How we develop waveform models for large
mass ratio binaries: method, status, and
thoughts on what is missing

(Coordinated with Leor Barack’s following presentation)

Scott A. Hughes, MIT SISSA, 7 June 2023



Astrophysics overview

The setting: Center of a “normal” galaxy. Typically
hosts a black hole of 106e—107 solar masses; black
hole in a nucleus with ~10% solar masses of stars.

Galactic nucleus

°
o Size ~1—10pc I h I I l I I I ] f h
2-body relaxation important short Density ~ 107 Mg pe?
Veloeity dispersion  ~ 100 — 1000 km s~

Black hole dominates inside ~pc.

—— Sl stars tend to sink closest
to the large black hole;
these stars evolve through
main sequence most
quickly, will leave stellar
mass black holes behind.

Massive Black Hole

Graphic courtesy of Marc Freitag
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Astrophysics overview

The setting: Center of a “normal” galaxy. Typically
hosts a black hole of 106e—107 solar masses; black
hole in a nucleus with ~10% solar masses of stars.

Galactic nucleus
Size ~1—10pc . . .
b s Multi-body scattering in
Black hole dominates inside ~pc. Velocity dispersion  ~ 100 — 1000 km s~ y
omplications: gas, non-sphericity, Relaxation time ~ 10% " years
e BK ks
e o

resonant relaxation.

centers of galaxies puts
compact stellar remnant
onto an orbit that
evolves into a strong-
wsiveaecioe — f1€ld, GW-driven inspiral.
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Astrophysics overview

The setting: Center of a “normal” galaxy. Typically
hosts a black hole of 106e—107 solar masses; black
hole in a nucleus with ~10? solar masses of stars.
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Astrophysics overview

The setting: Center of a “normal” galaxy. Typically
hosts a black hole of 106e—107 solar masses; black
hole in a nucleus with ~10% solar masses of stars.

Quctiomlens Gravitational waves
e — ‘.; o generate d by these
N extreme mass ratio
inspirals are in band

0.004Hz < f < 0.2Hz
Massive Black Hole at M = 106 Msun

Graphic courtesy of Marc Freitag Pe rfect fo r LI SA!
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Astrophysics overview

The setting: Center of a “normal” galaxy. Typically
hosts a black hole of 106e—107 solar masses; black
hole in a nucleus with ~10% solar masses of stars.

Galactic nucleus

L] L]
n i Number of galaxies with
2-body relaxation important short Density ~ 107 Mg pe?
Veloeity dispersion  ~ 100 — 1000 km s~

Black hole dominates inside ~pc.

e the “right” central BHs
plus studies of stellar
scattering processes
indicate event rate likely
to be high: Perhaps > 102
per year if smaller object
is 30 Msun or larger.

Massive Black Hole

Graphic courtesy of Marc Freitag
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Astrophysics overview

The setting: Center of a “normal” galaxy. Typically
hosts a black hole of 106e—107 solar masses; black
hole in a nucleus with ~10% solar masses of stars.

°

Galactc muclus Interesting related case:

Size ~1—10pc °
2-body relaxation important short Density ~ 107 Mgpe?
Black hole dominates inside ~pc. Velocity dispersion  ~ 100 — 1000 kmn s ! I N TE RM E D IAT E :

omplications: gas, non-sphericity, Relaxation time ~ 10% " years I I laSS rat] o

resonant relaxation. .-;" . -.

.‘ es "o ¥

inspiral or IMRI. If smaller
body is 102 or 103 Msun
black hole, events are
detectable to large z.
Likely an important
Graphic courtesy of Marc Freitag fraction of ear[y black
hole mergers!
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The physics view of an EMRI

Get some intuition with leading order formulas:
Time spent spiraling from f = f1 to f = fa2:

5 c ( —8/3 —8/3)
22/378/31024 Gu (GM)2/3 \"! .

Months to years in band for M ~ 106 — 107 Msun,
u~5— 150 Msun.

