decomposition that is analogous to independent case

### Cons:

- Indices can be negative and difficult to interpret
- Often difficult to determine underlying distribution
- Monte Carlo approximation often prohibitively expensive.

## Global Sensitivity Analysis: Analysis of Variance

Sobol' Representation:

$$f(q) = f_0 + \sum_{i=1}^{p} \sum_{|u|=i} f_u(q_u)$$

One Solution: Take variance to obtain

$$var[f(q)] = \sum_{i=1}^{p} \sum_{|u|=i} cov[f_u(q_u), f(q)]$$

### Sobol' Indices:

$$S_u = rac{\operatorname{cov}[f_u(q_u), f(q)]}{\operatorname{var}[f(q)]}$$

### Alternative: Construct active subspaces

Can accommodate parameter correlation

#### **Pros:**

 Provides variance decomposition that is analogous to independent case

### Cons:

- Indices can be negative and difficult to interpret
- Often difficult to determine underlying distribution
- Monte Carlo approximation often prohibitively expensive.
- Often effective in high-dimensional space; e.g., p = 7700 for neutronics example

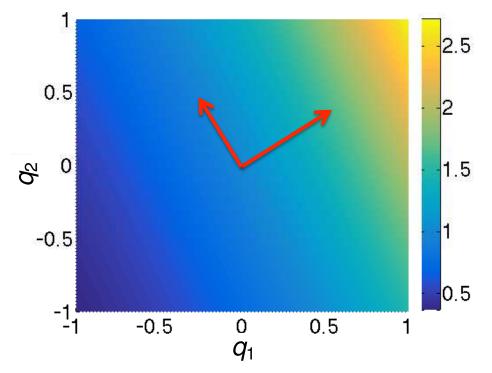
**Additional Goal:** Use Bayesian analysis on active subspace to construct posterior densities for physical parameters.

### Note:

- Functions may vary significantly in only a few directions
- "Active" directions may be linear combination of inputs

**Example:**  $y = \exp(0.7q_1 + 0.3q_2)$ 

- Varies most in [0.7, 0.3] direction
- No variation in orthogonal direction



### Note:

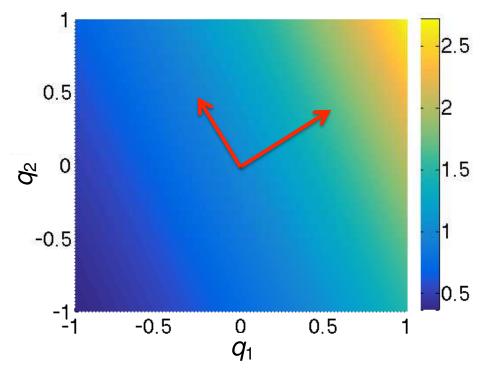
- Functions may vary significantly in only a few directions
- "Active" directions may be linear combination of inputs

**Example:**  $y = \exp(0.7q_1 + 0.3q_2)$ 

- Varies most in [0.7, 0.3] direction
- No variation in orthogonal direction

### A Bit of History:

• Often attributed to Russi (2010).



### Note:

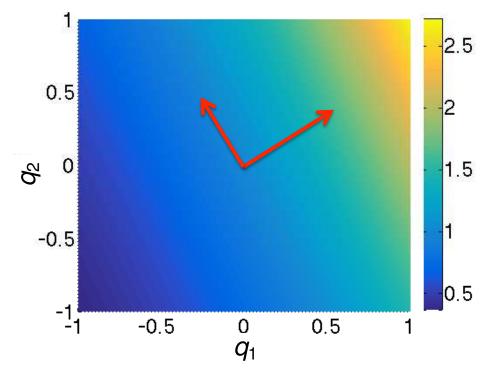
- Functions may vary significantly in only a few directions
- "Active" directions may be linear combination of inputs

**Example:**  $y = \exp(0.7q_1 + 0.3q_2)$ 

- Varies most in [0.7, 0.3] direction
- No variation in orthogonal direction

### A Bit of History:

- Often attributed to Russi (2010).
- Concept same as *identifiable subspaces* from systems and control; e.g., Reid (1977).



