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A first linear toy example

Venturi’s example [Rozza and A.T., 2008, Janon et al., 2015]

Let µ = (µ1, µ2, µ3) ∈ P = [0.25, 0.5]× [2, 4]× [0.1, 0.2], let
Ω = Ω(µ) defined as:
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A first linear toy example

Let us define the continuous state variable ue = ue(µ) ∈ Xe as:
∆ue = 0 in Ω
ue = 0 on ΓD
∂ue
∂n = −1 on ΓN
∂ue
∂n = 0 on ∂Ω \ (ΓN ∪ ΓD)

with
Xe = {v ∈ H1(Ω) s.t. v |ΓD = 0}.

Define the output of interest as:

s(µ) = s(ue(µ)) =
∫

ΓN
ue(µ).

We are interested in determining the respective influence of
parameters µ1, µ2, µ3 on s(µ).
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A first linear toy example

The variational formulation for the Venturi’s example is:∫
Ω
∇ue .∇v = −

∫
ΓN

v , ∀ v ∈ Xe .

Let T be a finite triangulation of Ω and P1(T ) the associated finite
element subspace. The above problem is discretized as follows:∫

Ω
∇u.∇v = −

∫
ΓN

v , ∀ v ∈ X ,

where X = {v ∈ P1(T ) s.t. v |Γd = 0}.
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A first linear toy example

Towards global sensitivity analysis:

Uncertainties on parameters µ1, µ2, µ3 are modeled by independent
probability distributions.'

&

$

%

independent random parameters
µ = (µ1, µ2, µ3)

−→
�
�

�

random output

s(µ) ∈ R

In the previous example, let µ be modeled by a random vector
distributed uniformly on P = [0.25, 0.5]× [2, 4]× [0.1, 0.2].
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A first linear toy example

Is the output of interest s(µ) more or less variable when setting
one of the parameters µi , i = 1, 2, 3 to a nominal value?

Var (s(µ)|µi = µi ,0), how to choose µi ,0? ⇒ E [Var (s(µ)|µi)]

Theorem (total variance)
Var(s(µ)) = Var [E (s(µ)|µi)] + E [Var (s(µ)|µi)].

Definition (First-order Sobol’ indices)
i = 1, 2, 3

0 ≤ Si = 1− E [Var (s(µ)|µi)]
Var(s(µ)) = Var [E (s(µ)|µi)]

Var(s(µ)) ≤ 1

A value close to 1 (resp. a small value) for the first-order Sobol’
index Si means that µi has many (resp. little) influence on s(µ).
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A first linear toy example

Estimation procedure:

Monte Carlo based estimation procedures for Sobol’ indices require
many evaluations of the output of interest s(µ). It is possible to
obtain confidence intervals.

What happens if the output s(µ) is costly to evaluate?

It is then possible to approximate s(µ) by s̃(µ) = s(ũ(µ)) with
ũ(µ) an approximation of the state variable u(µ).

What about confidence intervals in that case?

The approximation error |s(µ)− s̃(µ)| has to be taken into account
in their construction [Janon et al., 2014b, Janon et al., 2014a].
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A nonlinear toy example

Nonviscous Burgers’ equation:
we are looking for u = u(t, x) satisfying:

∂u
∂t + 1

2
∂(u2)
∂x = 0

u(t, x = 0) = 1 ∀t
u(t = 0, x) = cos2(αx) + βx

where the parameter vector µ = (α, β) belongs to [0, 1]× [0, 1].

Discretization upwind scheme: we look for (uni )i ,n so that:
un+1
i −uni

∆t + 1
2

(un+1
i )2−(un+1

i−1 )2
∆x = 0 ∀i ≥ 1

un0 = 1 ∀n
u0i = cos2(αi∆x) + βi∆x ∀i

with Nt the number of timesteps, Nx the number of space points,
∆t = 1/Nt and ∆x = 1/Nx .
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A linear toy example with nonlinear outputs

The linear transport equation

Let us define ue = ue(t, x) solution of the following equation for all
(t, x) ∈ (0, 1)× (0, 1):

∂ue
∂t (t, x) + µ∂ue∂x (t, x) = sin(x) exp(−x)
ue(t = 0, x) = x(1− x) ∀x ∈ [0, 1]
ue(t, x = 0) = 0 ∀t ∈ [0, 1]

We consider: µ ∼ U ([0.5, 1]).

