Disguised Toric Dynamical Systems

Miruna-Ștefana Sorea

Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy SISSA Junior Math Days 2022

December 6, 2022

SISSA

Co-authors ${ }^{1}$

Gheorghe Craciun Univ. of Wisconsin-Madison

Laura Brustenga i Moncusí Univ. of Copenhagen
${ }^{1}$ Disguised toric dynamical systems. J. Pure Appl. Algebra 226 (2022), no. 8, Paper No. 107035, 24 pp.

Motivation

Nonlinear dynamical systems: infectious diseases, dynamics of concentrations in biochemical reaction networks, dynamics of populations for species.

Motivation

Nonlinear dynamical systems: infectious diseases, dynamics of concentrations in biochemical reaction networks, dynamics of populations for species.
Qualitative questions: challenging

Motivation

Nonlinear dynamical systems: infectious diseases, dynamics of concentrations in biochemical reaction networks, dynamics of populations for species.
Qualitative questions: challenging
Second part of Hilbert 16th problem

Motivation - Hilbert 16th Problem II

What can we say about the number and location of Poincaré limit cycles of a planar polynomial vector field of degree n ?

$$
\frac{d x}{d t}=P(x, y), \frac{d y}{d t}=Q(x, y),
$$

where $P, Q: \mathbb{R}^{2} \rightarrow \mathbb{R}$, polynomials of degree n.

[^0]
Hilbert 16th Problem II

- Finiteness - proven.

Hilbert 16th Problem II

- Finiteness - proven.
- Many open questions (even in the quadratic case). E.g., is it true that the number of limit cycles is bounded by a constant depending only on n ?

Figure 1. Summary of the history of Hilbert's 16th problem. Roman letters stand for names, calligraphic ones for new developments. P-Poincaré; H-Hilbert, D-Dulac, P-L-PetrovskiiLandis, E-Ecalle, I-Ilyashenko; $\mathcal{N} \mathcal{F}$-normal forms, $\mathcal{A} \mathcal{F}$ analytic foliations, $\mathcal{I H} \mathcal{P}$-infinitesimal Hilbert 16th problem, $\mathcal{N S P}$-nonlinear Stokes phenomena, $\mathcal{R} \mathcal{F}$-resurgent functions, \mathcal{B}-bifurcations, $\mathcal{R V}$-restricted versions of the Hilbert 16th problem.

History of Hilbert 16th problem (Ilyashenko, 2002)

Dynamical properties of nonlinear systems

Possible behaviours of the systems: uniqueness and stability of the steady state, bistability, oscillation or even chaos ${ }^{3}$ - the butterfly effect of the Lorenz systems.

Toric dynamical systems

- remarkably stable;
- also called complex balanced / vertex balanced dynamical systems Yu and Craciun, 2018;
- family of polynomial dynamical systems inspired by reaction networks, under the assumption of mass-action kinetics;
- introduced by Horn and Jackson in 1972;

Toric dynamical systems

Dynamical aspects

- known to be locally stable;
- exceptionally strong dynamical properties;
- conjectured: this equilibrium is globally asymptotically stable.

Toric dynamical systems

Dynamical aspects

- known to be locally stable;
- exceptionally strong dynamical properties;
- conjectured: this equilibrium is globally asymptotically stable.

Algebraic aspects

- steady state set is a toric variety;
- monomial parametrization;
- tools from real algebraic geometry, computational algebraic geometry, commutative algebra.

Existence of toric dynamical systems

Good news:

- Under some algebraic conditions on the parameters, the system is toric.
- Set of parameters that satisfies the conditions is called the toric locus; it is a toric variety (Craciun et al., 2009).

Existence of toric dynamical systems

Good news:

- Under some algebraic conditions on the parameters, the system is toric.
- Set of parameters that satisfies the conditions is called the toric locus; it is a toric variety (Craciun et al., 2009).

Bad news:

- The toric locus is usually a set of Lebesgue measure zero in the space of parameters.

Main results - I, [Moncusí, Craciun, and Sorea, 2022]

The nice properties of toric dynamical systems are true for a larger class: disguised toric dynamical systems!

- we extend the toric locus to the disguised toric locus with positive Lebesgue measure;
- we leverage dynamically equivalent systems (Craciun, Jin, and Yu, 2020);
- an algorithm to detect the disguised toric locus.

Main results - II, [Moncusí, Craciun, and Sorea, 2022]

\exists globally stable systems that are not disguised toric?

Overview

Background: Reaction Networks
Toric dynamical systems
$->$ dynamics and algebra
$->$ toric locus and deficiency

Overview

Background: Reaction Networks
Toric dynamical systems
$->$ dynamics and algebra
$->$ toric locus and deficiency

Main contribution: Disguised toric dynamical systems
$->$ larger disguised toric locus
$->$ leverage dynamical equivalence
$->$ disguised toric vs globally stable
-> algorithm

Reaction Networks

Chemical complexes: formal linear combinations of species.