### Note:

- Functions may vary significantly in only a few directions
- "Active" directions may be linear combination of inputs

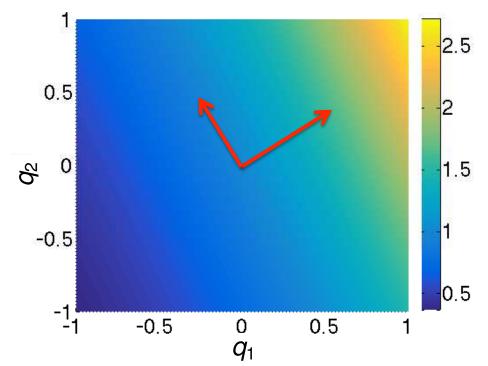
**Example:**  $y = \exp(0.7q_1 + 0.3q_2)$ 

- Varies most in [0.7, 0.3] direction
- No variation in orthogonal direction

### A Bit of History:

- Often attributed to Russi (2010).
- Concept same as *identifiable subspaces* from systems and control; e.g., Reid (1977).

• For linearly parameterized problems, active subspace given by SVD or QR; Beltrami (1873), Jordan (1874), Sylvester (1889), Schmidt (1907), Weyl (1912). See 1993 *SIAM Review* paper by Stewart.



## **Gradient-Based Active Subspace Construction**

#### Active Subspace: Consider

$$f=f(q)$$
 ,  $q\in \mathbb{Q}\subseteq \mathbb{R}^{p}$ 

and

$$\nabla_q f(q) = \left[\frac{\partial f}{\partial q_1}, \cdots, \frac{\partial f}{\partial q_p}\right]^7$$

Construct outer product

$$\boldsymbol{C} = \int (\nabla_{\boldsymbol{q}} \boldsymbol{f}) (\nabla_{\boldsymbol{q}} \boldsymbol{f})^{T} \boldsymbol{\rho} \boldsymbol{d} \boldsymbol{q}$$

Partition eigenvalues:  $C = W \Lambda W^T$ 

$$\Lambda = \begin{bmatrix} \Lambda_1 & \\ & \Lambda_2 \end{bmatrix}, \ W = \begin{bmatrix} W_1 & W_2 \end{bmatrix}$$

**Rotated Coordinates:** 

$$y = W_1^T q \in \mathbb{R}^n$$
 and  $z = W_2^T q \in \mathbb{R}^{p-n}$ 

**Active Variables** 

Active Subspace: Range of eigenvectors in  $W_1$ 

 E.g., see [Constantine, SIAM, 2015; Stoyanov & Webster, *IJUQ*, 2015]

## **Gradient-Based Active Subspace Construction**

Active Subspace: Construction based on random sampling

- 1. Draw *M* independent samples  $\{q^j\}$  from  $\rho$
- 2. Evaluate  $\nabla_q f_j = \nabla_q f(q^j)$
- 3. Approximate outer product

$$C \approx \widetilde{C} = \frac{1}{M} \sum_{j=1}^{M} (\nabla_q f_j) (\nabla_q f_j)^T$$
  
Note:  $\widetilde{C} = GG^T$  where  $G = \frac{1}{\sqrt{M}} [\nabla_q f_1, \dots, \nabla_q f_M]$ 

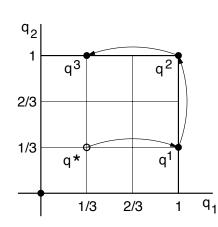
- 4. Take SVD of  $G = W \sqrt{\Lambda} V^T$ 
  - Active subspace of dimension *n* is first *n* columns of *W*

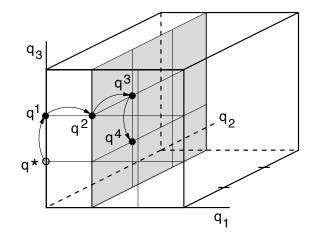
**One Goal:** Develop efficient algorithm for codes that do not have adjoint capabilities **Note**: Finite-difference approximations tempting but not effective for high-D

