Compatible and reliable numerical modelling with PDEs

Andrea Cangiani

mathLab, Mathematics Area, SISSA

SISSA Junior Math Days 5–7.12.2022

SISSA mathLab

The SISSA mathLab is a laboratory for mathematical modelling and scientific computing.

- part of Mathematics Area
- funded in 2010
- 5 professors, many research associates and PhD students
- What we do:
 - Interaction between mathematics and its applications
 - From theoretical numerical analysis to industrial projects
 - High Performance Computing
 - Open Source Software Development

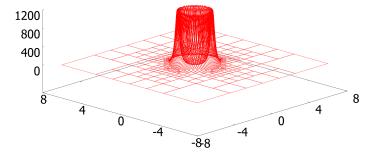
Se also talks by Giovanni Nosellli and Davide Torlo (Wednesday)

Research area

- Continuum modelling with Partial Differential Equations (PDEs), eg. in biomedicine, geophysics, engineering
 - Interaction of different phenomena (eg. transport and diffusion)
 - Non-linear effects (eg. flux through semipermeable membranes)
- Development & analysis of new numerical PDE methods, HPC
 - Finite Element-type methods on general meshes
 - Automatic adaptivity driven by reliable a posteriori error estimation

A nonlinear problem with finite-time blow-up: $\partial_t u - \kappa \Delta u + \mathbf{b} \cdot \nabla u = u^2$

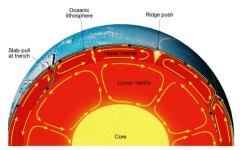
- Analytical results: blowup time?
- Standard numerical methods: prohibitive resolution required
- Mesh-adaptive methods driven by conditional¹ a posteriori error control→ used to drive guaranteed adaptive computations



¹hold under some computationally verifiable conditions

Compatible. A space-time journey to the centre of earth

Reverse-engineering the history of earth's continental plates



- Long timescale calculation 100My+
- Capture fine features on whole mantle
- Multiple runs inverse problem

Simplified Boussinesq model of convection

$$\begin{aligned}
-\nabla \cdot (\mu(T)(\nabla \mathbf{u} + \nabla \mathbf{u}^{\mathrm{T}})) + \nabla p &= -\rho(T)\mathbf{g} \\
\nabla \cdot \mathbf{u} &= 0 \\
T_t - \varepsilon \Delta T + \mathbf{u} \cdot \nabla T &= f
\end{aligned}$$

Adaptive large-scale earth mantle convection simulations

Parallel implementation of Boussinesq model embedded into community code ASPECT [Bangerth et al. 2018]:

- Taylor-Hood + discontinuous
 Galerkin FEM
- Adaptivity via residual-based a posteriori error estimator
- load-balancing operation

van Kenen benchmark [S. Cox, PhD thesis, Leicester, 2016].

Variational problems and the Ritz-Galerkin method

Abstract variational (linear) problem: Find $u \in V$:

$$A(u, v) = F(v) \quad \forall v \in V$$

Stokes problem with homogeneous Dirichlet b.c.

Find $(u, p) \in H_0^1(\Omega) \times L^2(\Omega) \setminus {\rm I\!R}$:

$$-\Delta \mathbf{u} + \nabla \mathbf{p} = \mathbf{f} \quad \text{in } \Omega,$$
$$\nabla \cdot \mathbf{u} = 0 \quad \text{in } \Omega.$$

Variational problem: find $(u, p) \in H_0^1(\Omega) \times L^2(\Omega) \setminus \mathbb{R}$:

$$\begin{aligned} a(\mathbf{u}, \mathbf{v}) + b(\mathbf{v}, \mathbf{p}) &= (\mathbf{f}, \mathbf{v}) & \forall \mathbf{v} \in \mathsf{H}_0^1(\Omega), \\ b(\mathbf{u}, \mathbf{q}) &= 0 & \forall \mathbf{q} \in L^2(\Omega) \setminus \mathbb{R}. \end{aligned}$$

with
$$a(u, v) = \int_{\Omega} \nabla u : \nabla v$$
, $b(v, p) = \int_{\Omega} p \nabla \cdot v$, and $(f, v) = \int_{\Omega} f \cdot v$.

Variational problems and the Ritz-Galerkin method

Abstract variational (linear) problem: Find $u \in V$:

$$A(u, v) = F(v) \quad \forall v \in V$$

Let $V_n \subset V$ some *n*-dim *conforming* subspace.