4 reactions (edges);
3 species $\left(X_{1}, X_{2}, X_{3}\right)$;
3 complexes (vertices: $X_{1}+X_{2}, 2 X_{2}, X_{3}$).

Euclidean Embedded Graphs (E-graphs)

Euclidean Embedded Graphs (E-graphs)

Mass-action kinetics and polynomial ODEs on $\mathbb{R}_{>0}^{n}$

$$
\begin{aligned}
& X_{1}+X_{2} \xrightarrow[k_{21}]{k_{12}} 2 X_{2} \quad \frac{d}{d t}\left(\begin{array}{c}
x_{1} \\
x_{3} \\
x_{3}
\end{array}\right)=k_{12} x_{1} x_{2}\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right) \\
& k_{31}^{2} \\
& +k_{21} x_{2}^{2}\binom{-1}{-\frac{1}{0}} \\
& +k_{23} x_{2}^{2}\left(\begin{array}{c}
0 \\
-2 \\
1
\end{array}\right) \\
& +k_{31} x_{3}\binom{\frac{1}{1}}{-1} \text {. }
\end{aligned}
$$

Mass-action kinetics and polynomial ODEs on $\mathbb{R}_{>0}^{n}$

$$
\begin{aligned}
& X_{1}+x_{2} \xrightarrow[k_{21}]{\hat{k}_{12}} 2 x_{2} \quad \frac{d}{d t}\binom{x_{1}}{x_{3}}=k_{12} x_{1} x_{2}\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right) \\
& x_{31}^{k_{3}} \\
& \begin{array}{l}
+k_{21} x_{2}^{2}\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right) \\
+k_{23} x_{2}\left(\begin{array}{c}
0 \\
-2 \\
1
\end{array}\right) \\
+k_{31} x_{3}\left(\begin{array}{l}
1 \\
1 \\
-1
\end{array}\right) .
\end{array}
\end{aligned}
$$

Definition

The dynamical system generated by G and $k \in \mathbb{R}_{>0}^{E}$ is the following:

$$
\begin{equation*}
\frac{\mathrm{d} \mathrm{x}}{\mathrm{~d} t}=F_{G, \mathrm{k}}(\mathrm{x}), \text { where } F_{G, \mathrm{k}}(\mathrm{x}):=\sum_{\mathrm{y} \rightarrow \mathrm{y}^{\prime} \in E} k_{\mathrm{y} \rightarrow \mathrm{y}^{\prime} \mathrm{x}^{\mathrm{y}}\left(\mathrm{y}^{\prime}-\mathrm{y}\right)} \tag{1}
\end{equation*}
$$

Vertex balanced steady states

A steady state $\hat{\chi}=\left(\hat{x}_{1}, \hat{x}_{2}, \hat{x}_{3}\right) \in \mathbb{R}_{>0}^{3}$ is vertex-balanced if, for every vertex v, the flux into v is equal to the flux out of v.

$$
X_{1}+X_{2} \xrightarrow[k_{2 \Lambda}]{\stackrel{k_{12}}{\longrightarrow}} 2 X_{2} \quad \begin{array}{r}
k_{21} \hat{x}_{2}^{2}+k_{31} \hat{x}_{3}=k_{12} \hat{x}_{1} \hat{x}_{2} \\
k_{21} \hat{x}_{2}^{2}+k_{23} \hat{x}_{2}^{2}=k_{12} \hat{x}_{1} \hat{x}_{2} \\
k_{23} \hat{x}_{2}^{2}=k_{31} \hat{x}_{3} .
\end{array}
$$

Similar to Kirchhoff's Junction Rule.

Toric locus

Polynomial equations with coefficients in $\mathbb{R}_{>0}$.

$$
\begin{aligned}
k_{21} x_{2}^{2}+k_{31} x_{3} & =k_{12} x_{1} x_{2} \\
k_{21} x_{2}^{2}+k_{23} x_{2}^{2} & =k_{12} x_{1} x_{2} \\
k_{23} x_{2}^{2} & =k_{31} x_{3} .
\end{aligned}
$$

Toric locus

Polynomial equations with coefficients in $\mathbb{R}_{>0}$.

$$
\begin{aligned}
k_{21} x_{2}^{2}+k_{31} x_{3} & =k_{12} x_{1} x_{2} \\
k_{21} x_{2}^{2}+k_{23} x_{2}^{2} & =k_{12} x_{1} x_{2} \\
k_{23} x_{2}^{2} & =k_{31} x_{3} .
\end{aligned}
$$

Toric locus: set of $k_{i j}>0$ s.t. there exists a $V B$ solution \hat{x}.

Toric locus

Polynomial equations with coefficients in $\mathbb{R}_{>0}$.

$$
\begin{aligned}
k_{21} x_{2}^{2}+k_{31} x_{3} & =k_{12} x_{1} x_{2} \\
k_{21} x_{2}^{2}+k_{23} x_{2}^{2} & =k_{12} x_{1} x_{2} \\
k_{23} x_{2}^{2} & =k_{31} x_{3} .
\end{aligned}
$$

Toric locus: set of $k_{i j}>0$ s.t. there exists a VB solution \hat{x}.