**Strategy:** Algorithm based on initialized adaptive Morris indices

# Morris Screening: Random Sampling of Approximated Derivatives

**Example:** Consider uniformly distributed parameters on  $\Gamma = [0, 1]^p$ 





#### **Elementary Effect:**

$$d_i = rac{f(q^j + \Delta e_i) - f(q^j)}{\Delta}$$

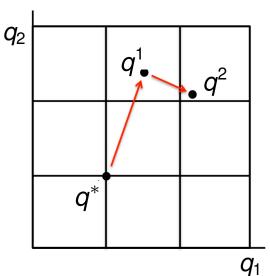
**Global Sensitivity Measures:** r samples

$$\mu_i^* = \frac{1}{r} \sum_{j=1}^r |d_i^j(q)|$$
  
$$\sigma_i^2 = \frac{1}{r-1} \sum_{j=1}^r \left( d_i^j(q) - \mu_i \right)^2 \quad , \quad \mu_i = \frac{1}{r} \sum_{j=1}^r d_j^j(q)$$

### Adaptive Algorithm:

• Use SVD to adapt stepsizes and directions to reflect active subspace.

• Reduce dimension of differencing as active subspace is discovered.



Note: Gets us to moderate-D but initialization required for high-D

1. Inputs:  $\ell$  iterations, *h* function evaluations per iteration

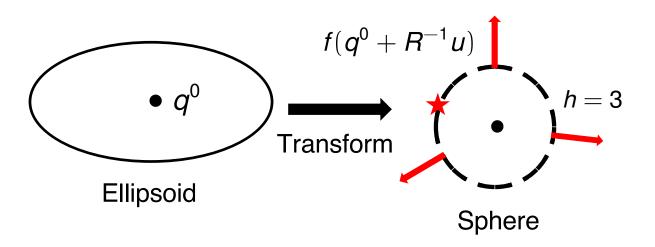
2. Sample  $w^1$  from surface of unit sphere where approximately linear

For  $j = 1, \ldots, \ell$ 

- 3. Sample  $\{\tilde{v}_1^j, \dots, \tilde{v}_h^j\}$  from surface of sphere
- 4. Use Lagrange multiplier to determine

$$u_{\max}^{j} = a_{0}^{+}w^{j} + \sum_{i=1}^{n} a_{i}^{+}v_{i}^{j}$$
,  $v_{i}^{1} = \tilde{v}_{i}^{1}$ 

that maximizes  $g(u) = f(q^0 + R^{-1}u)$ .



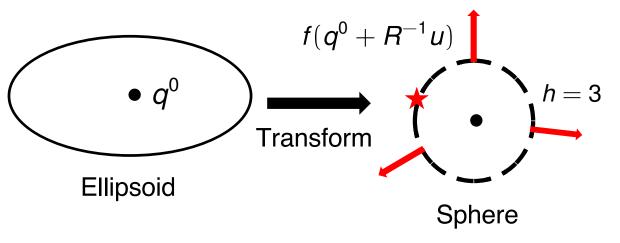
- 1. Inputs:  $\ell$  iterations, *h* function evaluations per iteration
- 2. Sample  $w^1$  from surface of unit sphere where approximately linear

For  $j = 1, \ldots, \ell$ 

- 3. Sample  $\{\tilde{v}_1^j, \dots, \tilde{v}_h^j\}$  from surface of sphere
- 4. Use Lagrange multiplier to determine

$$u_{\max}^{j} = a_{0}^{+}w^{j} + \sum_{i=1}^{h} a_{i}^{+}v_{i}^{j}$$
,  $v_{i}^{1} = \tilde{v}_{i}^{1}$ 

that maximizes  $g(u) = f(q^0 + R^{-1}u)$ .