Thand =

Number of orbits executed in that time:

1 3 2 _5/3  —5/3
Norb = 55732873256 G (G M)2/3 (177 =127

Tens of thousands of orbits executed during
that time in band for these masses.
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The physics view of an EMRI

Tens of thousands of slowly evolving orbits are

executed in the near-field region of large black

hole’s spacetime ... GWs that they generate are
sensitive to the near-horizon black hole spacetime.

I f We Ca n CO h e ren t ly 365 days before merger, axis units AU._Eun'e_rjt average speed 0.164 ¢

track these GWs, can
use them to measure
spacetime properties;
expect measurement
errors to scale as 1/Norb
and 1/(signal to noise).

0.5~
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How we model these sources

Mass ratio serves as a natural perturbative
expansion parameter: Msmau/Mpig «1.

At least schematically, can
write spacetime in the form

gap = gug (M, a) + hij + hig +

Motion of small body looks like a geodesic of gkerr plus
corrections arising from perturbations h(®:

“Self force” fa— dz.’L‘a d.CU’B dx”

. . | ]_"Of — fa
correction to geodesic 772 | By g g
orbits due to h terms. T T T
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How we model these sources

Mass ratio serves as a natural perturbative
expansion parameter: Msmai/Mpig «1.

Details are complicated. Eg,
better to expand in curvature
rather than metric:

w + 51’0 For a Kerr black hole background,
n n particularly important to get
Background / A:J o curvature components w4 (o), which
Newman-Penrose represent outgoing (ingoing) radiation
Weyl curvature scalar ... leukolsky’s perturbation equation
gives an effective tool for this.
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How we model these sources

Mass ratio serves as a natural perturbative
expansion parameter: Msmau/Mpig «1.

Once we have the curvature
perturbation in hand, we
know how to build metric

perturbation (in some gauge)

and construct the self force.

9aB = Gug (1)(104, 7y

Once we have this (skipping a LOT of details!), can
construct self force, examine motion of secondary
and gravitational waves the system generates.
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Motion: Action-angle approach

Following Flanagan and Hinderer [PRL 109, 071102
(2012)], motion in BH spacetime with self force
described using an action-angle framework:

Gfiq—; — wOf(J) + 89( )(qé’a Q’r‘aJ) + 0(82)
(figf — 5G( )(qe qr,J) + O(g?)

A is a time variable (well adapted to Kerr orbits),
and € = m/M. Action and angle variables are

oo = (Qtaqr‘a\QGUQ¢) J’L — (E/ma Lz/ma Q/mz)

Generalized angle variables

describing motion in Conserved quantities

spacetime coordinates describing background motion
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Motion: Action-angle approach

To understand motion in this framework, examine
these equations order-by-order:

acliq—; — wOﬁ(J) + 696(11) (QQa dr, J) + 0(62)
(f‘l{\z — gG?(:l) (QGa q'r'a']) + 0(82)
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Motion: Action-angle approach

To understand motion in this framework, examine
these equations order-by-order:

(?_; = wa(J)

dJ; __
d\

Oth order in mass ratio: Angle variables accumulate

at rate set by their associated frequency; conserved
quantities of background motion are conserved.

At order €0

In simpler words: The zeroth order motion
is a background spacetime geodesic.
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Motion: Action-angle approach

To understand motion in this framework, examine
these equations order-by-order:

Yo — ), (T) + a5 (g0, qr, J)

47 — e\ (gp, g, J)

Very useful to understand these additional “forcing”
terms by considering their Fourier expansions:

F(Q97 Q’r’) — Z Fknei(kqe—i_nqr)
k,n

At order €1

1 27 27 .
Fkn — / dqe / dq?ﬂ F(QQ, q?ﬂ)e_z(kqe‘l‘nq'r')
(2m)% Jo 0
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Two timescales

Fourier expansion lets us identify terms that oscillate on
short timescales and terms that accumulate secularly
over longer intervals. For “most” orbits,

F(qo,q-) = (F) + dF(qo, qr)
where

<F> — FOO 5F — Z Fknei(kqe—l_nqr)

/ h

Accumulates over : :
: Oscillates over an orbit,
many orbits
averages to (nearly) zero
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Two timescales
The equations of motion then become

dqa

dq)\ = wo +&(gM) + edglH
dJ;