- real quantifier elimination,
- elimination ideals...

Vertex balanced/Toric dynamical systems

Theorem (Horn and Jackson, 1972)

If a mass-action system has a VB steady state x^{*}, then:

- all positive steady states are VB, and there is exactly one steady state up to conservation laws;
- \exists a strictly convex Lyapunov function of this system, with global minimum at $\mathrm{x}=\mathrm{x}^{*}$.
- every positive steady state is locally asymptotically stable (up to conservation laws).

Vertex balanced/Toric dynamical systems

Theorem (Horn and Jackson, 1972)

If a mass-action system has a VB steady state x^{*}, then:

- all positive steady states are VB, and there is exactly one steady state up to conservation laws;
- \exists a strictly convex Lyapunov function of this system, with global minimum at $\mathrm{x}=\mathrm{x}^{*}$.
- every positive steady state is locally asymptotically stable (up to conservation laws).

(thermodynamics <—> chemical reaction networks)

Vertex balanced/Toric dynamical systems

Theorem (Horn and Jackson, 1972)

If a mass-action system has a VB steady state x^{*}, then:

- all positive steady states are VB, and there is exactly one steady state up to conservation laws;
- \exists a strictly convex Lyapunov function of this system, with global minimum at $\mathrm{x}=\mathrm{x}^{*}$.
- every positive steady state is locally asymptotically stable (up to conservation laws).

(thermodynamics <—> chemical reaction networks)

Conjecture (Horn and Jackson, 1972)

Vertex balanced equilibria are globally asymptotically stable.

Toric dynamical systems (dynamics)

Global attractor conjecture (Horn 1974): toric dynamical systems are globally stable within each positive stoichiometric compatibility class, that is, they have a globally attracting point (up to conservation laws).

[^1]
Toric dynamical systems (dynamics)

Global attractor conjecture (Horn 1974): toric dynamical systems are globally stable within each positive stoichiometric compatibility class, that is, they have a globally attracting point (up to conservation laws).

- proven under mild hypotheses;

[^2]
Toric dynamical systems (dynamics)

Global attractor conjecture (Horn 1974): toric dynamical systems are globally stable within each positive stoichiometric compatibility class, that is, they have a globally attracting point (up to conservation laws).

- proven under mild hypotheses;
- a recently proposed proof in all generality by Craciun (2015) ${ }^{4}$.

[^3]
Toric dynamical systems (algebraic)

Theorem (Gatermann, 2001)

The steady state set of a toric dynamical system is a toric variety.

Toric dynamical systems (algebraic)

Theorem (Gatermann, 2001)

The steady state set of a toric dynamical system is a toric variety.

Theorem (Craciun, Dickenstein, Shiu, Sturmfels, 2009)

The moduli space associated to any toric dynamical system is a toric variety (after a change of coordinates).

$\left(k_{21} k_{31}+k_{32} k_{21}+k_{23} k_{31}\right)\left(k_{13} k_{23}+k_{21} k_{13}+k_{12} k_{23}\right)-\left(k_{12} k_{32}+k_{13} k_{32}+k_{31} k_{12}\right)^{2}=0$.

Toric locus - Example

New coordinates, given by the Matrix-Tree Theorem:
$K_{1}:=k_{21} k_{31}+k_{32} k_{21}+k_{23} k_{31}$;
$K_{2}:=k_{12} k_{32}+k_{13} k_{32}+k_{31} k_{12}$;
$K_{3}:=k_{13} k_{23}+k_{21} k_{13}+k_{12} k_{23}$.
In the new coordinates, the toric locus: $K_{1} K_{3}-K_{2}^{2}=0$.
$\left(k_{21} k_{31}+k_{32} k_{21}+k_{23} k_{31}\right)\left(k_{13} k_{23}+k_{21} k_{13}+k_{12} k_{23}\right)-\left(k_{12} k_{32}+k_{13} k_{32}+k_{31} k_{12}\right)^{2}=0$.

For most networks, the set in parameter space that gives rise to toric systems (i.e., the toric locus) has Lebesgue measure zero.

Deficiency of a Reaction Network

Definition

Let us consider a Euclidean embedded graph G. Denote by s the dimension of the stoichiometric subspace \mathcal{S}, by I the number of connected components of G, and by m the number of vertices of G.
The deficiency of G is

$$
\begin{equation*}
\delta:=m-s-1 . \tag{2}
\end{equation*}
$$

For example, the complete digraph with three nodes, $\delta=1$:

Toric locus

Theorem (Craciun, Dickenstein, Shiu, Sturmfels, 2009)
The codimension of the toric locus in the k-space equals the deficiency.