Discretization: let us consider u = (uni )i=0,...,Nx ;n=0,...,Nt with
∀i , u0i = i∆x (1− i∆x ), ∀n, un0 = 0 and the first-order upwind
scheme implicit relation

∀i , n
un+1
i+1 − uni+1

∆t
+ µ

un+1
i+1 − un+1

i
∆x

= sin(i∆x ) exp(−i∆x ).
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A linear toy example with nonlinear outputs

Full dimension: the space-time vector u is of dimension
N = (Nx + 1)(Nt + 1).

Nonlinear outputs:

Square output: s(µ) =
(
uNt
Nx

)2
Exponential output: s(µ) = exp

(
uNt
Nx

)
Triple exponential output: s(µ) = exp

(
3uNt

Nx

)
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Outline of the talk

I- Problem statement in the linear context

II- Goal oriented probabilistic error bound

III- A first numerical example

IV- Extension to nonlinear models

V- From nonlinear models to nonlinear outputs
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I- Problem statement

Let P be the parameter space. For any µ ∈ P, let u(µ) be the
solution of the linear system:

A(µ)u(µ) = f (µ),

with A(µ) (f (µ)) a known N ×N matrix (N × 1 vector).
The linear output of interest is defined as: s(µ) = `>u(µ).

Dimension reduction: let X̃ be a subspace of X of dimension
n << N . Let Z be the N × n matrix whose columns are the
components of a (reduced) basis of X̃ in the canonical basis of X .
Let ũ(µ), e.g., be the n × 1 vector solution of:

(Z>A(µ)Z )ũ(µ) = Z>f (µ).

Define the approximated output as:

s̃(µ) = `>Zũ(µ) ≈ `>u(µ) = s(µ).
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I- Problem statement

Under some (more or less technical) hypotheses on A(µ) and on
the norm ‖·‖ (say, Euclidean norm), the reduced basis comes with
an error bound εu(µ):

∀µ ∈ P, ‖u(µ)− Zũ(µ)‖ ≤ εu(µ)

which can be computed efficiently (i.e., with the order of
complexity of the computation of ũ(µ)).
Question: Can we deduce from it an error bound ε(µ) on s:

∀µ ∈ P, |s(µ)− s̃(µ)| ≤ ε(µ)

which can be explicitly and efficiently computed ?
Answer: Yes, as the “Lipschitz bound” holds:

∀µ ∈ P, |s(µ)− s̃(µ)| ≤ Lεu(µ), with L = sup
‖v‖=1

`>v .

We aim at improving this "Lipschitz" bound.
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II- Goal oriented probabilistic error bound

By efficiently computable, one means that the computation may
be divided in two phases:

an offline phase during which quantities not depending on µ are
computed, this phase can be relatively costly;

an online phase during which quantities depending on µ are
computed, this phase has to be efficient.

Indeed, let coff (resp. con) be the cost of the offline (resp. online)
phase. If one wants to estimate all first-order Sobol’ indices, one
needs to evaluate 2N times the model, with N the size of the
Monte Carlo sample. Thus the cost is coff + 2N × con.
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II- Goal oriented probabilistic error bound

Starting point:
Usually, the bound εu(µ) on ‖u(µ)− ũ(µ)‖ is based on the
residual and its norm:

r(µ) = A(µ)Zũ(µ)− f (µ) ∈ X .