**Note:** For h=1, maximizing great circle through  $w^1$ ,  $v^1$ 

**Example:** Let  $w^1$  = Atlanta,  $v^1$  = Venice, and g(u) = 'QUIETness' of seatmate on flight



1. Inputs:  $\ell$  iterations, *h* function evaluations per iteration

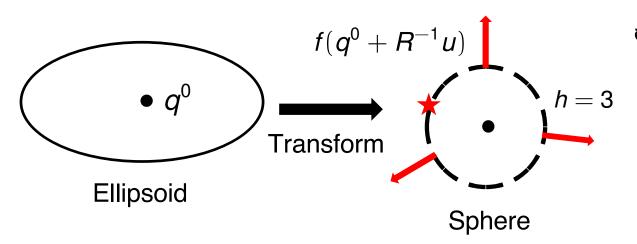
2. Sample  $w^1$  from surface of unit sphere where approximately linear

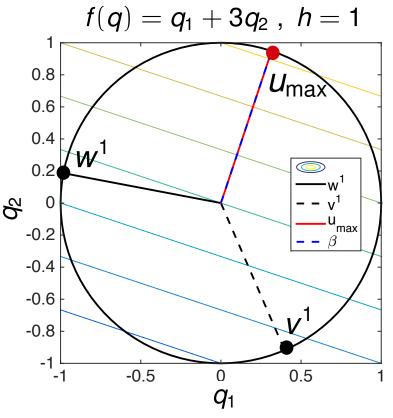
For  $j = 1, \dots, \ell$ 

- 3. Sample  $\{\tilde{v}_1^j, \dots, \tilde{v}_h^j\}$  from surface of sphere
- 4. Use Lagrange multiplier to determine

$$u^{j}_{\max} = a^{+}_{0} w^{j} + \sum_{i=1}^{h} a^{+}_{i} v^{j}_{i}$$
,  $v^{1}_{i} = \tilde{v}^{1}_{i}$ 

that maximizes  $g(u) = f(q^0 + R^{-1}u)$ .





1. Inputs:  $\ell$  iterations, *h* function evaluations per iteration

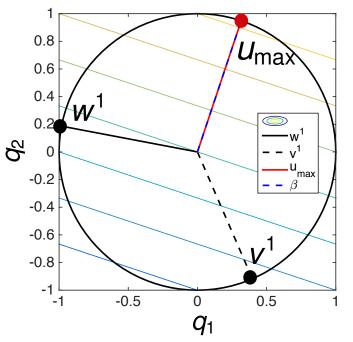
2. Sample  $w^1$  from surface of unit sphere where approximately linear

For 
$$j=\mathsf{1},\ldots,\ell$$

- 3. Sample  $\{\tilde{v}_1^j, \dots, \tilde{v}_h^j\}$  from surface of sphere
- 4. Use Lagrange multiplier to determine

$$u^{j}_{\max} = a^{+}_{0} w^{j} + \sum_{i=1}^{n} a^{+}_{i} v^{j}_{i}$$
,  $v^{1}_{i} = \tilde{v}^{1}_{i}$ 

that maximizes  $g(u) = f(q^0 + R^{-1}u)$ . Set  $w^{j+1} = u^j_{max}$ .



5. Take 
$$C = [w^j, v_1^j, \dots, v_h^j]$$
 and set  $P_{u_{\max}^j} = u_{\max}^j (u_{\max}^j)^T$ 

6. Let 
$$C_{j\perp} = \left[ \text{span}\left( C_{(j-1)\perp}, (I_m - P_{u_{\max}^j}C) \right) \right]$$
 and set  $P_{C_{j\perp}} = C_{j\perp}(C_{j\perp}^T C_{j\perp})^{-1}C_{j\perp}^T$ 

7. Take 
$$v_i^j = \frac{(I_m - P_{C_{j\perp}})\tilde{v}_i^j}{\|(I_m - P_{C_{j\perp}})\tilde{v}_i^j\|}$$
,  $i = 1, ..., h$  and repeat

### Example: Initialization Algorithm to Approximate Gradient

### Example: Family of elliptic PDE's

 $-\nabla_s \cdot (a(s,\ell)\nabla_s u(s,a(s,\ell)) = 1 \quad , \ s \in [0,1]^2 \quad , \ell = 1, \dots, n$ 

with the random field representations

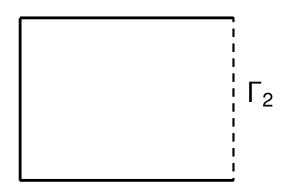
$$\log(\boldsymbol{a}(\boldsymbol{s},\boldsymbol{\ell})) = \sum_{i=1}^{p} \boldsymbol{q}_{i}^{\ell} \boldsymbol{\gamma}_{i} \boldsymbol{\varphi}_{i}(\boldsymbol{s})$$