For example, the complete digraph with three nodes, $\delta=1$:

$\left(k_{21} k_{31}+k_{32} k_{21}+k_{23} k_{31}\right)\left(k_{13} k_{23}+k_{21} k_{13}+k_{12} k_{23}\right)-\left(k_{12} k_{32}+k_{13} k_{32}+k_{31} k_{12}\right)^{2}=0$.

Overview

Background: Reaction Networks
Toric dynamical systems
$->$ dynamics and algebra
$->$ toric locus and deficiency

Overview

Background: Reaction Networks
Toric dynamical systems
$->$ dynamics and algebra
$->$ toric locus and deficiency

Main contribution: Disguised toric dynamical systems
-> larger disguised toric locus
$->$ leverage dynamical equivalence
$->$ disguised toric vs globally stable
$->$ algorithm

Disguised toric dynamical system

Definition 1 (Craciun, Jin, and Yu, 2020)

Two reaction networks (G, k) and ($G^{\prime}, \mathrm{k}^{\prime}$) are dynamically equivalent if they generate the same ODE

$$
\sum_{y \rightarrow y^{\prime} \in E_{G}} k_{y \rightarrow y^{\prime}} x^{y}\left(y^{\prime}-y\right)=\sum_{y \rightarrow y^{\prime} \in E_{G^{\prime}}} k_{y \rightarrow y^{\prime}}^{\prime} x^{y}\left(y^{\prime}-y\right) .
$$

Definition 2 (Brustenga, Craciun, S., 2022)

A particular dynamical system

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=f(\mathrm{x})
$$

has a realization using an E-graph $G=(V, E)$ if there exists $k \in \mathbb{R}_{>0}^{E}$ with

$$
F_{G, \mathrm{k}}(\mathrm{x})=f(\mathrm{x}) \text { for all } x \in \mathbb{R}_{\geq 0}^{n}
$$

Definition 3 (Brustenga, Craciun, S., 2022)

Given a dynamical system

$$
\begin{equation*}
\frac{\mathrm{d} \mathrm{x}}{\mathrm{~d} t}=f(\mathrm{x}) \text { on } \mathrm{x} \in \mathbb{R}_{\geq 0}^{n}, \tag{3}
\end{equation*}
$$

we say that it is a disguised toric dynamical system if there exist an E-graph $G=(V, E)$ and $\mathrm{k} \in \mathbb{R}_{>0}^{E}$ such that

$$
f(x)=F_{G, k}(x) \text { for all } x \in \mathbb{R}_{\geq 0}^{n}
$$

and the couple (G, k) satisfies the complex balanced condition. When (3) is a disguised toric dynamical system, we also say that it has a complex balanced realization using the graph G.

$$
K(G):=\left\{k \in \mathbb{R}_{>0}^{E} \mid \text { the system generated by }(G, k) \text { is toric }\right\},
$$

$K(G):=\left\{\mathrm{k} \in \mathbb{R}_{>0}^{E} \mid\right.$ the system generated by (G, k) is toric $\}$,
$\hat{K}(G):=\left\{k \in \mathbb{R}_{>0}^{E} \mid\right.$ the system generated by (G, k) is disguised toric $\}$.

Disguised Toric Dynamical Systems

Triangle on a line

The 3 nodes on a line graph is a disguised toric dynamical system.

Figure: Triangle on a line G.

Triangle on a line

The 3 nodes on a line graph is a disguised toric dynamical system.

Figure: Triangle on a line G.

Deficiency $\delta=1$, so the toric locus is a codimension one variety.

Theorem 4 (Brustenga, Craciun, S., 2022)

The disguised toric locus of the complete graph on three nodes is the whole space of rate constants.

Sketch of the proof of Theorem 4 - Step 1

- reduce the E-graph G to have only one reaction per source;

Sketch of the proof of Theorem 4 - Step 1

- reduce the E-graph G to have only one reaction per source; $\mathbf{u}_{i}:=\sum_{\mathbf{y}_{i} \rightarrow \mathbf{y}_{j} \in E} k_{i j}\left(\mathrm{y}_{j}-\mathrm{y}_{i}\right) ;$

Sketch of the proof of Theorem 4 - Step 1

- reduce the E-graph G to have only one reaction per source;

$$
\begin{aligned}
& \mathbf{u}_{i}:=\sum_{\mathbf{y}_{i} \rightarrow \mathbf{y}_{j} \in E} k_{i j}\left(\mathrm{y}_{j}-\mathrm{y}_{i}\right) ; \\
& \mathbf{u}_{\mathbf{1}}=k_{\mathbf{1}}^{*}\binom{-\mathbf{2}}{\mathbf{2}} ; \mathbf{u}_{\mathbf{3}}=k_{\mathbf{3}}^{*}\binom{1}{-\mathbf{1}} ;
\end{aligned}
$$

Sketch of the proof of Theorem 4 - Step 1

- reduce the E-graph G to have only one reaction per source;

$$
\begin{aligned}
& u_{i}:=\sum_{y_{i} \rightarrow \boldsymbol{y}_{j} \in E} k_{k_{j}}\left(y_{j}-y_{i}\right) ; \\
& \mathbf{u}_{1}=k_{1}^{*}\binom{-2}{2} ; u_{3}=k_{3}^{*}\binom{1}{-1} ; u_{2}=k_{2}^{*}\binom{1}{-1} .
\end{aligned}
$$