We also want to exploit that the (say, Euclidean) scalar products
of the residual, 〈r(µ), φ〉, are efficiently computable ∀φ ∈ X , in the
usual setting of reduced basis for affinely parametrized PDE.
Let {φi}i=1,...,N be an orthonormal basis of X (to be chosen later).
We have:

s̃(µ)− s(µ) =
∑
i≥1
〈w(µ), φi〉〈r(µ), φi〉,

where w(µ) is the solution of the so-called adjoint (or dual)
problem:

w(µ) = A(µ)−>`.
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II- Goal oriented probabilistic error bound

Let K ∈ N∗. We have:

|s̃(µ)− s(µ)| ≤
∣∣∣∣∣
K∑
i=1
〈w(µ), φi〉〈r(µ), φi〉

∣∣∣∣∣+
∣∣∣∣∣∣
∑
i>K
〈w(µ), φi〉〈r(µ), φi〉

∣∣∣∣∣∣ .
Consider first

τ1(µ) :=

∣∣∣∣∣∣∣
K∑
i=1
〈w(µ), φi〉︸ ︷︷ ︸
to bound

computable︷ ︸︸ ︷
〈r(µ), φi〉

∣∣∣∣∣∣∣
We compute (once for all the values of µ):

βmin
i = min

µ∈P
Di(µ), βmax

i = max
µ∈P

Di(µ),

where: Di(µ) = 〈w(µ), φi〉, (2K optimization problems on P).
Let

βupi (µ) =
{
βmax
i if 〈r(µ), φi〉 > 0
βmin
i else, βlowi (µ) =

{
βmin
i if 〈r(µ), φi〉 > 0
βmax
i else.
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II- Goal oriented probabilistic error bound

We then have:

|τ1(µ)| ≤ max
(∣∣∣∣∣

K∑
i=1
〈r(µ), φi〉βlowi (µ)

∣∣∣∣∣ ,
∣∣∣∣∣
K∑
i=1
〈r(µ), φi〉βupi (µ)

∣∣∣∣∣
)

=: T1(µ).

Let now τ2(µ) = |
∑

i>K 〈w(µ), φi〉〈r(µ), φi〉|.
This term is not efficiently computable. We assume that µ is a
random vector on P, with known distribution. Let us control
T2 = Eµ [τ2(µ)] by:

1
2Eµ

∑
i>K
〈w(µ), φi〉2 +

∑
i>K
〈r(µ), φi〉2

 =
∑
i>K
〈Gφi , φi〉

where G is the positive, self-adjoint operator defined by:

∀φ ∈ X , Gφ = 1
2Eµ (〈r(µ), φ〉r(µ) + 〈w(µ), φ〉w(µ)) .
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II- Goal oriented probabilistic error bound

Recall that:
T2 ≤

∑
i>K
〈Gφi , φi〉.

Let λ1 ≥ λ2 ≥ . . . λN ≥ 0 be the eigenvalues of G , and φGi be a
unitary eigenvector of G with respect to λi . The term∑

i>K 〈Gφi , φi〉 is minimized for φi = φGi ∀i > K .

With this choice for the orthonormal basis {φ1, . . . , φN }, we get
the following a priori bound:

T2 ≤
∑
i>K

λ2i .

In [Janon et al., 2015] is described a way of estimating the φGi
with a cost independent of the dimension N of X .

18/ 31



II- Goal oriented probabilistic error bound

Probabilistic error bound: one accepts the risk of the bound for
|s(µ)− s̃(µ)| being violated for a set of parameters having "small"
probability measure.

Theorem ([Janon et al., 2015])

Let α ∈ (0, 1), Pµ
(
|s(µ)− s̃(µ)| > T1(µ) + T2

α

)
< α.