Quantity of interest: e.g., strain along edge at n levels

$$f(\mathbf{q}^1, \dots, \mathbf{q}^n) \approx \sum_{\ell=1}^n \frac{1}{|\Gamma_2|} \int_{\Gamma_2} u(q(s, \ell) ds)$$

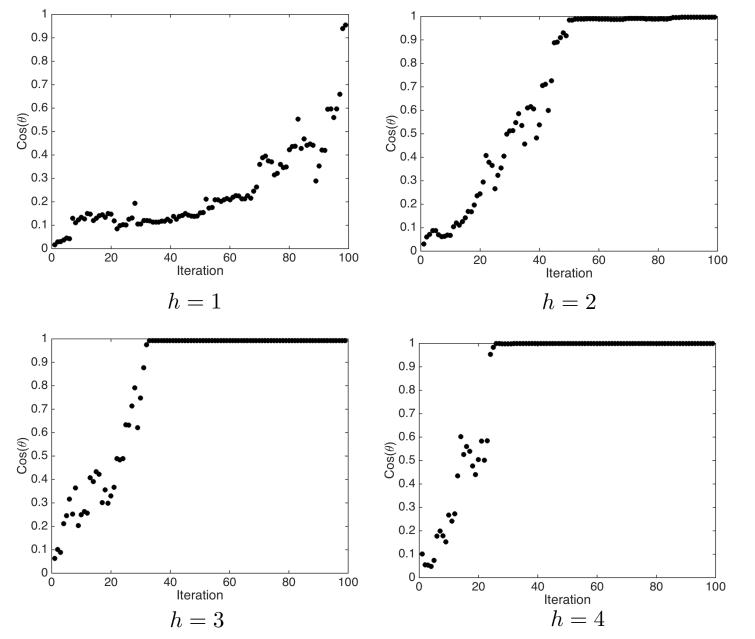
#### **Problem Dimensions:**

- Parameter dimension: p = 100
- Active subspace dimension: n = 1
- Finite element approximation



### **Example: Initialization Algorithm to Approximate Gradient**

**Results:** Cosine of angle between 'analytic' and computed gradient



Recall: p=100

**Note:** Convergence within  $h \cdot \ell$  iterations

# SCALE6.1: High-Dimensional Example

Setup: Cross-section computations SCALE6.1

- Input Dimension: 7700
- Output  $k_{eff}$ : Governs reactions

| $\mathbf{N}$                 | Iateria               | als                  | Rea                | ctions                          |
|------------------------------|-----------------------|----------------------|--------------------|---------------------------------|
| $^{234}_{92}\text{U}$        | $^{10}_{5}{ m B}$     | $^{31}_{15}{\rm P}$  | $\Sigma_t$         | $n \rightarrow \gamma$          |
| $^{235}_{92}\text{U}$        | $^{11}_{5}{ m B}$     | $^{55}_{25}{ m Mn}$  | $\Sigma_e$         | $n \rightarrow p$               |
| $^{236}_{92}\text{U}$        | $^{14}_{7}{ m N}$     | $_{26}$ Fe           | $\Sigma_f$         | $n \rightarrow d$               |
| $^{238}_{92}\text{U}$        | $^{15}_{~7}{ m N}$    | $^{116}_{50}{ m Sn}$ | $\Sigma_c$         | $n \rightarrow t$               |
| $^{1}_{1}\mathrm{H}$         | $^{23}_{11}$ Na       | $^{120}_{50}{ m Sn}$ | $\bar{\nu}$        | $n \rightarrow {}^{3}\text{He}$ |
| <sup>16</sup> <sub>8</sub> O | $^{27}_{13}\text{Al}$ | $_{40}$ Zr           | $\chi$             | $n \rightarrow \alpha$          |
| <sub>6</sub> C               | $_{14}\mathrm{Si}$    | $_{19}\mathrm{K}$    | $n \rightarrow n'$ | $n \rightarrow 2n$              |

**Really Annoying Reality for Allie and Kayla:** Cross-section libraries are binary and require conversion to floating point for perturbations.