- realize the system generated by (G, k) by a cycle directed graph G^{*} over $\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}$;

Sketch of the proof of Theorem 4 - Step 1

- reduce the E-graph G to have only one reaction per source;

$$
\begin{aligned}
& u_{i}:=\sum_{y_{i} \rightarrow \boldsymbol{y}_{j} \in E} k_{k_{j}}\left(y_{j}-y_{i}\right) ; \\
& \mathbf{u}_{1}=k_{1}^{*}\binom{-2}{2} ; u_{3}=k_{3}^{*}\binom{1}{-1} ; u_{2}=k_{2}^{*}\binom{1}{-1} .
\end{aligned}
$$

- realize the system generated by (G, k) by a cycle directed graph G^{*} over $\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}$;
- by construction, the dynamical systems generated by G, k and by $G^{*}, \mathrm{k}^{*}=\left(k_{1}^{*}, k_{2}^{*}, k_{3}^{*}\right) \in \mathbb{R}_{>0}^{E^{*}}$ are equal;

Sketch of the proof of Theorem 4 - Step 2

Goal: prove that the disguised toric locus $\hat{K}\left(G^{*}\right)$ is $\mathbb{R}_{>0}^{3}$.

- we realize the system generated by G^{*}, k^{*} using the graph G;
- fix k^{*} and consider the E-graph $\hat{G}=G$ and the rate constants $\hat{\mathrm{k}}$ given by ($a, b, c>0$)

$$
\begin{array}{lll}
\hat{k}_{32}:=\frac{1}{1+a} k_{3}^{*} & \hat{k}_{21}:=k_{2}^{*}+b & \hat{k}_{12}:=2 \frac{c}{1+c} k_{1}^{*} \\
\hat{k}_{\mathbf{3}}:=\frac{a}{2(1+a)} k_{3}^{*} & \hat{k}_{\mathbf{2 3}}:=b & \hat{k}_{13}:=\frac{1}{1+c} k_{1}^{*}
\end{array}
$$

$$
K(\hat{G})=\left\{\left(\hat{k}_{21} \hat{k}_{31}+\hat{k}_{32} \hat{k}_{\mathbf{2 1}}+\hat{k}_{\mathbf{2 3}} \hat{k}_{\mathbf{3 1}}\right)\left(\hat{k}_{13} \hat{k}_{23}+\hat{k}_{\mathbf{2 1}} \hat{k}_{\mathbf{1 3}}+\hat{k}_{12} \hat{k}_{23}\right)-\left(\hat{k}_{12} \hat{k}_{\mathbf{3 2}}+\hat{k}_{\mathbf{1 3}} \hat{k}_{\mathbf{3 2}}+\hat{k}_{\mathbf{3 1}} \hat{k}_{12}\right)^{\mathbf{2}}=0\right\}
$$

$$
\begin{array}{r}
\varphi(a, b, c):=\left(\frac{k_{\mathbf{3}}^{*}\left(b+k_{\mathbf{2}}^{*}\right)}{a+1}+\frac{\left(a k_{\mathbf{3}}^{*}\right)\left(b+k_{\mathbf{2}}^{*}\right)}{2(a+1)}+\frac{b\left(a k_{\mathbf{3}}^{*}\right)}{2(a+1)}\right)\left(\frac{k_{1}^{*}\left(b+k_{\mathbf{2}}^{*}\right)}{c+1}+\frac{b k_{1}^{*}}{c+1}+\frac{b\left(2 c k_{1}^{*}\right)}{c+1}\right)- \\
-\left(\frac{k_{\mathbf{1}}^{*} k_{\mathbf{3}}^{*}}{(a+1)(c+1)}+\frac{k_{\mathbf{3}}^{*}\left(2 c k_{\mathbf{1}}^{*}\right)}{(a+1)(c+1)}+\frac{\left(a k_{\mathbf{3}}^{*}\right)\left(2 c k_{\mathbf{1}}^{*}\right)}{(2(a+1))(c+1)}\right)^{2} . \tag{5}
\end{array}
$$

- there exists $a_{0}, b_{0}, c_{0}>0$ such that $\varphi\left(a_{0}, b_{0}, c_{0}\right)=0$ (intermediate value theorem).