= = (Gy") + 6G}Y

Average of the forcing function G(1); describes the
leading evolution of integrals of motion:

o= [(G).(5)- (%)

Drives secular evolution of the system’s orbital
parameters, on time scale M/& = M2/ m.
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Two timescales
The equations of motion then become

dqa

dq)\ = wo +&(gM) + edglH
dJ;

= = e(Gy") + 8G}Y

Average of the forcing function g()q equivalent
to a shift in the orbital frequencies:

wa(J) = wa(J) +e{gs” ()

Leading conservative impact on the binary:
Frequencies are shifted of order € = m/M.
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Summary: Two-timescale character
of EMRI evolution

We can now catalog the various terms and their
impact on EMRIs at 1st order in mass ratio:

o _ = wq +(g{) + edglV
d\ “
/ f Oscillatory
Geodesic Leading conservative conservative
freq., ~1/M correction, ~m/M2 contribution

dJ;
Cy (G(l)) + séG(l)
Leading dissipation, Oscillatory contribution

changes orbit on T, ~ M2/m to the dissipation
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How phase accumulates

Examine how different effects accumulate if we

follow an EMRI’s phase over a time interval.

Phase accumulated looks like frequencies (and corrections)
integrated over interval determined by dissipation:

t2
Phase accumulated from t; to ta: (I)(tl, tg) = / w(t) dt
3]
O(M/m): Evolving geodesic freq. > — (I)d‘ .
- 1SS—

[O(1/M)] integrated over insp. [O(M2/m)]
O(1): Cons. correction to freq. —»> T (I)cons—l
[O(m/M?)] integrated over inspiral
. , , T (I)diss—2

O(1): Geodesic freq. integrated against /
next order correction to inspiral [O(M)] T (I)cons_z

O(m/M): next order correction to freq. [O(mZ2/M3)] 4
integrated against inspiral [O(M2/m)]
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How phase accumulates

Conventional wisdom: Detecting GWs requires

models accurate to O(1) on phase.

Phase accumulated looks like frequencies (and corrections)
integrated over interval determined by dissipation:

t2
Phase accumulated from t; to ta: O(t1,t2) = / w(t) dt
t1
O(M/m): Evolving geodesic freq. > — (I)d‘ .
- 1SS—

[O(1/M)] integrated over insp. [O(M2/m)]

O(1): Cons. correction to freq. —»> T (I)cons—l
[O(m/M?)] integrated over inspiral

+ Dgics_ o
O(1): Geodesic freq. integrated against _—"" 1SS
next order correction to inspiral [O(M)] + Peons—9

O(m/M): next order correction to freq. [O(m2/M3)] — 4
integrated against inspiral [O(M2/m)]
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Where does modeling stand today?

For detection only, arguments based on phase
counting and conventional wisdom tell us

(I)needed — (I)diss—l + (I)cons—l + (I)diss—Z
V

‘:/(I)OPA + D1pa
From 1st order averaged
dissipative self force.
Well understood: Used for From 2nd order
“adiabatic” waveforms self force:
’ Frontier: 1st
From rest of the 1st order self force. results recently
Understood; expensive & published.

challenging to compute.
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Leading order: Adiabatic waveform (OPA)

Leading approximation treats the motion as
geodesic on short timescales, “flows” through
sequence of geodesics due to GW backreaction.

Mo _ @) S =e(@P@)

dA B a = 0.7M, py, = 12M, e, = 0.25, X = 0.5
. . R —
This approximation +

yields the leading
contribution to orbital S

phase, scaling as M/m shed (el g v =0
i | | C , | A
. . EII| .!' r I | B IIII p lll' "I 'Illl' \ :II |L+
(1e, 1/mass-ratio). Wit bl BN g
31 'LH‘ -_"I""i(rllfll'{l: l‘llb'h!:'}.lfj'lffl"!lk:'J-'llqll_]lT:i'uﬂJ"p'L‘ 1 %—hl i | l;‘lﬁ | '|||',I'|.-'I!. ‘.M
E ,1L|'!| l":;‘v l:! :r.ld."ll :rI 15“)"'“ ]Il‘:l‘ldlii I'ljl | I:I 2'||:| tl J |'I| '|].Ir|l"}|IA lIT H
Example adiabatic waveform, Fig. 16 of f AR \ E mELEEELE 1 i

Hughes et al PRD 2021 (arXiv:2102.02713) L - - ,

0 2000 3.485x10°
ti /M
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Leading order: Adiabatic waveform (OPA)

Leading approximation treats the motion as
geodesic on short timescales, “flows” through
sequence of geodesics due to GW backreaction.