# SCALE6.1: High-Dimensional Example

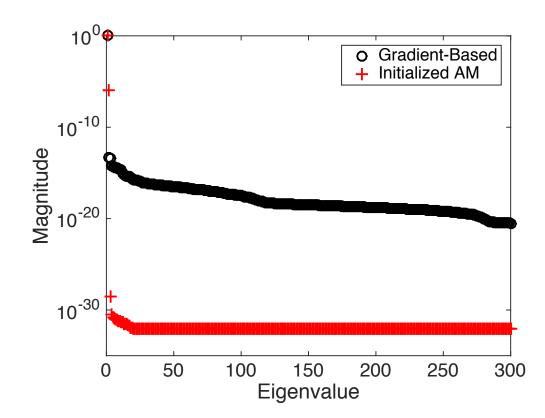
### Setup:

Input Dimension: 7700

### **SCALE Evaluations:**

- Gradient-Based: 1000
- Initialized Adaptive Morris: 18,392
- Projected Finite-Difference: 7,701,000
- Note: Analytic eigenvalues: 0, 1

#### **Active Subspace Dimensions:**



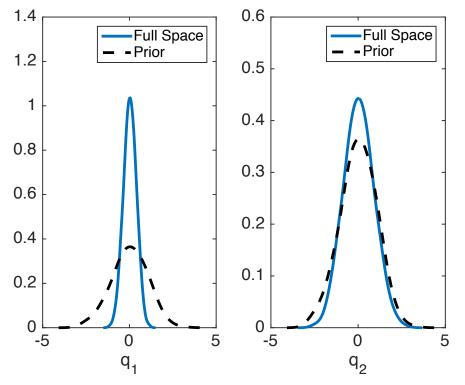
|                | Gap | PCA  |      |      |      | Error Tolerance |           |           |           |
|----------------|-----|------|------|------|------|-----------------|-----------|-----------|-----------|
| Method         |     | 0.75 | 0.90 | 0.95 | 0.99 | $10^{-3}$       | $10^{-4}$ | $10^{-5}$ | $10^{-6}$ |
| Gradient-Based | 1   | 2    | 6    | 9    | 24   | 1               | 13        | 90        | 233       |
| Initialized AM | 1   | 1    | 1    | 1    | 2    | 1               | 2         | 2         | 2         |

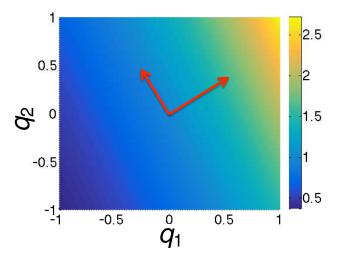
Note: Computing *converged* adjoint solution is expensive and often not achieved

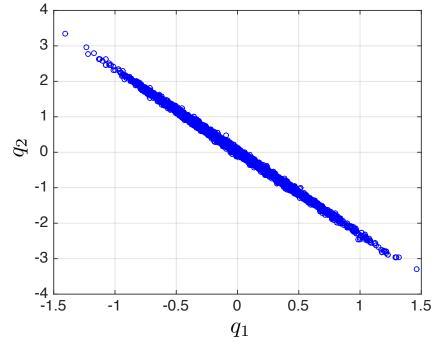
**Example:**  $y = \exp(0.7q_1 + 0.3q_2)$ 

### **Full Space Inference:**

- Parameters not jointly identifiable
- Result: Prior for 2<sup>nd</sup> parameter is minimally informed.
- **Goal:** Use active subspace to quantify parameter sensitivity and guide inference.