Quadrilateral on a line

Consider the complete directed graph G on four nodes:

$$
\begin{aligned}
\frac{d}{d t}\binom{x_{1}}{x_{2}}= & \mathbf{u}_{1} x_{1}^{3}+\mathbf{u}_{2} x_{1}^{2} x_{2}+\mathbf{u}_{3} x_{1} x_{2}^{2}+\mathbf{u}_{4} x_{2}^{3}= \\
= & \left(k_{12}+2 k_{13}+3 k_{14}\right)\binom{1}{1} x_{1}^{3}+ \\
& +\left(k_{21}-k_{23}-2 k_{24}\right)\binom{1}{-1} x_{1}^{2} x_{2}+ \\
& +\left(2 k_{31}+k_{32}-k_{34}\right)\binom{1}{-1} x_{1} x_{2}^{2}+ \\
& +\left(3 k_{41}+k_{43}+2 k_{42}\right)\binom{1}{-1} x_{2}^{3} .
\end{aligned}
$$

$$
\begin{gathered}
k_{1}^{*}:=k_{12}+2 k_{13}+3 k_{14} ; \\
k_{4}^{*}:=3 k_{41}+2 k_{\mathbf{4 2}}+k_{43} . \\
k_{2}^{*}:= \begin{cases}k_{21}-k_{23}-2 k_{24} & \text { if } k_{21}-k_{23}-2 k_{24}>0 \\
-k_{21}+k_{23}+2 k_{24} & \text { otherwise }\end{cases} \\
k_{3}^{*}:= \begin{cases}2 k_{31}+k_{32}-k_{34} & \text { if } 2 k_{31}+k_{32}-k_{34}>0 \\
-2 k_{31}-k_{32}+k_{34} & \text { otherwise. }\end{cases}
\end{gathered}
$$

Theorem 5 (Brustenga, Craciun, S., 2022)

The complete digraph on four nodes is disguised toric if and only if
(1) k belongs to a single-sign-change chamber or
(2) k belongs to the 4 th chamber and $k_{3}^{*} k_{2}^{*} \leq k_{4}^{*} k_{1}^{*}$.

Sketch of the proof of Theorem 5 (2)

Fix k in \mathcal{C}_{4}.
The system generated by G, k is equal to the system generated by G^{*} (with one reaction per source) and k^{*}.
Consider \hat{G} obtained by the detail-balance completion which contains the same source vertices as the E-graph G^{*}.

Figure: Detailed balanced extension of \mathcal{C}_{4}.

Consider the rate constants \hat{k} given by

$$
\begin{array}{lll}
\hat{k}_{12}:=k_{1}^{*} & \hat{k}_{23}:=a & \hat{k}_{43}:=k_{4}^{*} \\
\hat{k}_{21}:=k_{2}^{*}+a & \hat{k}_{32}:=b & \hat{k}_{34}:=k_{3}^{*}+b
\end{array}
$$

where $a, b>0$.
(1) show that for every k^{*} satisfying $k_{3}^{*} k_{2}^{*} \leq k_{4}^{*} k_{1}^{*}$, there exist $a, b>0$ for which the couple (\hat{G}, \hat{k}) satisfies the detailed balance condition (and then also the complex balanced condition).
(2) show that if the system generated by G^{*}, k^{*} is disguised toric, then the condition $k_{3}^{*} k_{2}^{*} \leq k_{4}^{*} k_{1}^{*}$ is necessarily satisfied.

Globally stable but not disguised toric

Proposition (Brustenga, Craciun, S., 2022)

The dynamical system in the fourth chamber is globally stable iff

$$
\begin{equation*}
\left(k_{3}^{*} k_{2}^{*}\right)^{2}-4 k_{4}^{*}\left(k_{2}^{*}\right)^{3}-4\left(k_{3}^{*}\right)^{3} k_{1}^{*}-27\left(k_{4}^{*} k_{1}^{*}\right)^{2}+18 k_{4}^{*} k_{3}^{*} k_{1}^{*} k_{2}^{*}<0 . \tag{6}
\end{equation*}
$$

Globally stable but not disguised toric

Proposition (Brustenga, Craciun, S., 2022)

The dynamical system in the fourth chamber is globally stable iff

$$
\begin{equation*}
\left(k_{3}^{*} k_{2}^{*}\right)^{2}-4 k_{4}^{*}\left(k_{2}^{*}\right)^{3}-4\left(k_{3}^{*}\right)^{3} k_{1}^{*}-27\left(k_{4}^{*} k_{1}^{*}\right)^{2}+18 k_{4}^{*} k_{3}^{*} k_{1}^{*} k_{2}^{*}<0 . \tag{6}
\end{equation*}
$$

Single-sign-change chambers

Theorem 6 (Brustenga, Craciun, S., 2020)

Consider the " N-gon on a line" network given by $G=(V, E)$. Given $\mathrm{k} \in \mathbb{R}_{>0}^{E}$ belonging to a single-sign-change chamber, the system generated by G and k is disguised toric.

Figure: The N-gon on a line.

Single-sign-change chambers - idea of proof

Single-sign-change chambers: a procedure one might use to find sufficient semialgebraic conditions on $k \in \mathbb{R}_{>0}^{E}$ for being in $\hat{K}(G)$. Step 1: For a given $k \in \mathbb{R}_{>0}^{E}$, realize the dynamical system generated by (G, k) using an E-graph $\hat{G}=(\hat{V}, \hat{E})$ where the detailed balance condition can be established.
Step 2: Pullback to $k \in \mathbb{R}_{>0}^{E}$ the equations of the detailed balance condition on $\hat{k} \in \mathbb{R}_{>0}^{\hat{E}_{0}}$.
The obtained semialgebraic set will be contained in $\hat{K}(G)$, since detailed balance dynamical systems are toric.