Idea of proof: The main ingredient is Markov Inequality. �

In practice, we use a Monte Carlo estimation of T2 (once for all
the values of µ).
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III- A first numerical example

Venturi’s example with s(µ) =
∫

ΓN
u(µ),

P = [0.25, 0.5]× [2, 4]× [0.1, 0.2].
We choose: N = 525, the reduced basis is a POD computed from
a snapshot of size 80, K = 20, #Ξ = 200, the risk level
α = 0.0001

3 4 5 6 7 8 9 10 11 12
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

Equivalent reduced−basis size

 

 
Bound on non−corrected output
Bound on corrected output
Dual−based output bound
True error on non−corrected output
True error on corrected output
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III- A first numerical example

Results for first-order sensitivity analysis:

input parameter
[
Ŝm
i ; ŜM

i

] [
Ŝm
i ,αas/2; ŜM

i ,1−αas/2

]
µ1 [0.530352;0.530933] [0.48132; 0.5791]
µ2 [0.451537;0.452099] [0.397962;0.51139]
µ3 [0.00300247;0.0036825] [-0.0575764;0.0729923]

Table: Certification via bootstrap : size of the Monte Carlo sample 1000,
bootstrap B = 500, reduced basis size m = 10, confidence level 0.95.
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IV- Extension to nonlinear models

[Janon et al., 2016b] Problem statement: M : P × X → Y ,
M (µ, u(µ)) = 0.
One wants to achieve Formula

s̃(µ)− s(µ) =
∑
i≥1
〈w(µ), φi〉〈r(µ), φi〉,

where w(µ) is the solution of the so-called adjoint (or dual)
problem, one wants to define an operator

M? : P × X × X × Y → X ,

linear in the last variable, such that the following identity holds:

∀µ ∈ P,∀x1, x2 ∈ X ,∀y ∈ Y ,

〈x1 − x2,M?(µ, x1, x2, y)〉 = 〈M(µ, x1)−M(µ, x2), y〉.
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IV- Extension to nonlinear models

Assume thatM : P × X → Y is C1 with respect to x , ∀ x ∈ X . Let
dM(µ, x) : X → Y the derivative ofM in x ∈ X ,
dM(µ, x)? : Y → X the (linear) adjoint of dM(µ, x).

Adapting the ideas developed for goal-oriented adaptive FEM, we first
define the finite difference adjoint operator ofM by

M?(µ, x1, x2, y) =
∫ 1

0
dM?(µ, x2 + s(x1 − x2))(y)ds .

What assumptions on the nonlinearity and on the dependence in
the parameter ? main issue: computation of all the scalar products
〈r(µ), φi〉 (i = 1, . . . ,K ) at a low cost, ideally independent from N .

23/ 31



IV- Extension to nonlinear models

{y1, . . . , yS} (resp.{x1, . . . , xN }) orthonormal basis of Y (resp. X ).

M : P × X → Y , M
(
µ,
N∑
i=1

vixi
)

=
S∑
j=1

mj(µ, v1, . . . , vN )yj

- affine parameter dependence
mj(µ, v1, . . . , vN ) =

∑Tj
k=0Qk,j(v1, . . . , vN )hk(µ)

- polynomial nonlinearity
Qk,j(v1, . . . , v) =

∑
α=(α1,...,αN )∈Ij,k qj,k,α

∏
l∈Vα v

αl
l

Then, it is possible to compute all the scalar products
〈r(µ), φi〉 (i = 1, . . . ,K ) with an offline/online procedure whose
online phase has a cost independent from the full dimension N .
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IV- Extension to nonlinear models

Non-viscous Burgers’ example: [Janon et al., 2016b]

Parameter Description Usual range
Nx Number of points in x 10 – 80
Nt Number of time steps 10 – 20
Ntest Monte-Carlo sample size 100
Nsnap Size of the POD training sample set 70
Nφ Index K for the estimation of T1 using basis φG 8

Nbasis Size of the POD basis 3 – 10
∆t Time step ∆t = 1/Nt
∆x Space step ∆x = 1/Nx

Table: Table of experiment description and numerical setup.