Ritz-Galerkin method: Find $u_n \in V_n$:

$$A(u_n, v) = F(v) \quad \forall v \in V_n$$

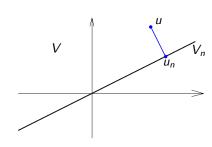
Consistency (Galerkin Orthogonality):

$$A(u-u_n,v_n)=0 \quad \forall v_n \in V_n.$$

If V is Hilbert with Inner Product

$$[u, v] := A(u, v)$$

then u_n is the projection of u onto V_n !

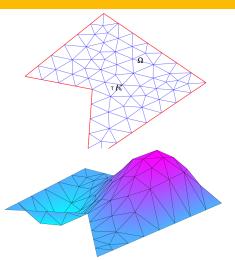


Finite Element Methods

- Split the problem domain $\Omega \subset \mathbb{R}^d$ into elements $\kappa \in \mathcal{T}$ where \mathcal{T} denotes the mesh. Standard elements are triangular or quadrilateral.
- Pick an appropriate finite element space V_n of piecewise polynomials.

Why polynomials?

- ► Easy to compute with
- ► Known approximation properties



Why triangles/quadrilaterals?

 Easy to glue local spaces continuously across edges

Some FEM for the Stokes system

Taylor-Hood (1973): $\mathcal{P}_{p+1}^d(\kappa) \times \mathcal{P}_p(\kappa)$, triangular elements, global spaces

$$U_n \times P_n \subset H^1_0(\Omega) \times L^2(\Omega)$$

Consistent and conforming but the solution u_n is not necessarily div-free.

<code>BDM-DG</code> [Cockburn-Kanschat-Schotzau (2007), Schotzau et al. (2014)]: $\mathcal{P}^d_p(\kappa) imes \mathcal{P}_{p-1}(\kappa)$,

$$U_n \times P_n \nsubseteq H_0^1(\Omega) \times L^2(\Omega)$$

$$a_n(\mathbf{u}_n, \mathbf{v}_n) = \sum_{\kappa \in \mathcal{T}} \int_{\kappa} \nabla \mathbf{u}_n : \nabla \mathbf{v}_n - \int_{\Gamma} (\{\nabla \mathbf{u}_n\} \cdot [\mathbf{v}_n] + \{\nabla \mathbf{v}_n\} \cdot [\mathbf{u}_n] - \sigma[\mathbf{u}_n][\mathbf{v}_n])$$

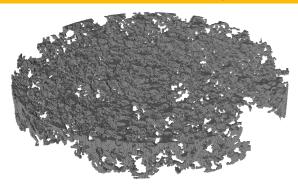
 σ Interior Penalty parameter, $[\cdot]$ jumps and $\{\cdot\}$ averages across elements.

The solution u_n is exactly div-free (compatible), inspite of nonconformity.

This method easily generalisable to polytopic meshe...!

Fantastic Voyage: model reduction via cell agglomeration

[C, Dong, Georgoulis, Houston, Springer Briefs, 2017]



~ 3.2M cells/elements from voxels of a CT scan of bone scaffold

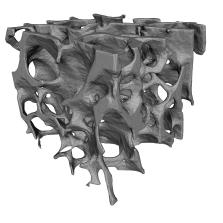
Use general polyhedral element shapes ∼32k elements

If higher resolution is required locally, use mesh adaptivity

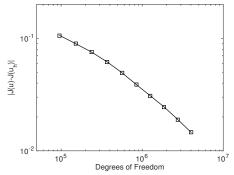
Goal oriented adaptivity on complicated domains

[C, Dong, Georgoulis, Houston, Springer Briefs, 2017]

Linear elastic analysis of a section of trabecular bone



- Model: 1,179,569 tetrahedral elements
- agglomerated to generate a coarse polytopic mesh of 8000 elements
- goal-oriented adaptive algorithm



Convergence of DWR error estimator of Young's modulus

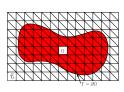
Mesh-based discretisations with general cells

- Nonstandard finite elementsmay be more suited to the problem → multiscale FEM, compatible discretisation methods
- More general elemental shapes
 - Complex/complicated/curved/moving/multiphysics domains
 - Automatic mesh/order adaptivity

Typical configurations include

- curved (moving) geometries (eg. from CAD or level set descriptions from centrelines)
- multiscale geometries given as a fine pixelisation





Mesh-based discretisations with general cells

- Nonstandard finite elementsmay be more suited to the problem → multiscale FEM, compatible discretisation methods
- More general elemental shapes
 - Complex/complicated/curved/moving/multiphysics domains
 - Automatic mesh/order adaptivity

Main technologies developed including general mesh/order adaptivity:

- Virtual Element Method VEM [Beirao da Veiga, Brezzi, C, Manzini, Marini & Russo, M3AS, 2013]
- discontinuos Galerkin (dG) methods [C, Georgoulis & Houston, M3AS, 2014]

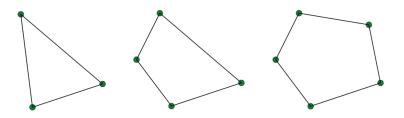
Common features: physical mesh elements robust with respect to mesh distortion, trivial & fully local adaptivity.