Filling an empty toric locus

Theorem (Craciun, Jin, and Yu, 2020)
The dynamical system generated by the orange E-graph above is dynamically equivalent to complex balanced iff $\frac{1}{25} \leq \frac{k_{1} k_{3}}{k_{2} k_{4}} \leq 25$.

Figure: Four reactions that start at the corners of a rectangle.

$$
\begin{array}{rrrr}
y_{1}:=\binom{0}{0} & y_{2}:=\binom{\alpha}{0} & y_{3}:=\binom{\alpha}{\beta} & y_{4}:=\binom{0}{\beta} \\
y_{5}:=y_{1}+\binom{\alpha A}{\beta B} & y_{6}:=y_{2}+\binom{-\alpha A}{\beta B} & y_{7}:=y_{3}+\binom{-\alpha A}{-\beta B} & y_{8}:=y_{4}+\binom{\alpha A}{-\beta B}
\end{array}
$$

Theorem 7 (Brustenga, Craciun, S., 2022)

The disguised toric locus $\hat{K}(G)$ is the set of $k_{1}, \ldots, k_{4}>0$ such that

$$
\left(\frac{\alpha-\beta}{\alpha+\beta}\right)^{2} \leq \frac{k_{1} k_{3}}{k_{2} k_{4}} \leq\left(\frac{\alpha+\beta}{\alpha-\beta}\right)^{2}
$$

Key idea of the proof:

Figure: Complete graph over the sources of G : graph \hat{G}, rates $\hat{k}_{i} \geq 0$.

Theorem (Craciun, Jin, and Yu, 2020)

A mass-action system G is dynamically equivalent to some vertex-balanced mass-action system if and only if it is dynamically equivalent to a vertex-balanced mass-action system \hat{G} that only uses the source vertices of G.

Algorithm 8 (Simplified version-Computing the disguised toric locus)

Input: a reaction network G.
Output: the disguised toric locus of G, or a subset of the disguised toric locus of G.

Algorithm 8 (Simplified version-Computing the disguised toric locus)

Input: a reaction network G.
Output: the disguised toric locus of G, or a subset of the disguised toric locus of G.

Step 1. Find realizations of the dynamical systems generated by G, using a weakly reversible graph \hat{G}.

Algorithm 8 (Simplified version-Computing the disguised toric locus)

Input: a reaction network G.
Output: the disguised toric locus of G, or a subset of the disguised toric locus of G.

Step 1. Find realizations of the dynamical systems generated by G, using a weakly reversible graph \hat{G}.
Step 2. Choose an algebraic parametrization of \hat{k}_{y} coordinates such that:

$$
\sum_{y \rightarrow y^{\prime} \in \hat{G}} \hat{k}_{y \rightarrow y^{\prime}}\left(y^{\prime}-y\right) \in C_{G, y} \cap \bar{C}_{\hat{G}, y}
$$

Algorithm 8 (Simplified version-Computing the disguised toric locus)

Input: a reaction network G.
Output: the disguised toric locus of G, or a subset of the disguised toric locus of G.

Step 1. Find realizations of the dynamical systems generated by G, using a weakly reversible graph \hat{G}.
Step 2. Choose an algebraic parametrization of \hat{k}_{y} coordinates such that:

$$
\sum_{y \rightarrow y^{\prime} \in \hat{G}} \hat{k}_{y \rightarrow y^{\prime}}\left(y^{\prime}-y\right) \in C_{G, y} \cap \bar{C}_{\hat{G}, y}
$$

Step 3. Impose the complex balance conditions for the graph \hat{G} on the parametrized $\hat{\mathrm{k}}$ values, and use quantifier elimination to obtain sufficient conditions for a vector k to be contained in the disguised toric locus of G.

Example

Figure: Realization using the complete bidirected graph on the rectangle.
Denote by $\hat{k}_{i j}>0$ the rate of the reaction $y_{i} \rightarrow y_{j}$ in \hat{G}. We realize the dynamical system using the graph \hat{G} :

$$
\begin{array}{llll}
\hat{k}_{12}=k_{1}\left(\frac{1}{3}-a\right), & \hat{k}_{21}=k_{2}\left(\frac{1}{3}-b\right), & \hat{k}_{32}=k_{3}\left(\frac{1}{2}-c\right), & \hat{k}_{41}=k_{4}\left(\frac{1}{2}-d\right), \\
\hat{k}_{14}=k_{1}\left(\frac{1}{2}-a\right), & \hat{k}_{23}=k_{2}\left(\frac{1}{2}-b\right), & \hat{k}_{34}=k_{3}\left(\frac{1}{3}-c\right), & \hat{k}_{43}=k_{4}\left(\frac{1}{3}-d\right), \\
\hat{k}_{13} & \hat{k}_{24}=k_{2} b, & \hat{k}_{31}=k_{3} c, & \hat{k}_{42}=k_{4} d .
\end{array}
$$