Speed up ratios:
r1 = full pb computing time

online computing time

r2 = K × full pb computing time
offline + K × online computing time

with K = 1000.
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IV- Extension to nonlinear models

Experiment label Nt Nx Ntest Nsnap Nφ

t10× x40 10 40 100 70 8
t20× x40 20 40 200 150 12
t10× x80 10 80 100 70 8
t20× x80 20 80 200 150 12

Table: Table of experiment description and numerical setup.

Experiment name (a) (b) (c) (d)
t10× x40 t20× x40 t10× x80 t20× x80

full pb computing time 47.1 354.1 178.5 24160
online computing time 13.6 41.6 21.1 35.79
offline computing time 426.4 2535 1236 112370

speed-up ratio r1 3.5 8.5 8.45 675
speed-up ratio r2 3.4 8 8 163

Table: Table of costs, for a size of the truncated POD equal to 8.
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V- From nonlinear models to nonlinear outputs

[Janon et al., 2016b] Find v(µ) such that H(µ, v(µ)) = 0 where
H : P × X → Y is a (not necessarily linear with respect to the
second argument) function, and consider the following output:

S(µ) = f (v(µ))
where f is a (not necessarily linear) function from Y to R.
Let

u(µ) =
(

v(µ)
S(µ)

)
=
(

u(µ)
u(µ)

)
∈ X × R.

We then defineM : P × (X × R)→ Y by:

M(µ, u(µ)) =
(

H(µ, u(µ))
f (u(µ))− u(µ)

)
,

and consider the following linear output:

s(µ) = S(µ) = u(µ) = 〈`, u(µ)〉 with ` =
(

0
1

)
∈ X × R.
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V- From nonlinear models to nonlinear outputs

Let us come back to the linear transport example.
Numerical tuning: size of the POD snapshot 70, number of vectors
φ̂Gi Nφ = 20, risk level α = 0.0001.
The error bounds are averaged on a sample of 200 random
parameter values, for the three different output cases: square,
exponential and triple exponential.

Comparison between the mean error bound and the true error, for
different reduced basis sizes, in the square (top left), the exponential (top
right) and the triple exponential (down) output case.
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Conclusion, perspectives

Conclusion
we obtained a goal-oriented probabilistic error estimation for
linear/nonlinear problems and linear/nonlinear outputs,
this bound can be computed efficiently in an offline/online
procedure,
we applied such bounds to provide confidence intervals for
sensitivity indices,
during the talk I provided illustrations on toy examples.
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Conclusion, perspectives

Generalizations, perspectives
application to more complex models, see e.g., in
[Janon et al., 2016a], an application to the sensitivity analysis
for a flow control problem with linearized Shallow water
equation,
combination with EIM for non affinely parametrized PDE,
what happens if one considers sensitivity indices which are not
based on variance?
. . .

30/ 31



Some references I

Janon, A., Klein, T., Lagnoux, A., Nodet, M., and Prieur, C. (2014a).
Asymptotic normality and efficiency of two Sobol’ index estimators.
ESAIM P&S, 18:342–364.

Janon, A., Nodet, M., and Prieur, C. (2014b).
Uncertainties assessment in global sensitivity indices estimation from metamodels.
International Journal for Uncertainty Quantification, 4 (1):21–36.

Janon, A., Nodet, M., and Prieur, C. (accepted in 2015).
Goal-oriented error estimation for reduced basis method, with application to certified sensitivity analysis.
Journal of Scientific Computing.

Janon, A., Nodet, M., Prieur, C., and Prieur, C. (2016a).
Global sensitivity analysis for the boundary control of an open channel.
Math. Control Signals Systems, 28(1).

Janon, A., Nodet, M., Prieur, C., and Prieur, C. (2016b).
Goal-oriented error estimation for fast approximations of nonlinear problems.
submitted.

Rozza, G. and A.T., P. (2008).
Venturi: Potential flow.
http: // augustine. mit. edu/ workedproblems/ rbMIT/ venturi/ .

Thanks for your attention

31/ 31

http://augustine.mit.edu/workedproblems/rbMIT/venturi/