**Example:**  $y = \exp(0.7q_1 + 0.3q_2)$ 

Active Subspace: For gradient matrix G, form SVD

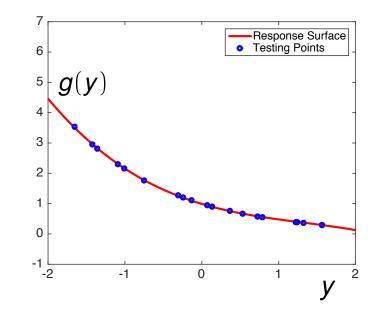
 $G = U \wedge V^T$ 

Eigenvalue spectrum indicates 1-D active subspace with basis

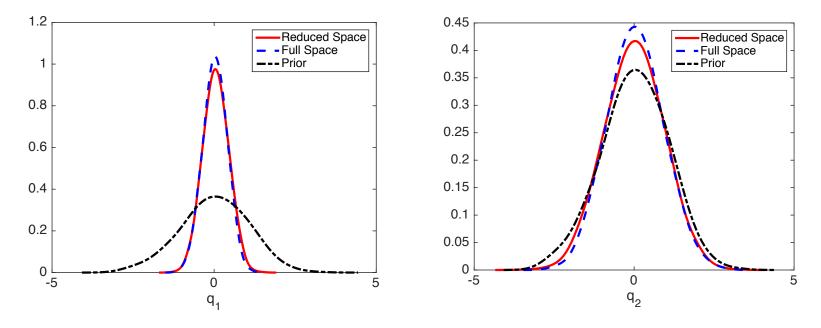
U(:, 1) = [0.91, 0.39]

Strategy: Inference based on active subspace

- For values  $\{q^j\}_{j=1}^M$ , compute  $y^j = U(:, 1)^T q^j$  and fit response surface g(y)
- Perform Bayesian inference for y
- Because model is "invariant" to  $z = U(:, 2)^T q$ , draw  $\{z^j\} \sim N(0, 1)$
- Transform to  $q^j = U(:, 1)y^j + U(:, 2)z^j$  to obtain posterior densities for physical parameters



**Results**: Inference based on active subspace



**Global Sensitivity:** For active subspace of dimension n, consider vector of activity scores

$$\alpha_i(n) = \sum_{j=1}^n \lambda_j w_{i,j}^2, \ i = 1, ..., p$$

Present Example: Here n = 1 and  $w_1^2 = U(:, 1) \cdot U(:, 1) = [0.91^2, 0.39^2]$ 

**Conclusion:** First parameter is more influential and better informed during Bayesian inference.

**Example:** Family of elliptic PDE's – Same as initialization example

 $-\nabla_{s} \cdot (a(s, \ell) \nabla_{s} u(s, a(s, \ell)) = 1$  ,  $s \in [0, 1]^{2}$  ,  $\ell = 1, ..., n$ 

with the random field representations

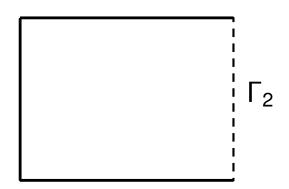
$$\log(a(s,\ell)) = \sum_{i=1}^{p} q_i^{\ell} \gamma_i \phi_i(s)$$

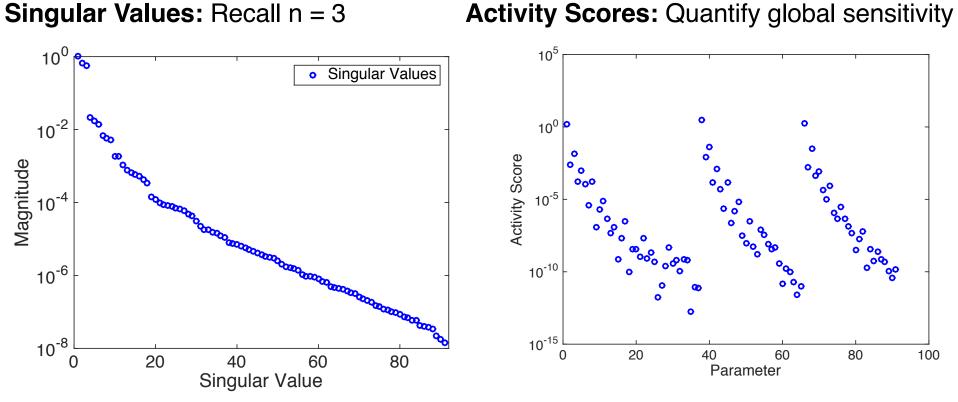
Quantity of interest: e.g., strain along edge at n levels

$$f(\mathbf{q}^1, \dots, \mathbf{q}^n) \approx \sum_{\ell=1}^n \frac{1}{|\Gamma_2|} \int_{\Gamma_2} u(q(s, \ell) ds)$$