The Virtual Element Method (VEM) in a nutshell

[Beirao da Veiga, Brezzi, Cangiani, Manzini, Marini, & Russo, M3AS, 2013]

Reinterpret classical FE as instances of more general spaces (eg. conforming FE as generalised harmonic functions).

As such, they yield the same element irrespective of the shape:



Consistent and comforming discretisations on polygonal meshes.

Disctrete space difficult to compute with eg. solutions of local PDEs).

The Virtual Element Method (VEM) in a nutshell

[Beirao da Veiga, Brezzi, Cangiani, Manzini, Marini, & Russo, M3AS, 2013]

- Use enriched spaces $V^{\kappa} = \mathcal{P}_{p}(\kappa) + \text{'virtual functions'}$
- Fix the DoF so that $\Pi: V^{\kappa} \to \mathcal{P}_p(\kappa)$ is computable just by accessing the DoF.
- Approximate the problem by only using directly accessible quantities.

⇒ conforming polynomial-like FEM on polygonal meshes.

Application II: adaptive VEM (not fully consistent, locally non-hierarchical):

Example: heat equation with manufactured solution

VEM adaptive algorithm:

 $\tau = 0.000625$;

Refinement:

 $\begin{array}{l} \text{if indicator} > 0.01, \\ \text{every 5 steps} \end{array}$

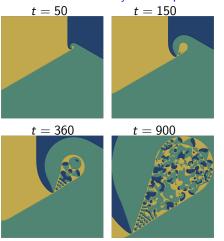
Coarsening:

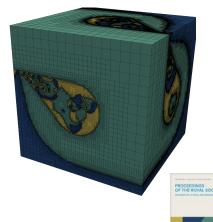
if indicator < 0.0005, every 20 steps.

[C, georgoulis, Sutton, M3AS, 2021]

Revealing new dynamical patterns

Lotka-Volterra cyclic competition of mutually exclusive species





[C., Georgoulis, Morozov, Sutton, Proc. Royal Soc. A., 2018]

Adaptivity with general meshes

Mesh adaptive Virtual Element Method. [Sutton, PhD Thesis, Leicester, 2017]

A posteriori error bounds – a brief intro

$$-\Delta u = f \quad \text{in } \Omega,$$

$$u = 0, \quad \text{on } \partial \Omega.$$

PDE stability via energy method: $\|\nabla u\| \le \|f\|_{H^{-1}(\Omega)}$ FEM: Find $u_h \in V_h \subset H^1_0(\Omega)$: $(\nabla u_h, \nabla v_h) = \langle f, v_h \rangle \quad \forall v_h \in V_h$. We have, formally:

$$\begin{split} \|\nabla(u-u_h)\|_{L^2(\Omega)}^2 &\leq \|f+\Delta u_h\|_{H^{-1}(\Omega)}^2 \\ &= C\sum_{\kappa\in\mathcal{T}} \eta_\kappa(u_h,f) \end{split}$$

This is a basic residual-based a posteriori error bound.

Residual-based a posteriori error estimation and adaptivity

PDE stability + Galerkin orthogonality & Approximation error estimates

Robust and efficient a posteriori² error estimation.

- A posteriori bounds used to drive automatic adaptive algorithms
- General meshes provide more flexible tool

```
[Giani & Houston 2014, Collins & Houston 2016, C, Georgoulis & Sabawi 2017, C, Georgoulis, Pryer & Sutton 2017, C, Georgoulis & Sutton 2021, C, Georgoulis & Dong, 2022]
```


[C, Dong, Georgoulis & Houston 2017]

²A posteriori bounds only depend on computable quantities.