Example

Impose the complex balanced equations for $\hat{G}, \hat{\mathrm{k}}$:

$$
\begin{align*}
\hat{k}_{12}+\hat{k}_{14}+\hat{k}_{13} & =\hat{k}_{41} x_{2}^{2}+\hat{k}_{21} x_{1}^{3}+\hat{k}_{31} x_{1}^{3} x_{2}^{2} ; \\
\hat{k}_{21} x_{1}^{3}+\hat{k}_{23} x_{1}^{3}+\hat{k}_{24} x_{1}^{3} & =\hat{k}_{12}+\hat{k}_{32} x_{1}^{3} x_{2}^{2}+\hat{k}_{42} x_{2}^{2} ; \tag{9}\\
\hat{k}_{32} x_{1}^{3} x_{2}^{2}+\hat{k}_{34} x_{1}^{3} x_{2}^{2}+\hat{k}_{31} x_{1}^{3} x_{2}^{2} & =\hat{k}_{43} x_{2}^{2}+\hat{k}_{23} x_{1}^{3}+\hat{k}_{13} ;
\end{align*}
$$

We have the following inequalities:

$$
\begin{array}{r}
k_{1}, k_{2}, k_{3}, k_{4}>0 \\
0<a, b, c, d<\frac{1}{3} \tag{10}
\end{array}
$$

Eliminating the variables x_{1}, x_{2} from equations (8) and (9), we obtain that there exists $\mathrm{x}:=\left(x_{1}, x_{2}\right) \in \mathbb{R}_{>0}^{2}$ verifying the equations if and only if $k_{1} k_{3}(6(a+c)-5)^{2}=k_{2} k_{4}(6(b+d)-5)^{2}$. By (10), we obtain the condition $\frac{1}{25} \leq \frac{k_{1} k_{3}}{k_{2} k_{4}} \leq 25$.

Thank you for your attention!

Bibliography:

(Gheorghe Craciun. Toric Differential Inclusions and a Proof of the Global Attractor Conjecture. url: https://arxiv.org/abs/1501. 02860 (cit. on pp. 31-33).
B Gheorghe Craciun, Alicia Dickenstein, Anne Shiu, and Bernd Sturmfels. "Toric dynamical systems". In: J. Symbolic Comput. 44.11 (2009), pp. 1551-1565. url: https://doi.org/10.1016/j.jsc.2008.08.006 (cit. on pp. 13, 14).
Bheorghe Craciun, Jiaxin Jin, and Polly Y. Yu. "An efficient characterization of complex-balanced, detailed-balanced, and weakly reversible systems". In: SIAM J. Appl. Math. 80.1 (2020), pp. 183-205. url: https://doi.org/10.1137/19M1244494 (cit. on pp. 15, 65, 67).
: F. Horn and R. Jackson. "General mass action kinetics". In: Arch. Rational Mech. Anal. 47 (1972), pp. 81-116. url: https://doi.org/10.1007/BF00251225 (cit. on pp. 28-30).
© Yulij llyashenko. "Centennial history of Hilbert's 16th problem". In: Bull. Amer. Math. Soc. (N.S.) 39.3 (2002), pp. 301-354. url:
https://doi.org/10.1090/S0273-0979-02-00946-1 (cit. on pp. 7, 8).
© Laura Brustenga i Moncusí, Gheorghe Craciun, and Miruna-Stefana Sorea. "Disguised toric dynamical systems". In: J. Pure Appl. Algebra 226.8 (2022), Paper No. 107035, 24. issn: 0022-4049. doi: 10.1016/j.jpaa.2022.107035. url: https://doi.org/10.1016/j.jpaa.2022.107035 (cit. on pp. 15, 16).
圁 Polly Y Yu and Gheorghe Craciun. "Mathematical analysis of chemical reaction systems". In: Israel Journal of Chemistry 58.6-7 (2018), pp. 733-741 (cit. on p. 10)

[^0]: 2 "Limit Cycles, Abelian Integral and Hilbert's Sixteenth Problem", Marco Uribe, Hossein Movasati, https://impa.br/wp-content/uploads/2017/08/31CBM_06.pdf

[^1]: ${ }^{4}$ Gheorghe Craciun. Toric Differential Inclusions and a Proof of the Global Attractor Conjecture. url: https://arxiv.org/abs/1501 =02860,

[^2]: ${ }^{4}$ Gheorghe Craciun. Toric Differential Inclusions and a Proof of the Global Attractor Conjecture. url: https://arxiv.org/abs/1501 =02860,

[^3]: ${ }^{4}$ Gheorghe Craciun. Toric Differential Inclusions and a Proof of the Global Attractor Conjecture. url: https://arxiv.org/abs/1501 02860