#### **Problem Dimensions:**

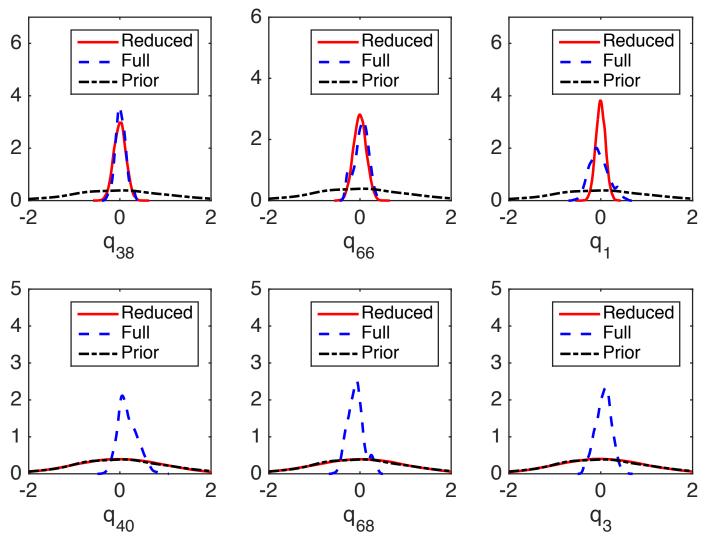
- Parameter dimension: p = 91
- Active subspace dimension: n = 3
- Finite element approximation





**Conclusion:** Parameters 1, 38, 66 are most influential and will be primarily informed during Bayesian inference

**Recall:** Parameters 1, 38, 66 are most influential and will be primarily informed during Bayesian inference

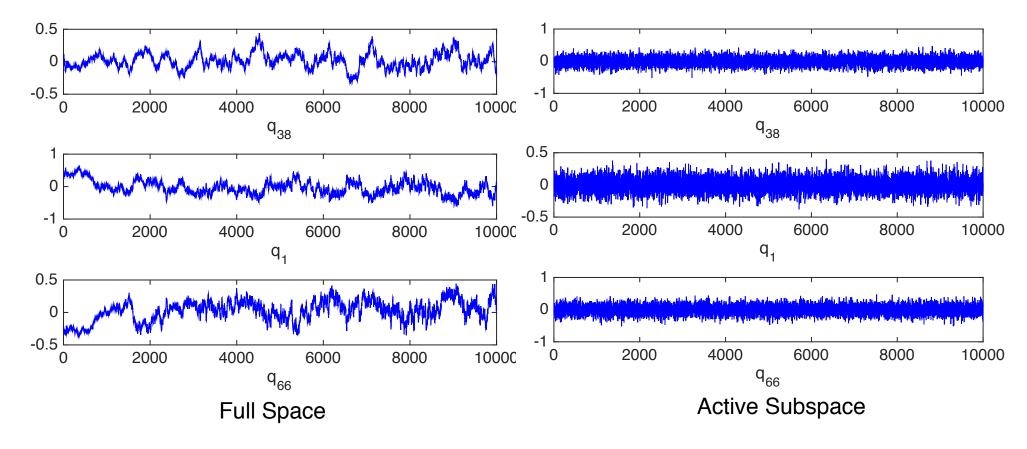


#### Note:

- Full space: 18 hours
- Reduced: 20 seconds

### Note:

- Chains for full space not converging well due to parameter nonidentifiability
- Hence full space inference is less reliable



# **Concluding Remarks**

### Notes:

- Parameter selection is critical to isolate identifiable and influential parameters.
- Active subspace construction necessary for models with high-dimensional parameter spaces; e.g., 7700.
- Due to complexity of models, surrogate or low-fidelity models typically required. Algorithms utilizing mutual information can maximize information gain when calibrating.
- Present and future work:
  - Relax Gaussian constraints on priors when performing inference on active subspaces.
  - Further analysis of activity scores.
  - Construction of reduced-order models that conserve mass, momentum and energy.
  - Reduced-order models for multi-physics problems.
- *Prediction is very difficult, especially if it's about the future*, Niels Bohr.