Typical posteriori error bound

Discontinuous Galerkin a posteriori error bound on general meshes

$$\begin{split} \|\|u-u_h\|\|^2 &\leq C \Big(\sum_{\kappa \in \mathcal{T}} \Big(\frac{h_\kappa^2}{\rho_\kappa^2} \| (f - \nabla_h (A \nabla_h u_h) \|_\kappa^2 + \frac{h_\kappa}{\rho_\kappa} \| [A \nabla u_h] \|_{\partial \kappa \cap \Gamma_{\mathrm{int}}}^2 \\ &\qquad \qquad \frac{h_\kappa}{\rho_\kappa} \| [t \cdot \nabla u_h] \|_{\partial \kappa}^2 + \| \sigma^{1/2} [u_h] \|_{\partial \kappa}^2 \Big) \Big), \end{split}$$

Typical tools:

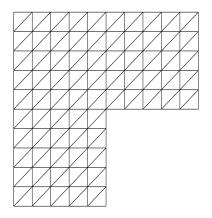
Trace-inverse estimate

Given $p \in \mathbb{N}$, for each $\kappa \in \mathcal{T}$ and $v \in \mathcal{P}_p(\kappa)$,

$$\|v\|_{\partial\kappa}^2 \leq C_{sh} \frac{(p+1)(p+d)}{h_{\kappa}} \|v\|_{\kappa}^2$$

[C., Dong & Georgoulis, 2022]

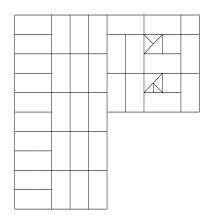
$$\begin{split} -\nabla \cdot (a\nabla u) &= f \text{ with } a = 1 \times I_{2\times 2} \text{ on } \Omega := (-1,1)^2 \setminus (0,1) \times (-1,0), \\ u &= r^{2/3} \sin(2\psi/3) + \exp(-1000((x-0.5)^2 + (y-0.25)^2)) \\ &+ \exp(-1000((x-0.5)^2 + (y-0.75)^2)) \end{split}$$



Initial mesh, $p \equiv 3$

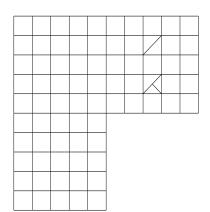
[C., Dong &Georgoulis, 2022]

$$\begin{split} -\nabla \cdot (a\nabla u) &= f \text{ with } a = 1 \times I_{2\times 2} \text{ on } \Omega := (-1,1)^2 \setminus (0,1) \times (-1,0), \\ u &= r^{2/3} \sin(2\psi/3) + \exp(-1000((x-0.5)^2 + (y-0.25)^2)) \\ &+ \exp(-1000((x-0.5)^2 + (y-0.75)^2)) \end{split}$$



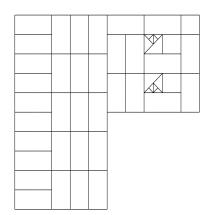
[C., Dong &Georgoulis, 2022]

$$\begin{split} -\nabla \cdot (a\nabla u) &= f \text{ with } a = 1 \times I_{2\times 2} \text{ on } \Omega := (-1,1)^2 \setminus (0,1) \times (-1,0), \\ u &= r^{2/3} \sin(2\psi/3) + \exp(-1000((x-0.5)^2 + (y-0.25)^2)) \\ &+ \exp(-1000((x-0.5)^2 + (y-0.75)^2)) \end{split}$$



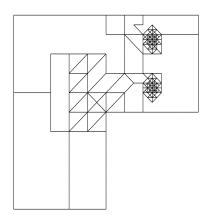
[C., Dong &Georgoulis, 2022]

$$\begin{split} -\nabla \cdot (a\nabla u) &= f \text{ with } a = 1 \times I_{2\times 2} \text{ on } \Omega := (-1,1)^2 \setminus (0,1) \times (-1,0), \\ u &= r^{2/3} \sin(2\psi/3) + \exp(-1000((x-0.5)^2 + (y-0.25)^2)) \\ &+ \exp(-1000((x-0.5)^2 + (y-0.75)^2)) \end{split}$$



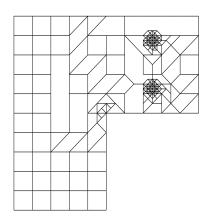
[C., Dong &Georgoulis, 2022]

$$\begin{split} -\nabla \cdot (a\nabla u) &= f \text{ with } a = 1 \times I_{2\times 2} \text{ on } \Omega := (-1,1)^2 \setminus (0,1) \times (-1,0), \\ u &= r^{2/3} \sin(2\psi/3) + \exp(-1000((x-0.5)^2 + (y-0.25)^2)) \\ &+ \exp(-1000((x-0.5)^2 + (y-0.75)^2)) \end{split}$$