Yo _ e@ 20— (GO @)

a = 0.7M, py, = 12M, ey = 0.25, X,y = 0.5
T T T T T T I:

Serves as the foundation for [
FEW (Fast EMRI Waveforms);
not difficult to fold in )

(D/u) h,

leading conservative effects e R
once we have a deep catalog - |/ Ll bl i
T ?li””l::u"fff‘:"il'.lfll“HHJ | IR
of results to draw on. S AT “E ik ke it

0 Li/5{000 3.485x10° i

Scott A. Hughes, MIT



Leading order: Adiabatic waveform (OPA)

Leading approximation treats the motion as
geodesic on short timescales, “flows” through
sequence of geodesics due to GW backreaction.

dqa o dJ; . (1)

Why this approximation e
works: for “most” orbits, self ; \;\
force components dominated o |

by average values. =W

Neglecting oscillations is T,

acceptable as a first }

/ lL, 'U’\nl ;nl ¥, -
gy
0.95 - LT i

approximation for inspiral. i T
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Leading order: Adiabatic waveform (OPA)

Leading approximation treats the motion as
geodesic on short timescales, “flows” through
sequence of geodesics due to GW backreaction.

dqe, dJ;
o =we@el))  E=e(G @)

dA\

Example important 1PA term:
conservative contribution to
frequencies. Straightforward
to include once we have a
good “catalog” of its behavior
over parameter space.

Example effect of such a term: Small
body’s own contribution to the rate

of periapsis precession.
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Leading order: Adiabatic waveform (OPA)

Leading approximation treats the motion as
geodesic on short timescales, “flows” through
sequence of geodesics due to GW backreaction.

dgo dJi 1) 2/ ~(2)

Example important 1PA term:
Next order dissipative
contribution to inspiral rate.

Requires next order in

perturbation theory!
Frontier of current research.

See Leor Barack’s
talk for details
and discussion of
current status
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Other physics: secondary spin

Most of this discussion imagines the smaller body is
a structureless point ... if it is itself a Kerr black
hole, then we need to account for its spin.

Oth order motion is not a Dp®
. . = ()
geodesic in this case ... dr

Scott A. Hughes, MIT SISSA, 7 June 2023



Other physics: secondary spin

Most of this discussion imagines the smaller body is
a structureless point ... if it is itself a Kerr black
hole, then we need to account for its spin.

Oth order motion is nota Dp“ _ _lRa B g
geodesic in this case ...  dr oY Puv
but is instead governed by pgquv
the Mathisson-Dixon- = pPu” — pYut

Papapetrou equations of
motion: schematically, a PpS"” =0
forced geodesic coupled

to spin precession.
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Other physics: secondary spin

Most of this discussion imagines the smaller body is
a structureless point ... if it is itself a Kerr black
hole, then we need to account for its spin.

Precession and spin-curvature coupling force change
orbital frequencies and orbit properties ... effect
comparable to leading self force. Now updating

adiabatic framework to include these effects.
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Can we fold accretion physics into
this framework?

Accretion has the potential to change the orbits
that a small body follows, as well as the
backreaction / inspiral / wave emission.

dqa
4o — wo(J)

Kocsis, Yunes, Loeb =
’ dA

approach: Leave orbits
: dJ; (1)
essentially unchanged, but =¢e(G;7(J))
: d

add evolutionary terms

accounting for accretion-

induced sinks of energy

and angular momentum.

+F7;acc (J)
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Can we fold accretion physics into
this framework?

Accretion has the potential to change the orbits
that a small body follows, as well as the

backreaction / inspiral / wave emission.
e~ wa(3)
o d
Guidance iJ

= (g
needed here! o =G

+F7;acc (J)
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