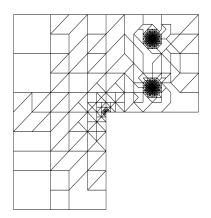
[C., Dong &Georgoulis, 2022]

$$\begin{split} -\nabla \cdot (a\nabla u) &= f \text{ with } a = 1 \times I_{2\times 2} \text{ on } \Omega := (-1,1)^2 \setminus (0,1) \times (-1,0), \\ u &= r^{2/3} \sin(2\psi/3) + \exp(-1000((x-0.5)^2 + (y-0.25)^2)) \\ &+ \exp(-1000((x-0.5)^2 + (y-0.75)^2)) \end{split}$$



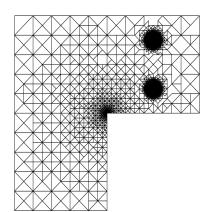
[C., Dong &Georgoulis, 2022]

$$\begin{split} -\nabla \cdot (a\nabla u) &= f \text{ with } a = 1 \times I_{2\times 2} \text{ on } \Omega := (-1,1)^2 \setminus (0,1) \times (-1,0), \\ u &= r^{2/3} \sin(2\psi/3) + \exp(-1000((x-0.5)^2 + (y-0.25)^2)) \\ &+ \exp(-1000((x-0.5)^2 + (y-0.75)^2)) \end{split}$$



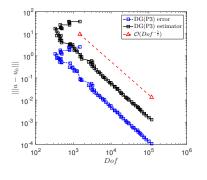
[C., Dong &Georgoulis, 2022]

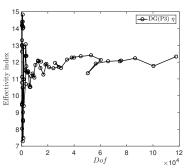
$$\begin{split} -\nabla \cdot (a\nabla u) &= f \text{ with } a = 1 \times I_{2\times 2} \text{ on } \Omega := (-1,1)^2 \setminus (0,1) \times (-1,0), \\ u &= r^{2/3} \sin(2\psi/3) + \exp(-1000((x-0.5)^2 + (y-0.25)^2)) \\ &+ \exp(-1000((x-0.5)^2 + (y-0.75)^2)) \end{split}$$



Convergence hystory and effectivity

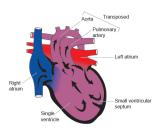
[C., Dong & Georgoulis, 2022]





Univentricular heart: the Fontan circulation

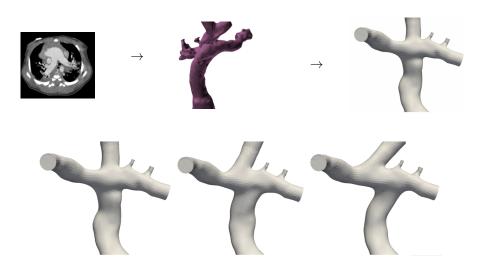
Targeting poor long-term prognosis of new borns with functionally univentricular hearts.



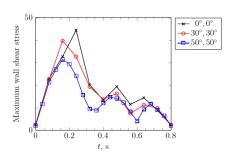
[Corno et al., Frontiers in Pediatrics, 2019]

Fontan circulation (\sim 1970) revolutionised the treatment of patients with "functionally" uni-ventricular hearts, previously considered inoperable.

Model of Fontan circulation

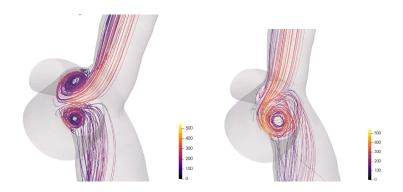


Model of Fontan circulation



Simulations of Fontan circulation

Navier-Stokes with Robin b.c. by Zakhary Crowson using AptoFEM (Nottingham)



Cost of assembly of polyhedral FEM

GPU-accelerated stiffness matrix assembly [Dong, Georgoulis, Kappas, 2020].

(Times for a Nvidia P100 Graphical Processing Unit)

р	1	2	3	4	5
# elements	8,388,608	2,097,152	524,288	131,072	32,768
# DoFs	33.5M	20.1M	10.4M	4.6M	1.8M
kernels only (sec)	1.0s	3.5s	5.6s	7.1s	7.9s

Challenges & connections to other disciplines

Computational modelling of complex processes (biomedical): robustness, compatibility, and complexity reduction

- Compatible discretisations preserving geometry, conservation properties, symmetries, monotonicity,...
- Adaptive/automatic resolution, eg. of sharp solution features
- Parameters estimation, inverse problems, uncertainty quantification

Requires:

- Skillful knowledge of the physical/biological problem
- Deep mathematical analysis
- Development of HPC algorithms